数字图像处理主题综述汇总

数字图像处理主题综述汇总
数字图像处理主题综述汇总

数字图像处理主题综述

姓名:

学号: 201203284

班级: 计科11202

序号: 31

院系: 计算机科学学院

主题: 医学图片处理

目录

1.引言 (3)

2.医学图像三维可视化技术 (3)

3.医学图像分割 (4)

4.医学图像配准和融合 (6)

5.医学图像纹理分析 (8)

6.应用 (9)

7.总结 (10)

8.参考文献 (10)

1.引言

近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明

曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。

在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。

本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。

2.医学图像三维可视化技术

2.1 三维可视化概述

医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

2.2关键技术:

图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、

弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。

由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。建立配准关系后,将多个图像的数据合成表示的过程,称为融合。在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。

当分割归类或数据整合结束后,对体数据进行体绘制。体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。

未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。

3.医学图像分割

医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。

3.1 基于统计学的方法

统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法

来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs 随机场模型参数无监督及估计难等问题,使分割结果更为可靠。

3.2基于模糊集理论的方法

医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引

入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。

3.2.1基于模糊理论的方法

模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而,FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。FFCM 算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。

3. 2.2 基于神经网络的方法

按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen网络,进行无指导的体素聚类,以得到感兴趣区域。模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。

3. 2. 3 基于小波分析的分割方法

小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。

小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[6

3.3 基于知识的方法

基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如M I的质子密度(PD)、T1和T2统计数据。Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。

3.4 基于模型的方法

该方法根据图像的先验知识建立模型,有动态轮廓模型(Active Contour Model,又称Snake)、组合优化模型等,其中Snake最为常用。Snake算法的能量函数采用积分运算,具有较好的抗噪性,对目标的局部模糊也不敏感,但其结果常依赖于参数初始化,不具有足够的拓扑适应性,因此很多学者将Snake与其它方法结合起来使用,如王蓓等利用图像的先验知识与Snake结合的方法,避开图像的一些局部极小点,克服了Snake方法的一些不足。Raquel等将径向基网络(RBFNN cc)与Snake相结合建立了一种混合模型,该模型具有以下特点:(1)该混合模型是静态网络和动态模型的有机结合;( 2)Snake的初始化轮廓由RBFNN cc提供;

(3)Snake的初始化轮廓给出了最佳的控制点;(4)Snake的能量方程中包含了图像的多谱信息。Luo等提出了一种将live wire算法与Snake相结合的医学图像序列的交互式分割算法,该算法的特点是在少数用户交互的基础上,可以快速可靠地得到一个医学图像序列的分割结果。

由于医学图像分割问题本身的困难性,目前的方法都是针对某个具体任务而言的,还没有一个通用的解决方法。综观近几年图像分割领域的文献,可见医学图像分割方法研究的几个显著特点:(1)学者们逐渐认识到现有任何一种单独的图像分割算法都难以对一般图像取得比较满意的结果,因而更加注重多种分割算法的有效结合;(2)在目前无法完全由计算机来完成图像分割任务的情况下,半自动的分割方法引起了人们的广泛注意,如何才能充分利用计算机的运算能力,使人仅在必要的时候进行必不可少的干预,从而得到满意的分割结果是交互式分割方法的核心问题;(3)新的分割方法的研究主要以自动、精确、快速、自适应和鲁棒性等几个方向作为研究目标,经典分割技术与现代分割技术的综合利用(集成技术)是今后医学图像分割技术的发展方向。

4.医学图像配准和融合

医学图像可以分为解剖图像和功能图像2 个部分。解剖图像主要描述人体形态信息,功能图像主要描述人体代谢信息。为了综合使用多种成像模式以提供更全面的信息,常常需要将有效信息进行整合。整合的第一步就是使多幅图像在空间域中达到几何位置的完全对应,这一步骤称为“配准”。整合的第二步就是将配准后图像进行信息的整合显示,这一步骤称为“融合”。

