高中数学搞定排列组合方法各种问题大全

高中数学搞定排列组合方法各种问题大全
高中数学搞定排列组合方法各种问题大全

高考数学定排列组合方法 问题大全

排队问题大全

三男四女排队30问小结

[ 典例 ]:有3名男生和4名女生,若分别满足下列条件, 则各有多少种不同的排法:

1.全体排一排:50407

7=A 2、选5人排一排:==5

75557A A C 2520

3.甲站在正中间:6!=720 ____________ 4.甲只能站在正中间或两头: 5.甲既不在排头也不在排尾:

6.甲、乙必须在两头: ______________ 7.甲、乙不站排头和排尾: ____________ 8.甲不在排头、乙不在排尾:

9.甲在乙的右边: ________________ 10.甲、乙必须相邻: _____________ 11.甲、乙不能相邻:

12.甲、乙、丙三人都相邻: 13.甲、乙、丙三人都不相邻:

14.7人排成一排,其中甲、乙、丙三人中,有两人相邻,但这三人不同时相邻: 15.男女生各站在一起:

16.男生必排在一起: __( 或女生必排在一起:______________ ) 17.男女各不相邻(即男女相间、4女互不相邻): 18.男生不排在一起:

19.任何两男生彼此不相邻: 20.甲、乙两人之间须相隔1人: 21.甲、乙两人中间恰有3人:

22.甲、乙、丙3人自左至右顺序不变(即男生顺序一定,只排女生): 23.从左到右,4名女生按甲、乙、丙、丁的顺序不变(即只排男生): 24.甲、乙两人相邻,但都不与丙相邻: 25.甲、乙相邻且丙不站排头和排尾: 26.排成前后两排,前3人后4人:

27.前3后4人且甲、乙在前排,丙排后排:

28.三名男生身高互不相同,且从左到右按从高到矮顺序排: 29.若两端都不能排女生:

一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

先排末位共有1

3C

然后排首位共有1

4C

最后排其它位置共有34A

由分步计数原理得113

4

34288C C A = C 14A 34C 13

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不

种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一

个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法

甲丁

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,

则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插

入第一步排好的6个元素中间包含首尾两个空位共有种4

6A 不同的方法,

由分步计数原理,节目的不同顺序共有54

56A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其

他元素一起进行排列,然后用总排列数除以这几个元素之间的

全排列数,则共有不同排法种数是:73

73/A A

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4

7A 种方法,其

余的三个位置甲乙丙共有 1种坐法,则共有4

7A 种方法。

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐

增加,共有多少排法?5

10C 五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法

练习题:

1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87

六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定

一人44A 并从此位置把圆形展成直线其余7人共有(8-1)

!种排法即7! H F

D C A

A B C D E A

B E G

H G F

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊

元素有24A 种,再排后4个位置上的特殊元素丙有1

4A 种,其余的5人在5

定序问题可以用倍缩法,还可转化为占位插 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m

n A n

个位置上任意排列有55A 种,则共有215

445A A A 种

前 排后 排

八 留空排列问题

例8、一排10个坐位,3人去坐,每两人之间都要留空位,共有 种坐法。

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规

定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素

(包含一个复合元素)装入4个不同的盒内有44A 种方法,

根据分步计数原理装球的方法共有2454C A

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不

同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在

两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,

再排小集团内部共有2222A A 种排法,由分步计数原理共有222

222A A A 种排法.

1524

练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研

解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

那么共有陈列方式的种数为254

254A A A

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255

255A A A 种

十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个

空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

一班二班三班四班五班六班七班

练习题:

1, 10个相同的球装编号1,2,3的3个盒中,每盒不少于编号有多少装法?

2 .100x y z w +++=求这个方程组的自然数解的组数 3

103C 十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,

只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有123

5

559C C C +-

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的

抽法有多少种?

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6

将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为1

1m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出

它的反面,再从整体中淘汰.

本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记

为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33

A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有2223

6423/C C C A 种分法。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?

