数据结构课程设计之树与二叉树的转换大学论文

数据结构课程设计之树与二叉树的转换大学论文
数据结构课程设计之树与二叉树的转换大学论文

衡阳师范学院《数据结构》课程设计题目:树与二叉树的转换

系别:计算机科学系

专业:计算机科学与设计

班级:1302

学生姓名:戴志豪

学号:13190217

指导老师:赵磊

完成日期:2015年1月3号

目录

一.需求分析 (3)

二.概要设析 (3)

三.详细设计 (5)

1.树的建立 (5)

2.一般树转化成二叉树 (6)

3.先序遍历树的递归算法 (7)

4.后序遍历树的递归算法 (7)

5.先序遍历树的非递归算法 (7)

6.后序遍历树的非递归算法 (8)

7.层次序非递归的算法 (9)

四.设计与调试分析 (10)

五.用户手册 (10)

六.测试结果 (11)

七.附录(源程序) (14)

八.总结 (20)

一.需求分析

本程序的功能是对任意树进行递归前序遍历和后序遍历,以及实现树的非递归的前序、

和后序遍历,还有对树的层序遍历以及树与二叉树的转换。

二.概要设计

对于本次设计,需要用到树的建立,树与二叉树的转换算法先序后序二叉树的递归算法;

先序后序非递归算法;层次序遍历算法

1树的建立

用链表实现创建一个树结点的结构体,从键盘输入数据,存入数组。把下标为2*i+1 的值存入左孩子,为2*i+2的存入右孩子。 BiNode creat(),BiNode stree_creat(char *a,int k)。

开始

Y

参数数组是否空或

N

把数组的值赋给结点的数

返回空指针

递归的给左子树赋值参数变为a[2i+1]

递归的给右子树赋值参数变为a[2i+2]

返回根指针

结束

2一般树转化成二叉树

转换时结点的第一个孩子变为它的左孩子,兄弟节点变为他的右孩子。void

exchange(),class Tree

3先序遍历树的递归算法

若二叉树为空,则空操作;否则(1)访问根结点;(2)先序遍历左子树;(3)先序

遍历右子树。void PreOrder(BiNode root)。

开始

Y

判断结点是否

N

访问根结点

按前根遍历方式

遍历左子树

按前根遍历方式遍

历左子树

结束

4后序遍历树的递归算法

若二叉树为空,则空操作;否则(1)后序遍历左子树;(2)后序遍历右子树。(3)访问根结点;void PostOrder(BiNode root)。

开始

Y

判断结点是否

N

按后根遍历方式遍

历左子树

按后根遍历方式遍

历右子树

访问根结点

结束

5先序遍历树的非递归算法

若二叉树为空,则空操作;否则(1)先将根节点进栈,在栈不为空时循环;(2)出栈p,访问*p若其右孩子节点不空将右孩子节点进栈若其左孩子节点不空时再将其左孩子节点进栈。

6后序遍历树的非递归算法

采用一个栈保存需要返回的指针,先扫描根节点所有的左孩子节点并一一进栈,出栈一个节点*b作为当前节点,然后扫描该节点的右子树。当一个节点的左右孩子节点均访问后再访问该节点,如此重复操作,直到栈空为止。

7层次序的非递归遍历

按照树的层次从左到右访问树的结点,层序遍历用于保存结点的容器是队列。void LevelOrder(BiNode root)。

三.详细设计

1树的建立:

PTree CreatTree(PTree T)

{

int i=1;

int fa,ch;

PTNode p;

for(i=1;ch!=-1;i++)

{

printf("输入第%d结点:\n",i);

scanf("%d,%d",&fa,&ch);

printf("\n");

p.data=ch;

p.parent=fa;

T.count++;

T.node[T.count].data = p.data;

T.node[T.count].parent = p.parent;

}

printf("\n");

printf("创建的树具体情况如下:\n");

print_ptree(T);

return T;

2一般树转换成二叉树

BTNode *change(PTree T)

{

int i,j=0;

BTNode p[MAX_TREE_SIZE];

BTNode *ip,*is,*ir,*Tree;

ip=(BTNode *)malloc(sizeof(BTNode));

is=(BTNode *)malloc(sizeof(BTNode));

ir=(BTNode *)malloc(sizeof(BTNode));

Tree=(BTNode *)malloc(sizeof(BTNode));

for(i=0;i

{

p[i]=GetTreeNode(T.node[i].data);

}

for(i=1;i

{

ip=&p[i];

is=&p[j];

while(T.node[i].parent!=is->data)

{

j++;

is=&p[j];

}

if(!(is->firstchild))

{

is->firstchild=ip;

ir=ip;

}

else

{

ir->rightsib=ip;

ir=ip;

}

}

Tree=&p[0];

return Tree;

}

3先序遍历树的递归算法:

void preorder(BTNode *T)

{

if(T!=NULL)

{

printf("%d ",T->data);

preorder(T->firstchild);

preorder(T->rightsib);

}

}

4.先序遍历树的非递归算法

void preOrder2(BinTree *root) //非递归先序遍历{

stack s;

BinTree *p=root;

while(p!=NULL||!s.empty())

{

while(p!=NULL)

{

cout<data<<" ";

s.push(p);

p=p->lchild;

}

if(!s.empty())

{

p=s.top();

s.pop();

p=p->rchild;

}

}

}

5.后序遍历树的递归算法

void inoeder(BTNode *T)

{

if(T!=NULL)

{

inoeder(T->firstchild);

printf("%d ",T->data);

inoeder(T->rightsib);

}

}

6后序遍历树的非递归算法

void postOrder2(BinTree *root) //非递归后序遍历

{

stack s;

BinTree *p=root;

BTNode *temp;

while(p!=NULL||!s.empty())

{

while(p!=NULL) //沿左子树一直往下搜索,直至出现没有左子树的结点

{

BTNode *btn=(BTNode *)malloc(sizeof(BTNode));

btn->btnode=p;

btn->isFirst=true;

s.push(btn);

p=p->lchild;

}

if(!s.empty())