在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI、PET、SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全面的信息,这就需要将患者的各种图像信息综合研究19],而要做到这一点,首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到一起,形成新的图像的过程。图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个目的。

4.1 医学图像配准

医学图像配准包括图像的定位和转换,即通过寻找一种空间变换使两幅图像对应点达到空间位置上的配准,配准的结果应使两幅图像上所有关键的解剖点或感兴趣的关键点达到匹配。20世纪90年代以来,医学图像配准的研究受到了国内外医学界和工程界的高度重视,1993年Petra等]综述了二维图像的配准方法,并根据配准基准的特性,将图像配准的方法分为两大类:基于外部特征(有框架)的图像配准和基于内部特征(无框架)的图像配准。基于外部特征的方法包括立体定位框架法、面膜法及皮肤标记法等。基于外部特征的图像配准,简单易行,易实现自动化,能够获得较高的精度,可以作为评估无框架配准算法的标准。但对标记物的放置要求高,只能用于同一患者不同影像模式之间的配准,不适用于患者之间和患者图像与图谱之间的配准,不能对历史图像做回溯性研究。基于内部特征的方法是根据一些

用户能识别出的解剖点、医学图像中相对运动较小的结构及图像内部体素的灰度信息进行配准。基于内部特征的方法包括手工交互法、对应点配准法、结构配准法、矩配准法及相关配准法。基于内部特征的图像配准是一种交互性方法,可以进行回顾性研究,不会造成患者不适,故基于内部特征的图像配准成为研究的重点。

近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最大化的互信息量作为配准准则进行图像的配准,在配准对象方面从二维图像发展到三维多模医学图像的配准。例如Luo等利用最大互信息法对CT-MR和MR-PET三维全脑数据进行了配准,结果全部达到亚像素级配准精度。在医学图像配准技术方面引入信号处理技术,例如傅氏变换和小波变换。小波技术在空间和频域上具有良好的局部特性,在空间和频域都具有较高的分辨率,应用小波技术多分辨地描述图像细貌,使图像由粗到细的分级快速匹配,是近年来医学图像配准的发展之一。国内外学者在这方面作了大量的工作,如Sharman 等提出了一种基于小波变换的自动配准刚体图像方法,使用小波变换获得多模图像特征点然后进行图像配准,提高了配准的准确性。另外,非线性配准也是近年来研究的热点,它对于非刚性对象的图像配准更加适用,配准结果更加准确。

目前许多医学图像配准技术主要是针对刚性体的配准,非刚性图像的配准虽然已经提出一些解决的方法,但同刚性图像相比还不成熟。另外,医学图像配准缺少实时性和准确性及有效的全自动的配准策略。向快速和准确方面改进算法,使用最优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。

4.2 医学图像融合

图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。不同的医学影像设备获取的影像反映了不同的信息:功能图像(SPECT、PET 等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B 超等)以较高的分辨率提供了脏器的解剖形态信息,其中CT 有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起,可以为临床提供更加全面和准确的资料。

医学图像的融合可分为图像融合的基础和融合图像的显示。(1)图像融合的基础:目前的图像融合技术可以分为2 大类,一类是以图像像素为基础的融合法;另一类是以图像特征为基础的融合方法。以图像像素为基础的融合法模型可以表示为:

其中,为融合图像,为源图像,

为相应的权重。以图像特征为基础的融合方法在原理上不够直观且算法复杂,但是其实现效果较好。图像融合的步骤一般为:①将源图像分别变换至一定变换域上;②在变换域上设计一定特征选择规则;③根据选取的规则在变换域上创建融合图像;④逆变换重建融合图像。(2)融合图像的显示:融合图像的显示方法可分成2 种:空间维显示和时间维显示。