(544213842/C C C A )

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安

排2名,则不同的安排方案种数为______(222

24262/90C C A A =)

十三. 多面手问题

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演

出一个2人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只

有1人选上唱歌人员112

5

34C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有

22112

22335

3455C C C C C C C ++种。 本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准

例. 有12名划船运动员,其中3人只会划左舷, 4人只会划右舷, 其它5人既会划左舷, 又会划右舷, 现要从这12名运动员中选出6人平均分 在左右舷参加划船比赛,有多少种不同的选法? 十四.构造模型策略

平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n

n A (n 为均分的组数)避免重复计数。

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3

盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?

解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有35C 种

练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)

十五.分球入盒问题

例32:将5个小球放到3个盒子中,在下列条件下,各有多少种投放方法? ① 小球不同,盒子不同,盒子不空

解:将小球分成3份,每份1,1,3或1,2,2。再放在3个不同的盒子中,即先分堆,后分配。

有31223525332222

C C (+)A A A C C ? ②小球不同,盒子不同,盒子可空 解:53种 ③小球不同,盒子相同,盒子不空

解:只要将5个不同小球分成3份,分法为:1,1,3;1,2,2。共有3122

525322

2

2

C C +A A C C =25种

④小球不同,盒子相同,盒子可空

本题即是将5个不同小球分成1份,2份,3份的问题。共有3

1

2

2

543525355522

2

2

C C ()(+)41

A A C C C C C +++=种

⑤小球相同,盒子不同,盒子不空

解:(隔板法)。0 \ 00 \ 00 ,有2

4C 种方法

⑥小球相同,盒子不同,盒子可空

解一:把5个小球及插入的2个隔板都设为小球(7个球)。7个球中任选两个变为隔板(可以相邻)。那么2块隔板分成3份的小球数对应于 相应的3个不同盒子。故有27C =21

解:分步插板法。

⑦小球相同,盒子相同,盒子不空

解:5个相同的小球分成3份即可,有3,1,1;2,2,1。 共 2种 ⑧小球相同,盒子相同,盒子可空

解:只要将将5个相同小球分成1份,2份,3份即可。分法如下:5,0,0; 4,1,0;3,2,0;

3,1,1; 2,2,1。

例33、有4个不同的小球,放入4个不同的盒子内,球全部放入盒子内 (1)共有几种放法?(答:44)

(2)恰有1个空盒,有几种放法?(答:23

44144C A =)

一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决

(3)恰有1个盒子内有2个球,有几种放法?(答:同上23

44144C A =)

(4)恰有2个盒子不放球,有几种放法?(答:3222444484C A C C +=)

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 解:从5个球中取出2个与盒子对号有25C 种还剩下3球3盒序号不能对应,

利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒

时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有252C 种

534

3号盒 4号盒 5号盒

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×

11×13

依题意可知偶因数必先取2,再从其余5个因数中任取若干个

组成乘积,

所有的偶因数为:1234

555555C C C C C ++++

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共481258C -=,每个四面体有

3对异面直线,正方体中的8个顶点可连成358174?=对异面直线

十七.化归策略 例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一

对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果 分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到

问题的答案 ,每个比较复杂的问题都要用到这种解题策略

行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3

方队中选3人的方法有111

3

21C C C 种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有3355C C 选法所以从5×5

方阵选不在同一行也不在同一列的3人有33111

553

21C C C C C 选法。

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走

到B 的最短路径有多少种?(3735C =

)

B

A

十八.数字排序问题查字典策略

例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?

解:297221122334455=++++=A A A A A N

练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从

小到大排列起来,第71个数是 3140 十九.树图策略

例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球

仍回到甲的手中,则不同的传球方式有______ 10=N

练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)

的不同坐法有多少种?44=N

二十.复杂分类问题表格策略

例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从

中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法

处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题

数字排序问题可用查字典法,查字典的法

应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。 对于条件比较复杂的排列组合问题,不易用 公式进行运算,树图会收到意想不到的结果

解:

二十一:住店法策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.

21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .

分析:因同一学生可以同时夺得n 项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75种

.