{

temp=s.top();

s.pop();

if(temp->isFirst==true) //表示是第一次出现在栈顶

{

temp->isFirst=false;

s.push(temp);

p=temp->btnode->rchild;

}

else//第二次出现在栈顶

{

cout<btnode->data<<" ";

p=NULL;

}

}

}

}

7层次序树的非递归算法

void initqueue(linkqueue &q) //初始化一个带头结点的队列{

q.front=q.rear=(queueptr)malloc(sizeof(queuenode));

q.front->next=NULL;

}

void enqueue(linkqueue &q,bitrees p) //入队列

{

queueptr s;

int first=1;

s=(queueptr)malloc(sizeof(queuenode));

s->ch=p;

s->next=NULL;

q.rear->next=s;

q.rear=s;

}

void dequeue(linkqueue &q,bitrees &p) //出队列

{

int data;

queueptr s;

s=q.front->next;

p=s->ch;

data=p->data;

q.front->next=s->next;

if(q.rear==s)

q.rear=q.front;

free(s);

printf("%d\t",data);

}

int queueempty(linkqueue q) //判断队列是否为空

{

if(q.front->next==NULL)

return 1;

return 0;

}

void traverse(bitrees bt) //按层次遍历树中结点

{

linkqueue q;

bitrees p;

initqueue(q);

p=bt;

enqueue(q,p);

while(queueempty(q)!=1)

{

dequeue(q,p);

if(p->lchild!=NULL)

enqueue(q,p->lchild);

if(p->rchild!=NULL)

enqueue(q,p->rchild);

}

四.}设计与调试分析

1.二叉树遍历中用到的最重要的一个思想就是递归调用,这次作业使我们对递归有了深入的理解,程序调试比较顺利。

2.用栈同样可以实现二叉树的遍历,这是我们认识到解决问题可以由多种不同的途径,应随时将以前学过的只是灵活应用起来,解决新问题。

3.因为遍历二叉树的基本操作是访问结点,所以无论哪一种遍历方式,对含有n个结点的二叉树,其时间复杂度为O(n),所需辅助空间最大容量为树的深度,最坏为n,所以空间复杂度为O(n)。

4.因该程序对应不同的遍历定义了不同的结构,使每种结构的通用性降低,可以往在递归和非递归中使用同一种结构这一方面做进一步的思考。

五.用户手册

运行程序,首先出现主界面。主界面有七个选项。

选项一、以双亲法创建一棵树。

选项二、此选项可以对所创建的树采用递归算法进行前序遍历。

选项三、此选项可以对所创建的树采用递归算法进行后序遍历。

选项四、此选项可以对所创建的树采用非递归算法进行先序遍历。

选项五、此选项可以对所创建的树采用非递归算法进行后序遍历。

选项六、此选项可以退出程序。

六.测试结果

程序开始

一般树转换成二叉树的情况

副菜单选择:选择9继续操作运用各种遍历形式遍历树

副菜单选择0结束程序

七.附录(源程序)

#include

#include

#include

//设置常量:

#define MAX_TREE_SIZE 100

//一般树的存储结构有以下几种:双亲结点,孩子结点,孩子兄弟结点。本实验运用到的是双亲结点和孩子兄弟结点。具体存储结构如下:

/*树的双亲表示结点结构定义*/

typedef struct

{

int data;

int parent; //双亲位置域

}PTNode;

/*双亲表示法树结构*/

typedef struct

{

PTNode node[MAX_TREE_SIZE];

int count; //根的位置和节点个数

}PTree;

/*树的孩子兄弟表示结点结构定义*/

typedef struct node{

int data;

struct node *firstchild;

struct node *rightsib;

}BTNode,*BTree;

//初始化树(双亲表示法)

void init_ptree(PTree *tree)

{

tree->count=-1;

}

//初始化树结点(孩子兄弟表示法)

BTNode GetTreeNode(int x)

{

BTNode t;

t.data=x;

t.firstchild=t.rightsib=NULL;

return t;

数据结构课程设计

1.一元稀疏多项式计算器 [问题描述] 设计一个一元稀疏多项式简单计算器。 [基本要求] 输入并建立多项式; 输出多项式,输出形式为整数序列:n, c1, e1, c2, e2,……, cn, en ,其中n是多项式的项数,ci, ei分别是第i项的系数和指数,序列按指数降序排序; 多项式a和b相加,建立多项式a+b; 多项式a和b相减,建立多项式a-b; [测试数据] (2x+5x8-3.1x11)+(7-5x8+11x9)=(-3.1x11+11x9+2x+7) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2-x2+7.8x15)=(-7.8x15-1.2x9-x+12x-3) (1+x+x2+x3+x4+x5)+(-x3-x4)=(x5+x2+x+1) (x+x3)+(-x-x3)=0 (x+x2+x3)+0=(x3+x2+x) [实现提示] 用带头结点的单链表存储多项式,多项式的项数存放在头结点中。 2.背包问题的求解 [问题描述] 假设有一个能装入总体积为T的背包和n件体积分别为w1, w2, …,wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积为{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)、(3,5,2) [实现提示] 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品转入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品“太大”不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直至求得满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”因此自然要用到栈。 3.完全二叉树判断 用一个二叉链表存储的二叉树,判断其是否是完全二叉树。 4.最小生成树求解(1人) 任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 5.最小生成树求解(1人) 任意创建一个图,利用普里姆算法,求出该图的最小生成树。 6.树状显示二叉树 编写函数displaytree(二叉树的根指针,数据值宽度,屏幕的宽度)输出树的直观示意图。输出的二叉树是垂直打印的,同层的节点在同一行上。 [问题描述] 假设数据宽度datawidth=2,而屏幕宽度screenwidth为64=26,假设节点的输出位置用 (层号,须打印的空格数)来界定。 第0层:根在(0,32)处输出;

数据结构课程设计报告

山东建筑大学 课程设计成果报告 题目: 1.数组实现两个矩阵的相乘运算 2.成绩分析问题 课程:数据结构A课程设计 院(部):管理工程学院 专业:信息管理与信息系统 班级:信管*** 学生姓名:*** 学号:******** 指导教师:******* 完成日期:2016年12月29日