目前,医学图像融合技术中还存在较多困难与不足。首先,基本的理论框架和有效的广义融合模型尚未形成。以致现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少且研究主要集中于大脑、肿瘤成像等;其次,由于成像系统的成像原理的差异,其图像采集

方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同融合方法融合效果优劣的标准,通常用目测的方法比较融合效果,有时还需要利用到医生的经验。

在图像融合技术研究中,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。

5.医学图像纹理分析

一般认为图像的纹理特征描述物体表面灰度或颜色的变化,这种变化与物体自身属性有关,是某种纹理基元的重复。Sklansky早在1978年给出了一个较为适合于医学图像的纹理定义:“如果图像的一系列固有的统计特性或其它的特性是稳定的、缓慢变化的或者是近似周期的,那么则认为图像的区域具有不变的纹理”。纹理的不变性即指纹理图像的分析结果不会受到旋转、平移、以及其它几何处理的影响。目前从图像像素之间的关系角度,纹理分析方法主要包括以下几种。

5.1 统计法

统计分析方法主要是基于图像像素的灰度值的分布与相互关系,找出反映这些关系的特征。基本原理是选择不同的统计量对纹理图像的统计特征进行提取。这类方法一般原理简单,较易实现,但适用范围受到限制。该方法主要适合医学图像中那些没有明显规则性的结构图像,特别适合于具有随机的、非均匀性的结构。统计分析方法中,最常用的是共生矩阵法,其中有灰度共生矩阵(gray level co-occurrence matrix , GLCM)和灰度—梯度共生矩阵。杜克大学的R. Voracek等使用GLCM对肋间周边区提取的兴趣区(region of interest, ROI)进行计算,测出了有意义的纹理参数。另外,还有长游程法(run length matrix ,RLM),其纹理特征包括短游程优势、长游程优势、灰度非均匀化、游程非均匀化、游程百分比等,长游程法是对图像灰度关系的高阶统计,对于给定的灰度游程,粗的纹理具有较大的游程长度,而细的纹理具有较小的游程长度。

5.2 结构法

结构分析方法是分析纹理图像的结构,从中获取结构特征。结构分析法首先将纹理看成是有许多纹理基元按照一定的位置规则组成的,然后分两个步骤处理(1)提取纹理基元;(2)推论纹理基元位置规律。目前主要用数学形态学方法处理纹理图像,该方法适合于规则和周期性纹理,但由于医学图像纹理通常不是很规则,因此该方法的应用也受到限制,实际中较少采用。

5.3 模型法

模型分析方法认为一个像素与其邻域像素存在某种相互关系,这种关系可以是线性的,也可以是符合某种概率关系的。模型法通常有自回归模型、马尔科夫随机场模型、Gibbs随机场模型、分形模型,这些方法都是用模型系数来表征纹理图像,其关键在于首先要对纹理图像的结构进行分析以选择到最适合的模型,其次为如何估计这些模型系数。如何通过求模型参数来提取纹理特征,进行纹理分析,这类方法存在着计算量大,自然纹理很难用单一模型表达的缺点。

5.4 频谱法

频谱分析方法主要基于滤波器理论,包括傅立叶变换法、Gabor变换法和小波变换法。

1973年Bajcsy使用傅立叶滤波器方法分析纹理。Indhal等利用2-D快速傅立叶变换对纹理

图像进行频谱分析,从而获得纹理特征。该方法只能完成图像的频率分解,因而获得的信息不是很充分。1980年Laws对图像进行傅氏变换,得出图像的功率谱,从而提取纹理特征进行分析。

Gabor函数可以捕捉到相当多的纹理信息,且具有极佳的空间/频域联合分辨率,因此在实际中获得了较广泛的应用。小波变换法大体分金子塔形小波变换法和树形小波变换法(小波包法)。