22、区域涂色问题——分步与分类综合法

解答区域涂色问题,一是根据分步计数原理,对各个区域分步涂色;二是根据共用了多少种颜色分类讨论;三是根据相间区域使用颜色的种数分类.以上三种方法常会结合起来使用。

例27.用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?

法1:2401

435=?A A 法2:24023

545=+A A

例28、一个地区分5个区域,现用4种颜色给地图着色,要求相邻区域不得使用同一种颜色,则不同的着色方法有多少种?

法1.分步:涂①有4种方法,涂②有3种方法,涂③有2种方法,涂④有2种方法,涂⑤时需看②与④是否相同,因此分两类。

法2.按用了几种颜色分两类:涂了4色和3色

例29、某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,

每部分栽种一种且相邻两个区域不能同色,不同的栽种方法有_____

红 1 1 1 2 2 3 黄 1 2 3 1 2 1 兰 3 2 1 2 1 1

取法

1415C C 2415C C 3415C C 1325C C 2325C C 1235C C 一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效②

① ③ ④

4322432172???+???=43

44272

A A +=

种. (用数字作答)

解法1:①首先栽种第1部分,有1

4C 种栽种方法;

②然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如右图所

示),

对扇形2有3种栽种方法,扇形3有2种栽种方法, 扇形4也有2种栽种方法,扇形5也有2种栽种方法, 扇形6也有2种栽种方法.

于是,共有4

32?种不同的栽种方法。但是,这种栽种方法可能出现

区域2与

6着色相同的情形,这是不符合题意的,因此,答案应从4

32?中减去这些不符合题意的栽种方法。这时,把2与6看作一个扇形,其涂色方法相当于用3种颜色的花对4个扇形区域栽种(这种转换思维相当巧妙)。

综合①和②,共有1412

433[32(2211)]4(4818)430120C C A ??-??+??=?-=?=种。

解法2:依题意只能选用4种颜色,要分5类(1)②与⑤同色、④与⑥同色,则有4

4A ; (2)③与⑤同色、④与⑥同色,则有4

4A ;(3)②与⑤同色、③与⑥同色,则有4

4A ; (4)③与⑤同色、② 与④同色,则有4

4A ;(5)②与④同色、③与⑥同色,则有4

4A ;

所以根据加法原理得涂色方法总数为5 4

4A =120(种)

23取鞋成双问题

例7 10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果:

(1)4只鞋子没有成双;(2) 4只鞋子恰好成双; (3) 4只鞋子有2只成双,另2只不成双。 (方法,先取双后取单)

练习2. 从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有( )

(A) 480种(B )240种 (C )180种 (D )120种

练习3 从6双不同颜色的手套中任取4只,其中至少有一双同色手套的不同取法共有____种

24.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素

(包含一个复合元素)装入4个不同的盒内有4

A种方法,根据分步计数

4

原理装球的方法共有24

C A

54

解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同

的选法有 192 种

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

高中数学搞定排列组合方法,各种问题大全

高考数学定排列组合方法 问题大全 排队问题大全 三男四女排队30问小结 [ 典例 ]:有3名男生和4名女生,若分别满足下列条件, 则各有多少种不同的排法: 1.全体排一排:50407 7=A 2、选5人排一排:==5 75557A A C 2520 3.甲站在正中间:6!=720 ____________ 4.甲只能站在正中间或两头: 5.甲既不在排头也不在排尾: 6.甲、乙必须在两头: ______________ 7.甲、乙不站排头和排尾: ____________ 8.甲不在排头、乙不在排尾: 9.甲在乙的右边: ________________ 10.甲、乙必须相邻: _____________ 11.甲、乙不能相邻: 12.甲、乙、丙三人都相邻: 13.甲、乙、丙三人都不相邻: 14.7人排成一排,其中甲、乙、丙三人中,有两人相邻,但这三人不同时相邻: 15.男女生各站在一起: 16.男生必排在一起: __( 或女生必排在一起:______________ ) 17.男女各不相邻(即男女相间、4女互不相邻): 18.男生不排在一起: 19.任何两男生彼此不相邻: 20.甲、乙两人之间须相隔1人: 21.甲、乙两人中间恰有3人: 22.甲、乙、丙3人自左至右顺序不变(即男生顺序一定,只排女生): 23.从左到右,4名女生按甲、乙、丙、丁的顺序不变(即只排男生): 24.甲、乙两人相邻,但都不与丙相邻: 25.甲、乙相邻且丙不站排头和排尾: 26.排成前后两排,前3人后4人: 27.前3后4人且甲、乙在前排,丙排后排: 28.三名男生身高互不相同,且从左到右按从高到矮顺序排: 29.若两端都不能排女生: 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方 法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合方法大全