目录 目录 (2) 一、课程设计概述 (3) 二、课程设计题目一 (3) 用数组实现两个矩阵的相乘运算 (3) 2.1[问题描述] (3) 2.2[要求及提示]: (3) 2.3[详细设计] (4) 2.4[调试分析] (5) 2.5[运行结果及分析] (5) 三、课程设计题目二 (6) 成绩分析问题 (6) 3.1[问题描述] (6) 3.2[概要设计] (6) 3.3[存储结构] (7) 3.4[流程图] (7) 3.5[详细设计] (8) 3.6[调试分析] (8) 3.7[运行结果及分析] (22) 四、参考文献: (25)

一、课程设计概述 本次数据结构课程设计共完成两个题:用数组实现两个矩阵相乘运算、成绩分析问题。使用语言:C 编译环境:vc6.0 二、课程设计题目一 用数组实现两个矩阵的相乘运算 2.1[问题描述] #include “stdio.h” int r[6][6]; void mult(int a[6][6] , int b[6][6]){ } main(){ int i,j; int num1[6][6],num2[6][6]; printf(“请输入第一个矩阵的值:”,); for(i=1;i<=6;i++) for(j=1;j<=6;j++) scanf(“%d”,&num1[i][j]); printf(“请输入第二个矩阵的值:”,); for(i=1;i<=6;i++) for(j=1;j<=6;j++) scanf(“%d”,&num2[i][j]); mult(num1,num2); printf(“\n两个矩阵相乘后的结果为:”); for(i=1;i<=6;i++) {for(j=1;j<=6;j++) printf(“%4d”,r[i][j]); printf(“\n”); } } 2.2[要求及提示]: 1、要求完善函数mult( ),

树和二叉树习题集与答案解析

一、填空题 1. 不相交的树的聚集称之为森林。 2. 从概念上讲,树与二叉树是两种不同的数据结构,将树转化为二叉树的基本目的是_树可采用孩子-兄弟链表(二叉链表)做存储结构,目的是利用二叉树的已有算法解决树的有关问题。 3. 深度为k的完全二叉树至少有2 k-1个结点。至多有2 k-1个结点,若按自上而下,从左到右次序给结点编号(从1开始),则编号最小的叶子结点的编号是2 k-2+1。 4. 在一棵二叉树中,度为零的结点的个数为n 0,度为2的结点的个数为n 2,则有n0= n2+1。 5. 一棵二叉树的第i(i≥1)层最多有2 i-1个结点;一棵有n(n>0)个结点的满二叉树共有(n+1)/2个叶子和(n-1)/2个非终端结点。 6.现有按中序遍历二叉树的结果为abc,问有5种不同形态的二叉树 可以得到这一遍历结果。 7. 哈夫曼树是带权路径最小的二叉树。 8. 前缀编码是指任一个字符的编码都不是另一个字符编码的前缀的一种编码方法,是设计不等长编码的前提。 9. 以给定的数据集合{4,5,6,7,10,12,18}为结点权值构造的Huffman树的加权路径长度是165 。 10. 树被定义为连通而不具有回路的(无向)图。 11. 若一棵根树的每个结点最多只有两个孩子,且孩子又有左、右之分,次序不能颠倒,则称此根树为二叉树。

12. 高度为k,且有个结点的二叉树称为二叉树。 2k-1 满 13. 带权路径长度最小的二叉树称为最优二叉树,它又被称为树。 Huffman 14. 在一棵根树中,树根是为零的结点,而为零的结点是 结点。 入度出度树叶 15. Huffman树中,结点的带权路径长度是指由到之间的路径长度与结点权值的乘积。 结点树根 16. 满二叉树是指高度为k,且有个结点的二叉树。二叉树的每一层i上,最多有个结点。 2k-1 2i-1 二、单选题 1. 具有10个叶结点的二叉树中有(B) 个度为2的结点。 (A)8 (B)9 (C)10 (D)11 2.对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,则可采用_(3)次序的遍历实现编号。 (1)先序(2)中序 (3)后序(4)从根开始按层遍历 3. 由2、3、4、7作为结点权值构造的树的加权路径长度 B 。

数据结构课程设计报告模板

课程设计说明书 课程名称:数据结构 专业:班级: 姓名:学号: 指导教师:成绩: 完成日期:年月日

任务书 题目:黑白棋系统 设计内容及要求: 1.课程设计任务内容 通过玩家与电脑双方的交替下棋,在一个8行8列的方格中,进行棋子的相互交替翻转。反复循环下棋,最后让双方的棋子填满整个方格。再根据循环遍历方格程序,判断玩家与电脑双方的棋子数。进行大小判断,最红给出胜负的一方。并根据y/n选项,判断是否要进行下一局的游戏。 2.课程设计要求 实现黑白两色棋子的对峙 开发环境:vc++6.0 实现目标: (1)熟悉的运用c语言程序编写代码。 (2)能够理清整个程序的运行过程并绘画流程图 (3)了解如何定义局部变量和整体变量; (4)学会上机调试程序,发现问题,并解决 (5)学习使用C++程序来了解游戏原理。 (6)学习用文档书写程序说明

摘要 本文的研究工作在于利用计算机模拟人脑进行下黑白棋,计算机下棋是人工智能领域中的一个研究热点,多年以来,随着计算机技术和人工智能技术的不断发展,计算机下棋的水平得到了长足的进步 该程序的最终胜负是由棋盘上岗双方的棋子的个数来判断的,多的一方为胜,少的一方为负。所以该程序主要运用的战术有削弱对手行动战术、四角优先战术、在游戏开局和中局时,程序采用削弱对手行动力战术,即尽量减少对手能够落子的位置;在游戏终局时则采用最大贪吃战术,即尽可能多的吃掉对手的棋子;而四角优先战术则是贯穿游戏的始终,棋盘的四角围稳定角,不会被对手吃掉,所以这里是兵家的必争之地,在阻止对手进角的同时,自己却又要努力的进角。 关键词:黑白棋;编程;设计

数据结构课程设计AVL树实现及其分析实验报告

算法与数据结构 课程设计报告 题目: A VLree的实现及分析 班级: 12计算机1 学号: 1200303132 姓名: 熊成毅 成绩: 2013年12月31日