小波变换在纹理分析中的应用是Mallat在1989年首先提出的,主要用二值小波变换(Discrete Wavelet Transform, DWT),之后各种小波变换被用于抽取纹理特征。传统的金字塔小波变换在各分解级仅对低频部分进行分解,所以利用金字塔小波变换进行纹理特征提取是仅利用了纹理图像低频子带的信息,但对某些纹理,其中高频子带仍含有有关纹理的重要特征信息(如对具有明显的不规则纹理的图像,即其高频子带仍含有有关纹理的重要特征)得不到利用。使用在每个分解级对所有的频率通道均进行分解的完全树结构小波变换提取特征,能够较全面地提取有关纹理特征。

由于医学图像及其纹理的复杂性,目前还不存在通用的适合各类医学图像进行纹理分析的方法,因而对于各类不同特点的医学图像就必须采取有针对性地最适合的纹理分析技术。另外,在应用某一种纹理分析方法对图像进行分析时,寻求最优的纹理特征与纹理参数也是目前医学图像纹理分析中的重点和难点。

6.应用

超声图像:

7.总结

随着远程医疗技术的蓬勃发展,对医学图像处理提出的要求也越来越高。医学图像处理技术发展至今,各个学科的交叉渗透已是发展的必然趋势,其中还有很多亟待解决的问题。有效地提高医学图像处理技术的水平,与多学科理论的交叉融合、医务人员和理论技术人员之间的交流就显得越来越重要。多维、多参数以及多模式图像在临床诊断(包括病灶检测、定性,脏器功能评估,血流估计等)与治疗(包括三维定位、体积计算、外科手术规划等)中将发挥更大的作用。

8.参考文献

[1] 王新成. 高级图像处理技术[M]. 北京:中国科学技术出版社,2001.

[2] 刘俊敏,黄忠全,王世耕,张颖. 医学图像处理技术的现状及发展方向[J]. 医疗卫生设备,2005,Vol26 (12):25-26.

[3] 田娅,饶妮妮,蒲立新. 国内医学图像处理技术的最新动态[J]. 电子科技大学学报,2002,Vol31(5):485-489.

[4] 周刚慧,施鹏飞.磁共振图像的随机场分割方法[J].上海交通大学学报,2001,Vol35(11):1655.

[5] 王蓓,张立明. 利用图像先验知识与Snake 结合对心脏序列图像的分割[J]. 复旦大学学报(自然科学版),2003,Vol42(1):81.

数字图像处理课程心得

数字图像处理课程心得 本学期,我有幸学习了数字图像处理这门课程,这也是我大学学习中的最后一门课程,因此这门课有着特殊的意义。人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉信息总的加起来不过占20%。可见图像信息是十分重要的。通过十二周的努力学习,我深刻认识到数字图像处理对于我的专业能力提升有着比较重要的作用,我们可以运用Matlab对图像信息进行加工,从而满足了我们的心理、视觉或者应用的需求,达到所需图像效果。 数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字照片。此后,由于遥感等领域的应用,使得图像处理技术逐步受到关注并得到了相应的发展。第三代计算机问世后,数字图像处理便开始迅速发展并得到普遍应用。由于CT的发明、应用及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,数字图像处理技术的需求与日俱增。其中,图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源及利用信息的重要手段,因此图像处理科学与技术逐步向其他学科领域渗透并为其它学科所利用是必然的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。图像处理科学是一门与国计民生紧密相联的应用科学,它给人类带来了巨大的经济和社会效益,不久的将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。它的发展及应用与我国的现代化建设联系之密切、影响之深远是不可估量的。在信息社会中,数字图象处理科学无论是在理论上还是在实践中都存在着巨大的潜力。近几十年,数字图像处理技术在数字信号处理技术和计算机技术发展的推动下得到了飞速的发展,正逐渐成为其他科学技术领域中不可缺少的一项重要工具。数字图像处理的应用领域越来越广泛,从空间探索到微观研究,从军事领域到工农业生产,从科学教育到娱乐游戏,越来越多的领域用到了数字图像处理技术。 虽然通过一学期的课程学习我们还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像处理方面的知识有了比较深入的了解,当然也更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