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m 1种不同的方法,在第2类办法中有 m种不同的 2 方法,…,在第n类办法中有 m种不同的方法, n 那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m 1种不同的方法,做第2步有 m种不同的方法,…, 2 做第n步有 m种不同的方法,那么完成这件事共 n 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是

分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, , 以 先排末位共有13 C 然后排首位共有14 C 最后排其它位置共有34A 由分步计数原理得1134 3 4 288C C A 练习题:7种不同的花种在排成一列的花盆里,若 两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 443

例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部 进行自排。由分步计数原理可得共有522 522480 A A A 种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5 A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A不同的方法,由分步计数原理,节目的不同顺序共有 54 56 A A种

高中数学排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

高中数学排列组合习题及解析

排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。 1.排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列。 2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取 出m个元素的一个组合。 3.排列数公式: 4.组合数公式: 5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。 例1 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法? 分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。所涉及问题是排列问题。 解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。根据乘法原理,共有的不同坐法为种。 结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。 例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法? 分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。 解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。 结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。 例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂。但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解。 解此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种。 结论3 转化法:对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解。 例4 袋中有5分硬币23个,1角硬币10个,如果从袋中取出2元钱,有多少种取法? 分析此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来。但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题。 解把所有的硬币全部取出来,将得到×23+×10=元,所以比2元多元,所以剩下元即剩下3个5分或1个5分与1个1角,所以共有种取法。 结论4 剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法。 例5 期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序? 分析对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了。并且也避免了问题的复杂性。 解不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种。 结论5 对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一。在求解中只要求出全体,就可以得到所求。 例6 我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况。而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便。这样就可以简化计算过程。 解 43人中任抽5人的方法有种,正副班长,团支部书记都不在内的抽法有种,所以正副班长,团支部书记至少有1人在内的抽法有种。 结论6 排异法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除。 练习1 某人射击8枪,命中4枪,那么命中的4枪中恰有3枪是连中的情形有几种? 练习2 一排8个座位,3人去坐,每人两边至少有一个空座的坐法有多少种? 练习3 马路上有编号为1,2,3,……10的十只路灯,为节约电而不影响照明,可以把其中的三只路灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉马路两端的灯,问满足条件的关灯方法有多少种? 练习4 A、B、C、D、E五人站成一排,如果B必须站在A的右边,那么不同的站法有多少种? 练习5 某电路有5个串联的电子元件,求发生故障的不同情形数目? 小结: 解决排列组合应用题的一些解题技巧,具体有插入法,捆绑法,转化法,剩余法,对等法,排异法;对于不同的题目,根据它们的条件,我们就可以选取不同的技巧来解决问题。对于一些

排列组合典型题大全附答案解析

排列组合典型题大全 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、 3 C 8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 1、4封信投到3个信箱当中,有多少种投法? 2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况? 3、4个同学参加3项不同的比赛 (1)每位同学必须参加一项比赛,有多少种不同的结果? (2)每项竞赛只许一名同学参加,有多少种不同的结果? 4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项

高中数学:排列组合问题的类型及解答

高中数学:排列组合问题的类型及解答 排列组合问题题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。 说明:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法

例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。 说明:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。

说明:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例 4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有() A. 6种 B. 9种 C. 11种 D. 23种 解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法。故共有3×3×1=9种填法,而选B。 说明:把元素排在指定号码的位置上称为标号排位问题。求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A

常见排列组合综合问题的多种方法小结

常见排列组合综合问题的二十种方法小结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同 时对相邻元素内部进行自排。由分步计数原理可得共有 52 2522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.

相关文档
最新文档