一、AVLree的实现及分析 AVL 树是平衡的二元查找树。一株平衡的二元查找树就是指对其每一个节点,其左子树和右子树的高度只差不超过1. 编写程序实现AVL树的判别;并实现AVL树的ADT,包括其上的基本操作;节点的加入和删除。BSt和AVL的差别就在平衡性上,所以AVL的操作关键要考虑如何在保持二元查找树定义条件下对二元树进行平衡化。 (1)编写AVL树的判别程序,并判别一个人元查找数是否为AVL树。二元查找树用其先序遍历结果表示,如:5,2,1,3,7,8. (2)实现AVL树的ADT,包括其上的基本操作:节点的加入和删除,另外包括将一般二元查找树转变为AVL树的操作。 二、设计思想(宋体,三号加粗) 任意给定一组数据,设计一个算法,建立一棵平衡二叉树,对它进行查找、插入、删除等操作。平衡二叉树ADT结构如下: typedef struct{ Status key; }ElemType; typedef struct BSTNode{ ElemType data; Status bf; struct BSTNode *lchild,*rchild; }BSTNode,*BSTree; 给出一组数据,通过 InsertAVL(BSTree &T, ElemType e, Status &taller)插入算法,构建平衡二叉树,若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 在此算法中,利用到递归算法和 LeftBalance(BSTree &T)左平衡处理,RightBalance(BSTree &T)右平衡处理。进而实现构建平衡二叉树,使其左子树和右子树的高度之差不超过1. LeftBalance(BSTree &T)对以指针T所指结点为根的二叉树作左平衡旋转处理。本算法结束时,指针T指向新的根结点。 RightBalance(BSTree &T)// 对以指针T所指结点为根的二叉树作右平衡旋转处理。本算法结束时,指针T指向新的根结点。 R_Rotate(BSTree &p)对以*p为根的二叉排序树作右旋处理,处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 L_Rotate(BSTree &p)对以p↑为根的二叉排序树作左旋处理,处理之后p指向新的树

数据结构课程设计报告模板

校园导游系统设计 一、设计要求 1.问题描述 设计一个校园导游程序,为来访的客人提供信息查询服务。 2.需求分析 (1)设计学校的校园平面图。选取若干个有代表性的景点抽象成一个无向带权图(无向网),以图中顶点表示校内各景点,边上的权值表示两景点之间的距离。 (2)存放景点代号、名称、简介等信息供用户查询。 (3)为来访客人提供图中任意景点相关信息的查询。 (4)为来访客人提供图中任意景点之间的问路查询。 (5)可以为校园平面图增加或删除景点或边,修改边上的权值等。 二、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现校园导游系统各功能的管理,首先设计一个含有多个菜单项的主控菜单子程序以链接系统的各项子功能,方便用户使用本系统。本系统主控菜单运行界面如图7-10所示。 2.存储结构设计 本系统采用图结构类型(mgraph)存储抽象校园图的信息。其中:各景点间的邻接关系用图的邻接矩阵类型(adjmatrix)存储;景点(顶点)信息用结构数组(vexs)存储,其中每个数组元素是一个结构变量,包含景点编号、景点名称及景点介绍三个分量;图的顶点个数及边的个数由分量vexnum、arcnum表示,它们是整型数据。 此外,本系统还设置了三个全局变量:visited[ ] 数组用于存储顶点是否被访问标志;d[ ]数组用于存放边上的权值或存储查找路径顶点的编号;campus是一个图结构的全局变量。 3.系统功能设计 本系统除了要完成图的初始化功能外还设置了8个子功能菜单。图的初始化由函数initgraph( )实现。依据读入的图的顶点个数和边的个数,分别初始化图结构中图的顶点向量数组和图的邻接矩阵。8个子功能的设计描述如下。 (1)学校景点介绍 学校景点介绍由函数browsecompus( )实现。当用户选择该功能,系统即能输出学校全部景点的信息:包括景点编号、景点名称及景点简介。 (2)查看浏览路线 查看浏览路线由函数shortestpath_dij( )实现。该功能采用迪杰斯特拉(Dijkstra)算法实现。当用户选择该功能,系统能根据用户输入的起始景点编号,求出从该景点到其它景点的最短路径线路及距离。 (3)查看两景点间最短路径

最小生成树数据结构课程设计报告

河北科技大学 课程设计报告 学生姓名:白云学号:Z110702301 专业班级:计算机113班 课程名称:数据结构课程设计 学年学期: 2 01 3—2 014学年第2学期指导教师:郑广 2014年6月

课程设计成绩评定表

目录 一、需求分析说明 (1) 1.1最小生成树总体功能要求 (1) 1.2基本功能 (1) 1.3 模块分析 (1) 二、概要设计说明 (1) 2.1设计思路 (1) 2.2模块调用图 (2) 2.3数据结构设计 (2) 2.3.1.抽象数据类型 (2) 2.3.2方法描述 (2) 三、详细设计说明 (3) 3.1主函数模块 (3) 3.2邻接表输出子模块 (3) 3.3邻接矩阵输出子模块 (3) 3.4创建邻接矩阵子模块 (3) 3.5创建邻接表子模块 (3) 3.6 Prim子模块 (3) 3.7 Kruscal子模块 (4) 四、调试分析 (4) 4.1实际完成情况说明 (4) 4.2 出现的问题及解决方案 (4) 4.3程序中可以改进的地方 (4) 六、课程设计总结 (7) 七、测试数据 (7) 八、参考书目 (7)

一、需求分析说明 1.1最小生成树总体功能要求 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 1.2基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 1.3 模块分析 主模块:用于生成界面和调用各个子模块。 Kruscal模块:以kruscal算法实现最小生成树。 Prim模块:以prim算法实现最小生成树。 邻接表模块:用邻接表方式存储图。 邻接表输出模块:输出邻接表。 邻接矩阵模块:用邻接矩阵方式存储图。 邻接矩阵模块:输出邻接矩阵。 二、概要设计说明 2.1设计思路 问题的解决分别采用普利姆算法以及克鲁斯卡尔算法。 1) 普利姆算法就是先选择根,把它放入一个集合U中,剩余的顶点放在集合V中。然后选择该顶点与V中顶点之间权值最小的一条边,以此类推,如果达到最后一个则返回上一个顶点。 2) 克鲁斯卡尔算法就是写出所有的顶点,选择权最小的边,然后写出第二小的,以此类推,最终要有一个判断是否生成环,不生成则得到克鲁斯卡尔的最小生成树。