数字图像处理知

数字图像处理知识点总结

数字图像处理知识点总结 第一章导论 1.图像:对客观对象的一种相似性的生动性的描述或写真。 2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段), 按空间坐标和亮度的连续性(模拟和数字)。3.图像处理:对图像进行一系列操作,以到达预期目的的技术。 4.图像处理三个层次:狭义图像处理、图像分析和图像理解。 5.图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0

称为采样。采样间隔和采样孔径的大小是两个 很重要的参数。采样方式:有缝、无缝和重叠。 9.将像素灰度转换成离散的整数值的过程叫量化。 10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。 11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分 辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图 像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。例如对细节比较丰富的图像数字化。

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

数字图像处理实验报告

实验一灰度图像直方图统计 一、实验目的 掌握灰度图像直方图的概念和计算方法,了解直方图的作用和用途。提高学生编程能力,巩固所学知识。 二、实验内容和要求 (1)用Photoshop显示、了解图像平均明暗度和对比度等信息; (2)用MatLab读取和显示一幅灰度图像; (3)用MatLab编写直方图统计的程序。 三、实验步骤 1. 使用Photoshop显示直方图: 1)点击文件→打开,打开一幅图像; 2)对图像做增强处理,例如选择图像→调整→自动对比度对图像进行灰度拉伸,观察图像进行对比度增强前后的视觉变化。 3)利用统计灰度图像直方图的程序分别针对灰度拉伸前后的灰度图像绘制其灰度直方图,观察其前后的直方图变化。 2.用MatLab读取和显示一幅灰度图像; 3. 绘制图像的灰度直方图; function Display_Histogram()

Input=imread('timg.jpg'); figure(100); imshow(uint8(Input)); title('原始图像'); Input_Image=rgb2gray(Input); figure(200); imshow(uint8(Input_Image)); title('灰度图像'); sum=0; His_Image=zeros(1,256); [m,n]=size(Input_Image); for k=0:255 for I=1:m for j=1:n if Input_Image(I,j)==k His_Image(k+1)=His_Image(k+1)+1; end end end end figure(300); plot(His_Image); title('图像的灰度直方图'); 4.显示图像的灰度直方图。

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

数字图像处理的概念教学总结

数字图像处理的概念

二、数字图像处理的概念 1.什么是图像 “图”是物体投射或反射光的分布,“像”是人的视觉系统对图的接受在大脑中形成的印象或反映。 是客观和主观的结合。 2数字图像是指由被称作象素的小块区域组成的二维矩阵。将 物理图象行列划分后,每个小块区域称为像素(pixel)。 –每个像素包括两个属性:位置和灰度。 对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示, 0表示黑、255表示白,而其它表示灰度级别。 物理图象及对应 的数字图象 3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。 –通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 4什么是数字图像处理 数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f(x,y)进行数字化:空间上,图像抽样;幅度上,灰度级量化 x方向,抽样M行 y方向,每行抽样N点

整个图像共抽样M×N个像素点 一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示: f(i,j)=0~255,灰度级为256,设灰度量化为8bit 7 数字图像处理的三个层次 8 图像处理: 对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换;图像处理是一个从图像到图像的过程。 9图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息 以观察者为中心研究客观世界; 图像分析是一个从图像到数据的过程。 10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内 以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作 (符号运算) N N N N f N f N f N f f f N f f f y x f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - = )1 ,1 ( )1,1 ( )0,1 ( )1 ,1( )1,1( )0,1( )1 ,0( )1,0( )0,0( ) ,( 符号 目标 像素 高层 中层 低层 高 低 抽 象 程 度 数 据 量 操 作 对 象 小 大语 义