数据结构课程设计报告范例

Guangxi University of Science and Technology 课程设计报告 课程名称:算法与编程综合实习 课题名称: 姓名: 学号: 院系:计算机学院 专业班级:通信121 指导教师: 完成日期:2012年12月15日

目录 第1部分课程设计报告 (3) 第1章课程设计目的 (3) 第2章课程设计内容和要求 (4) 2.1 问题描述 (4) 2.2 设计要求 (4) 第3章课程设计总体方案及分析 (4) 3.1 问题分析 (4) 3.2 概要设计 (7) 3.3 详细设计 (7) 3.4 调试分析 (10) 3.5 测试结果 (10) 3.6 参考文献 (12) 第2部分课程设计总结 (13) 附录(源代码) (14)

第1部分课程设计报告 第1章课程设计目的 仅仅认识到队列是一种特殊的线性表是远远不够的,本次实习的目的在于使学生深入了解队列的特征,以便在实际问题背景下灵活运用它,同时还将巩固这种数据结构的构造方………………………………………………………………………………………………………………………………………………………………………………………..(省略)

第2章课程设计内容和要求 2.1问题描述: 迷宫问题是取自心理学的一个古典实验。在该实验中,把一只老鼠从一个无顶大盒子的门放入,在盒子中设置了许多墙,对行进方向形成了多处阻挡。盒子仅有一个出口,在出口处放置一块奶酪,吸引老鼠在迷宫中寻找道路以到达出口。对同一只老鼠重复进行上述实验,一直到老鼠从入口走到出口,而不走错一步。老鼠经过多次试验最终学会走通迷宫的路线。设计一个计算机程序对任意设定的矩形迷宫如下图A所示,求出一条从入口到出口的通路,或得出没有通路的结论。 图A 2.2设计要求: 要求设计程序输出如下: (1) 建立一个大小为m×n的任意迷宫(迷宫数据可由用户输入或由程序自动生成),并在屏 幕上显示出来; (2)找出一条通路的二元组(i,j)数据序列,(i,j)表示通路上某一点的坐标。 (3)用一种标志(如数字8)在迷宫中标出该条通路; (4)在屏幕上输出迷宫和通路; (5)上述功能可用菜单选择。

树转换成二叉树-树的前序、后序的递归、非递归和层次序的非递归

#include <> #include <> #include <> #define MAX_TREE_SIZE 100 typedef struct { int data; int parent; ata,[i].parent); printf("\n"); } } /*用双亲表示法创建树*/ PTree CreatTree(PTree T) { int i=1; int fa,ch; PTNode p; for(i=1;ch!=-1;i++) { printf("输入第%d结点:\n",i); scanf("%d,%d",&fa,&ch); printf("\n"); =ch; =fa; ++; [].data = ; [].parent = ; } printf("\n"); printf("创建的树具体情况如下:\n"); print_ptree(T); return T; } /*一般树转换成二叉树*/ BTNode *change(PTree T) { int i,j=0; BTNode p[MAX_TREE_SIZE]; BTNode *ip,*is,*ir,*Tree; ip=(BTNode *)malloc(sizeof(BTNode)); is=(BTNode *)malloc(sizeof(BTNode));

ir=(BTNode *)malloc(sizeof(BTNode)); Tree=(BTNode *)malloc(sizeof(BTNode)); for(i=0;i<;i++) { p[i]=GetTreeNode[i].data); } for(i=1;i<;i++) { ip=&p[i]; is=&p[j]; while[i].parent!=is->data) { j++; is=&p[j]; } if(!(is->firstchild)) { is->firstchild=ip; ir=ip; } else { ir->rightsib=ip; ir=ip; } } Tree=&p[0]; return Tree; } /*主菜单*/ void Menu() { printf("=================主菜单=======================\n"); printf("***输入-以双亲法创建一棵一般树***\n"); printf("***输入2-------------树的前序遍历(递归)*******\n"); printf("***输入3-------------树的后序遍历(递归)*******\n"); printf("***输入4-------------树的前序遍历(非递归)*****\n"); printf("***输入5-------------树的后序遍历(非递归)*****\n"); printf("***输入6-------------层次序的非递归遍历*******\n"); printf("***输入0-------------退出程序*****************\n"); printf("==============================================\n");

数据结构课程设计报告

《数据结构课程设计》报告 题目:课程设计题目2教学计划编制 班级:700 学号:09070026 姓名:尹煜 完成日期:2011年11月7日

一.需求分析 本课设的任务是根据课程之间的先后的顺序,利用拓扑排序算法,设计出教学计划,在七个学期中合理安排所需修的所有课程。 (一)输入形式:文件 文件中存储课程信息,包括课程名称、课程属性、课程学分以及课程之间先修关系。 格式:第一行给出课程数量。大于等于0的整形,无上限。 之后每行按如下格式“高等数学公共基础必修6.0”将每门课程的具体信息存入文件。 课程基本信息存储完毕后,接着给出各门课程之间的关系,把每门课程看成顶点,则关系即为边。 先给出边的数量。大于等于0的整形。 默认课程编号从0开始依次增加。之后每行按如下格式“1 3”存储。此例即为编号为1的课程与编号为3的课程之间有一条边,而1为3的前驱,即修完1课程才能修3课程。 例: (二)输出形式:1.以图形方式显示有向无环图

2.以文本文件形式存储课程安排 (三)课设的功能 1.根据文本文件中存储的课程信息(课程名称、课程属性、课程学分、课程之间关系) 以图形方式输出课程的有向无环图。 拓展:其显示的有向无环图可进行拖拽、拉伸、修改课程名称等操作。 2.对课程进行拓扑排序。 3.根据拓扑排序结果以及课程的学分安排七个学期的课程。 4.安排好的教学计划可以按图形方式显示也可存储在文本文件里供用户查看。 5.点击信息菜单项可显示本人的学好及姓名“09070026 尹煜” (四)测试数据(见六测设结果)