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

数字图像处理试题集2(精减版)资料讲解

第一章概述 一.填空题 1. 数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为__________。 5. 数字图像处理包含很多方面的研究内容。其中,________________的目的是根据二维平面图像数据构造出三维物体的图像。 解答:1. 像素5. 图像重建 第二章数字图像处理的基础 一.填空题 1. 量化可以分为均匀量化和________________两大类。 3. 图像因其表现方式的不同,可以分为连续图像和________________两大类。 5. 对应于不同的场景内容,一般数字图像可以分为________________、灰度图像和彩色图像三类。 解答: 1. 非均匀量化 3. 离散图像 5. 二值图像 二.选择题 1. 一幅数字图像是:( ) A、一个观测系统。 B、一个有许多像素排列而成的实体。 C、一个2-D数组中的元素。 D、一个3-D空间的场景。 3. 图像与灰度直方图间的对应关系是:() A、一一对应 B、多对一 C、一对多 D、都不对 4. 下列算法中属于局部处理的是:() A、灰度线性变换 B、二值化 C、傅立叶变换 D、中值滤波 5. 一幅256*256的图像,若灰度级数为16,则该图像的大小是:() A、128KB B、32KB C、1MB C、2MB 6. 一幅512*512的图像,若灰度级数为16,则该图像的大小是:() A、128KB B、32KB C、1MB C、2MB 解答:1. B 3. B 4. D 5. B 6. A 三.判断题 1. 可以用f(x,y)来表示一幅2-D数字图像。() 3. 数字图像坐标系与直角坐标系一致。() 4. 矩阵坐标系与直角坐标系一致。() 5. 数字图像坐标系可以定义为矩阵坐标系。() 6. 图像中虚假轮廓的出现就其本质而言是由于图像的灰度级数不够多造成的。() 10. 采样是空间离散化的过程。() 解答:1. T 3. F 4. F 5. T 6. T 10. T 1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象(√) 第三章图像几何变换 一.填空题 1. 图像的基本位置变换包括了图像的________________、镜像及旋转。 7. 图像经过平移处理后,图像的内容________________变化。(填“发生”或“不发生”) 8. 图像放大是从小数据量到大数据量的处理过程,________________对许多未知的数据的估计。(填“需要”或“不需要”) 9. 图像缩小是从大数据量到小数据量的处理过程,________________对许多未知的数据的估计。(填“需要”或“不需要”) 解答:1. 平移7. 不发生8. 需要9. 不需要

基于matlab数字图像处理的开题报告

毕业设计(论文)开题报告 题目:基于Matlab的数字图像处理 学生姓名:学号: 专业:通信工程 指导教师: 2011年 3 月 13 日

一.文献综述: 随着人类社会的进步和科学技术的发展,人们对信息处理和信息及交流的要求越来越高。人们传递信息的主要媒介是语音和图像。在接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉,嗅觉,触觉总的加起来不超过20%。图像信息处理是人们视觉延续的重要手段。人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。 数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。 图像是当光辐射能量照在物体上,经过他的反射或透射,或有发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。图像一般用Image表示,是视觉景物的某种形式的标记和记录。通俗的说,图像是指利用技术手段把目标原封不动的再现。由于图像感知的主题是人类,所以不仅可以将图像看作是二维平面上或三维立体空间中具有明暗或颜色变化的分布,还可以包括人的心理因素对图像接收和理解所产生的影像。 一般认为图片是图像的一种类型,在一些教科书中将其定义为“经过核实的光照后可见物体的分布”,图片强调了现实世界中的可见物体。图形是指人为的图形,如图画,动画等人造的二维或三维图形,他强调应用一定的数学模型生成图形。图形学是研究应用计算机生成,处理和显示图形的一门学科。它涉及利用计算机将有概念或数学描述所表示的物体图像进行处理和现实的过程,侧重点在于根据给定的物体描述数学模型,光照及想象中的摄像机的成像几何,生成一幅图像的过程。 而图像处理进行的却是与其相反的过程,提示基于画面进行二维或三维物体模型的重建,这在很多场合是十分重要。 从20世纪60年代起,随着电子计算机技术的进步,数字图像处理技术得到了飞跃发展。数字信号处理(DSP)技术通常是指利用采集,滤波,检测,均衡,变换,调制,压缩,去噪,估计等处理,已得到符合人们需要的信号形式。图像信号的数字处理是指将图像作为图像信号的数学处理技术,按照人们通常的习惯,也成为数字图像处理技术。最常见的使用计算机对图像进行处理,他是在以计算机为中心的包括各种输入,输出,存储及显示设备内的数学图像处理系统上进行的。

数字图像处理心得体会

《数字图像处理》心得体会 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。? 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。? 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。? 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。?

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。? 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。? 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。? 数字图像处理的特点主要表现在以下几个方面:? 1)?数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。? 2)?数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。? 3)?数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。?图像受人的因素影响较大,因为图像一般是给人观察和评价的。? 数字图像处理的优点主要表现在4个方面。? 1)?再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。? 2)?处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于

数字图像处理发展及现状

数字图像处理的发展及现状 网络092 张海波 0904681468 摘要: 简述了数字图像处理技术的发展及应用现状,系统分析了数字图像处理技术的主要优点,不足及制约其发展的因素,阐述了数字图像处理技术研究的主要内容和将来的研究重点,概述了数字图像处理技术未来的应用领域,并提出了该技术未来的研究方向。 关键词:数字图像;图像处理;现状与展望;计算机技术 1 前言: 图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科[2],因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 2 数字图像处理技术发展: 数字图像处理技术使20世纪60年代随着计算机技术和 VLSY Very Large Scale Integration的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。 视觉是人类最重要的感知手段,图像又是视觉的基础[3]。早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT

数字图像处理课程考试大纲

数字图像处理考试大纲 一、课程名称:数字图像处理 二、课程代码:16009940 三、课程性质:专业必修课程 四、考核内容: 1、数字图象的基本特点,图象处理系统的基本组成和基本原理。 2、图像的表示方法,图像数字化的过程和香农取样定理,像素间的一些基本关系。 3、灰度变换和空域滤波的概念,灰度变换增强、平滑增强、锐化增强的基本原理和基本 技术,直方图和直方图处理技术。 4、图象变换的一般表达式, 二维付里叶变换及其基本性质,图像频谱的特点。 5、常用平滑频域滤波器、锐化频域滤波器、带阻和带通滤波器、陷波器,掌握同态滤波 方法,伪彩色增强和假彩色增强的概念。 6、图象退化的因素和退化模型,退化函数的估计方法,逆滤波和维纳滤波复原方法,几何 变换方法。 7、图象压缩编码的基本概念,保真度准则和编码器的基本概念, Huffman编码、算术编 码和预测编码方法,变换域编码方法和特点,位平面编码方法。 8、常用点、线、边缘检测方法和门限处理方法, Hough变换的基本原理,区域生长和 区域分裂与合并分割方法的基本原理。 9、图像的链码描述方法和傅里叶描述子方法 五、试卷结构: 满分:100分 1)题型结构 a. 概念(填空或选择题)及简答题(40%) b. 计算题(60%) 2)内容结构 a. 数字图像基础(15%) b. 图像变换与图像增强(30%) c. 图像复原与图像编码(35%) d. 图象分割与描述(20%) 六、参考书目:R.C.Gonzalez, R.E. Woods编,Digital Image Processing (Second Edition). Publishing House of Electronics Industry, 2002 章毓晋编. 图像分析和处理基础. 高等教育出版社,2002 赵荣椿编,数字图象处理导论. 西北工业大学出版社,2000 姚敏编,数字图像处理.机械工业出版社,2006 考试大纲制定者:印勇 考试大纲审定者:田逢春 2010年1月

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

数字图像处理系统论文

数字图像处理系统论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

相关文档
最新文档