二.概要设计 数据类型的定义: 1.Class Graph即图类采用邻接矩阵的存储结构。类中定义两个二维数组int[][] matrix 和Object[][] adjMat。第一个用来标记两个顶点之间是否有边,为画图服务。第二个 是为了实现核心算法拓扑排序。 2.ArrayList list用来存储课程信息。DrawInfo类是一个辅助画图的类,其中 包括成员变量num、name、shuxing、xuefen分别代表课程的编号、名称、属性、 学分。ArrayList是一个DrawInfo类型的数组,主要用来在ReadFile、DrawG、DrawC、SaveFile、Window这些类之间辅助参数传递,传递课程信息。 3.Class DrawInfo, 包括int num;String name;String shuxing;float xuefen;四个成员变量。 4.Class Edge包括int from;int to;double weight;三个成员变量。 5.Class Vertex包括int value一个成员变量。 主要程序的流程图: //ReadFile.java

大数据结构课程设计-最小生成树

《数据结构》期末课程设计 题目第8题:最小生成树问题学院计算机学院 专业 班别 学号 姓名陈聪 2015年7月6日

一、需求分析 1、问题描述 若要在n个城市之间建设通讯网络,只需要架设n-1条线路即可。如何以最低的经济代价建设这个通讯网,是一个网的最小生成树问题。 2、基本要求 (1)利用克鲁斯卡尔算法求网的最小生成树。 (2)实现并查集。以此表示构造生成树过程中的连通分量。 (3)以文本形式输出生成树中各条边以及他们的权值。 3、实现提示 通讯线路一旦建立,必然是双向的。因此,构造最小生成树的网一定是无向网。设图的顶点数不超过30个,并为简单起见,网中边的权值设成小于100的整数,可利用C语言提供的随机数函数产生。 图的存储结构的选取应和所作操作向适应。为了便于选择权值最小的边,此题的存储结构既不选用邻接矩阵的数组表示法,也不选用邻接表,而是以存储边(带权)的数组即边集数组表示图。 二、详细设计 根据课设题目要求,拟将整体程序分为三大模块,分别是:图的存储结构,并查集的实现,克鲁斯卡尔算法的实现。 1、边集数组的类型定义: typedef struct { int x, y; int w; }edge; x表示起点,y表示终点,w为权值。 2、并查集功能的实现由以下函数实现: Make_Set(int x)初始化集合; Find_Set(int x) 查找x元素所在的集合,回溯时压缩路径; Union(int x, int y, int w)合并x,y所在的集合。

3、克鲁斯卡尔算法的实现 该算法的实现位于主函数中: qsort(e, n, sizeof(edge), cmp); //将边排序 printf("最小生成树的各条边及权值为:\n"); for (i = 0; i < n; i++) { x = Find_Set(e[i].x); y = Find_Set(e[i].y); if (x != y ) { printf("%c - %c : %d\n", e[i].x + 'A', e[i].y + 'A', e[i].w); Union(x, y, e[i].w); } } 4、设计中还包含以下函数: (1)/* 比较函数,按权值(相同则按x坐标)非降序排序*/ int cmp(const void *a, const void *b) { if ((*(edge *)a).w == (*(edge *)b).w) { return (*(edge *)a).x - (*(edge *)b).x; } return (*(edge *)a).w - (*(edge *)b).w; } (2)快排函数qsort,包含在stdlib.h头文件里 qsort(e, n, sizeof(edge), cmp); (3)C语言提供的随机数函数srand( unsigned int seed ); 使用随机数函数如下: srand( (unsigned)time( NULL ) ); for( i = 0; i < n;i++ )

最新数据结构课程设计题目

数据结构课程设计 一、考核方法和内容 根据课程设计过程中学生的学生态度、题目完成情况、课程设计报告书的质量和回答问题的情况等按照10%、40%、30%、20%加权综合打分。成绩评定实行优秀、良好、中等、及格和不及格五个等级。评分标准: 优秀:答辩所有问题都能答出+报告良好 或报告良好+实现“提高部分”的功能; 良好:答辩所有问题都能答出+报告一般; 或报告一般+实现“提高部分”的功能; 中等:答辩大部分问题能答出+报告良好; 及格:答辩大部分问题能答出+报告一般; 以下四种,都不及格: 1)答辩几乎答不出问题; 2)报告几乎都是代码; 3)雷同部分达到60%; 4)课设报告与数据结构和c/c++关联不大。 课设报告的装订顺序如下: 任务书(签名,把题目要求贴在相应位置,注意下划线)-----目录(注意目录的格式,页码)-----1、设计任务(题目要求)-----2、需求分析(准备选用什么数据逻辑结构?数据元素包含哪些属性?需要哪些函数?为什么要这样设计?最后列出抽象数据类型定义)-----3、系统设计(设计实现抽象数据类型,包含选择什么物理存储方式?数据元素的结构体或类定义,以及各函数的设计思路,算法,程序流程图等)----4、编码实现(重要函数的实现代码)-----5、调试分析(选择多组测试数据、运行截图、结果分析)-----6、课设总结(心得体会)-----7、谢辞-----8、参考文献; 课设报告打印要求: B5纸张打印,报告总页数控制在10—15页内,报告中不能全是代码,报告中代码总量控制在3页内。版式:无页眉,有页码,页码居中 字号:小四,单倍行距 字体:宋体+Times new Romar 截图:截图要配图的编号和图的题目,如:“图1 Insert函数流程图” 二、课程设计的题目 1.长整数的加法运算 2.通讯录管理系统的设计与实现——顺序表 3.广义表的应用 4.学生成绩管理系统的设计与实现 5.家谱管理系统的设计与实现 6.集合的并、交和差运算的程序 7.运动会分数统计 8.一元多项式计算器 9.文章编辑 10.哈夫曼树及其编码 11.校园导游咨询 12.通讯录管理系统的设计与实现——单链表 13.地图着色问题 14.内部排序算法比较 15.火车售票系统 16.图书管理系统 17.客户消费积分管理系统 18.产品进销存管理系统

数据结构课程设计树与二叉树的转换

《数据结构》课程设计报告 设计题目:_树与二叉树的转换___ 姓名:_______李锦_____________ 学号:________211214011_______ 专业:_______物联网工程_______ 院系:_______计算机科学与技术_______ 班级:__________1205___________

指导教师:_________高秀梅______ 2014年 2 月14 日

目录 一、问题描述 (2) 二、基本要求 (2) 三、概要设计 (2) 四、数据结构设计 (2) 五、算法设计 (3) 1、算法分析 (3) 2、算法实现 (3) 六、程序测试与实现 (6) 1、函数之间的调用关系 (6) 2、主程序 (6) 3、测试数据 (8) 4、测试结果 (8) 七、调试分析 (10) 八、遇到的问题及解决办法 (10) 九、心得体会 (10)

一、问题描述 完成树与二叉树的转换 二、基本要求 1、树采用双亲表示法 2、能够将树转换为二叉树 3、对转换的二叉树进行算法设计统计人一结点的孩子数 4、利用转换的二叉树计算树的高度 三、概要设计 操作集合: (1) CTreeNode *SearchCTree(CTreeNode *root ,char data) 查找树结点 (2) CTreeNode *CreateSTree() 生成树 (3) void preorderTree(CTreeNode *ctroot) 树的遍历 (4) void PrintTree(CTreeNode *troot,int depth) 树的输出 (5 void initQueueCTree(QueueCTree *&q) 初始化树队列 (6) void initQueueBTree(QueueBTree *&q) 初始化二叉树队列 (7)void TreeToBTree(CTreeNode *ctroot,BTreeNode *&btroot) //树转化为二叉树ctroot指向树的根节点,btroot,指向二叉树的根 四、数据结构设计 struct CTreeNode//树节点的类型 { char data;//数据域,采用char星 struct CTreeNode *children[DEGREE];//指向孩子节点的指针域 }; struct BTreeNode { char data;//数据域

数据结构课程设计

《数据结构》 课程设计报告 学号 姓名 班级 指导教师 安徽工业大学计算机学院 2010年6月

建立二叉树和线索二叉树 1.问题描述: 分别用以下方法建立二叉树并用图形显示出来: 1)用先序遍历的输入序列 2)用层次遍历的输入序列 3)用先序和中序遍历的结果 2.设计思路: 分三个方式去实现这个程序的功能,第一个实现先序遍历的输入数列建立二叉树;第二个是用层次遍历的方法输入序列;第三个是用先序和后序遍历的结果来建立二叉树;三种方法建立二叉树后都进行输出。关键是将这三个实现功能的函数写出来就行了;最后对所建立的二叉树进行中序线索化,并对此线索树进行中序遍历(不使用栈)。 3.数据结构设计: 该程序的主要目的就是建立二叉树和线索二叉树,所以采用树的存储方式更能完成这个程序; 结点的结构如下: typedef struct bnode { DataType data; int ltag,rtag; struct bnode *lchild, *rchild; } Bnode, *BTree; 4.功能函数设计: BTree CreateBinTree() 用先序遍历的方法讲二叉树建立; BTree CREATREE() 用队列实现层次二叉树的创建; void CreatBT(); 用先序和中序遍历的结果建立二叉树; void InThread(BTree t,BTree pre) 中序线索化; 5.编码实现: #include #include #define max 100 typedef struct bnode { char data; int ltag,rtag; struct bnode *lchild,*rchild; }Bnode,*BTree; BTree Q[max]; BTree CREATREE() { char ch; int front=1,rear=0;

数据结构课程设计二叉树遍历查找

课程设计任务书 2011 —2012 学年第一学期 电子与信息工程系计算机专业09计算机一班班级 课程设计名称:数据结构课程设计 设计题目:排序二叉树的遍历 完成期限:自2012 年 1 月 2 日至2012 年 1 月 6 日共 1 周 设计依据、要求及主要内容(可另加附页): 一、设计目的 熟悉各种数据结构和运算,会使用数据结构的基本操作解决一些实际问题。 二、设计要求 (1)重视课程设计环节,用严谨、科学和踏实的工作态度对待课程设计的每一项任务; (2)按照课程设计的题目要求,独立地完成各项任务,严禁抄袭;凡发现抄袭,抄袭者与被抄袭者皆以零分计入本课程设计成绩。凡发现实验报告或源程序雷同,涉及的全部人员皆以零分计入本课程设计成绩; (3)学生在接受设计任务后,首先要按设计任务书的要求编写设计进程表; (4)认真编写课程设计报告。 三、设计内容 排序二叉树的遍历(用递归或非递归的方法都可以) 1)问题描述 输入树的各个结点,建立排序二叉树,对建立的排序二叉树进行层次、先序、中序和后序遍历并统计该二叉树中叶子结点的数目。 2)基本要求 (1)用菜单实现 (2)能够输入树的各个结点,并能够输出用不同方法遍历的遍历序列和叶子结点的数目。 四、参考文献

1.王红梅.数据结构.清华大学出版社 2.王红梅.数据结构学习辅导与实验指导.清华大学出版社3.严蔚敏,吴伟民.数据结构(C语言版).清华大学出版社 #include using namespace std; int num; //-----------排序二叉树节点--------------// struct tree //定义二叉树节点结构 { int data; //节点数据域 tree *right,*left; //右,左子树指针 }; //-----------排序二叉树类----------------// class Btree { tree *root;//根节点 public: Btree()

树与二叉树习题解析(答)

习题五树与二叉树 一、选择题 1、一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足。 A、所有的结点均无左孩子 B、所有的结点均无右孩子 C、只有一个叶子结点 D、是任意一棵二叉树 2、一棵完全二叉树上有1001个结点,其中叶子结点的个数是。 A、250 B、500 C、254 D、505 E、以上答案都不对 3、以下说法正确的是。 A、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树后序遍历序列中的最后一个结点 B、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树中序遍历序列中的最后一个结点 C、在二叉树中,具有两个子女的父结点,在中序遍历序列中,它的后继结点最多只能有一个子女结点 D、在二叉树中,具有一个子女的父结点,在中序遍历序列中,它没有后继子女结点 4、以下说法错误的是。 A、哈夫曼树是带权路径长度最短得数,路径上权值较大的结点离根较近 B、若一个二叉树的树叶是某子树中序遍历序列中的第一个结点,则它必是该子树后序 遍历序列中的第一个结点 C、已知二叉树的前序遍历和后序遍历并不能唯一地确定这棵树,因为不知道树的根结 点是哪一个 D、在前序遍历二叉树的序列中,任何结点其子树的所有结点都是直接跟在该结点之后 的 5、一棵有124个叶结点的完全二叉树,最多有个结点。

A、247 B、248 C、249 D、250 E、251 6、任何一棵二叉树的叶结点在前(先)序、中序和后序遍历序列中的相对次序。 A、不发生变化 B、发生变化 C、不能确定 7、设a、b为一棵二叉树上的两个结点。在中序遍历时,a在b前面的条件是。 A、a在b的右方 B、a在b的左方 C、a是b的祖先 D、a是b的子孙 8、设深度为k的二叉树上只有度为0和度为2的结点,则这类二叉树上所含的结点总数为。 A、不确定 B、2k C、2k-1 D、2k+1 9、设有13个值,用它们组成一棵哈夫曼树,则该哈夫曼树共有个结点。 A、13 B、12 C、26 D、25 10、下面几个符号串编码集合中,不是前缀编码的是。 A、{0,10,110,1111} B、{11,10,001,101,0001} C、{00,010,0110,1000} D、{b,c,aa,ac,aba,abb,abc} 11、欲实现任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳的方案是二叉树采用存储结构。 A、三叉链表 B、广义表 C、二叉链表 D、顺序表 12、以下说法错误的是。 A、存在这样的二叉树,对它采用任何次序遍历其结点访问序列均相同 B、二叉树是树的特殊情形 C、由树转换成二叉树,其根结点的右子树总是空的 D、在二叉树只有一棵子树的情况下也要明确指出该子树是左子树还是右子树 13、树的基本遍历策略可分为先根遍历和后根遍历,二叉树的基本遍历策略可分为先序、中序和后序三种遍历。我们把由树转化得到的二叉树称该树对应的二叉树,则下面是正确的。 A、树的先根遍历序列与其对应的二叉树先序遍历序列相同

数据结构课程设计

一、高校社团管理 在高校中,为了丰富学生的业余生活,在学校的帮助下,会成立许多社团,少则几个,多则几十个。为了有效管理这些社团,要求编写程序实现以下功能:1.社团招收新成员; 2.修改社团相应信息 3.老成员离开社团 4.查询社团情况; 5.统计社团成员数; 二、简单文本编辑器 设计一个文本编辑器,允许将文件读到内存中,也就是存储在一个缓冲区中。这个缓冲区将作为一个类的内嵌对象实现。缓冲区中的每行文本是一个字符串,将每行存储在一个双向链表的结点中,要求设计在缓冲区中的行上执行操作和在单个行中的字符上执行字符串操作的编辑命令。 基本要求: 包含如下命令列。可用大写或小写字母输入。 R:读取文本文件到缓冲区中,缓冲区中以前的任何内容将丢失,当前行是文件的第一行; W:将缓冲区的内容写入文本文件,当前行或缓冲区均不改变。 I:插入单个新行,用户必须在恰当的提示符的响应中键入新行并提供其行号。 D:删除当前行并移到下一行; F:可以从第1行开始或从当前行开始,查找包含有用户请求的目标串的第一行; C:将用户请求的字符串修改成用户请求的替换文本,可选择是仅在当前行中有效的还是对全文有效的。 Q:退出编辑器,立即结束; H:显示解释所有命令的帮助消息,程序也接受?作为H的替代者。 N:当前行移到下一行,也就是移到缓冲区的下一行; P:当前行移到上一行,也就是移到缓冲区的上一行;

B:当前行移到开始处,也就是移到缓冲区的第一行; E:当前行移到结束处,也就是移到缓冲区的最后一行; G:当前行移到缓冲区中用户指定的行; V:查看缓冲区的全部内容,打印到终端上。 三、电话客户服务模拟 一个模拟时钟提供接听电话服务的时间(以分钟计),然后这个时钟将循环的 自增1(分钟)直到达到指定时间为止。在时钟的每个"时刻",就会执行一次检查来看看对当前电话服务是否已经完成了,如果是,这个电话从电话队列中删除,模 拟服务将从队列中取出下一个电话(如果有的话)继续开始。同时还需要执行一个检查来判断是否有一个新的电话到达。如果是,其到达时间被记录下来,并为其产生一个随机服务时间,这个服务时间也被记录下来,然后这个电话被放入电话队列中,当客户人员空闲时,按照先来先服务的方式处理这个队列。当时钟到达指定时间时,不会再接听新电话,但是服务将继续,直到队列中所偶电话都得到处理为止。 基本要求: (1)程序需要的初始数据包括:客户服务人员的人数,时间限制,电话的到达速率,平均服务时间 (2)程序产生的结果包括:处理的电话数,每个电话的平均等待时间 四、停车场管理 设停车场是一个可停放n辆车的狭长通道,且只有一个大门可供汽车进出。在停车场内,汽车按到达的先后次序,由北向南依次排列(假设大门在最南端)。若停车场内已停满n辆车,则后来的汽车需在门外的便道上等候,当有车开走时,便道上的第一辆车即可开入。当停车场内某辆车要离开时,在它之后进入的车辆必须先退出停车场为它让路,待该辆车开出大门后,其他车辆再按原次序返回车场。每辆车离开停车场时,应按其停留时间的交费(从进入便道开始计时)。在这里假设汽车从便道上开走时不收取任何费用 基本要求: (1)汽车的输入信息格式为(到达/离去的标识,汽车牌照号码,到达/离去的时间)

相关文档
最新文档