光伏MPPT算法原理

光伏MPPT算法原理
光伏MPPT算法原理

1 MPPT 算法原理

光伏电池的利用率受两方面的影响:(1)光伏电池的内部特性;(2)使用环境如辐照度、负载和温度。在不同的外界条件下,光伏电池可运行在不同且唯一的最大功率点(Maximum Power Point)上。因此,对于光伏发电系统来说,应当寻求光伏电池的最优工作状态,以最大限度地将光能转化为电能。本文结合并网逆变控制提出快速逼近插值算法。对输入的直流侧电压和电流算出光伏阵列输出的当前功率p(k),前1个步长的功率p(k-1),前2个步长的功率p(k-2),三个功率点可以得到2条直线的斜率,dp(k)/du(k)、dp(k-1)/du(k-1),比较其斜率的变化,如果斜率相同且为正,说明没有搜索到最大功率点,当前电压u(k)增加一个步长h ,如果斜率相同且为负,说明没有搜索到最大功率点且已经超过最大功率点,当前电压u(k)减小一个步长h ,如果斜率相反,进行插值运算。

图1 工况1

U P

u(k)u(k-1)u(k-2)

p(k-2)p(k-1)

p(k)

dp(k-1)/du (k-1)>0

dp(k)/du(k)<0

图2 工况2

图3 工况3

图1中的情况,功率的斜率都为正,说明最大功率点不在当前数据范围内,输出电压u*(k)=u(k)+h。图2中的情况,功率的斜率有正有负,说明最大功率点在当前数据范围内,对当前数据进行牛顿插值,得到输出电压u*(k)。图3中的情况,功率的斜率都为负,说明最大功率点不在当前数据范围内,输出电压u*(k)=u(k)-h。

开始

给一初始值

k1>0且k2>0 u*(k)=u(k-

2)+h

k1*k2<0,同

时要防止零除

k1<0且k2<0k1*k2=0

Lagrange插值牛

顿插值最小二乘

u*(k)=u(k-1)

返回

u*(k)=u(k-1)-

h

)

(

d

)1

(

d

)2

(

d

)1

(

dp

)

(

dp

2

k

1k

)

(

))

1

(p

2)

-

p(k

I(k))

(u(k)

1))

-

I(k

1),

-

(u(k

2))

-

I(k

2),

-

(u(k

3

k

I

k

I

k

I

k

k

k

p

k

计算

顺次寻找

-

-

-

-

图4 MPPT快速插值算法流程图

由图4 MPPT快速插值法流程图可知,当光照变化时,跟踪的快慢与步长h 有关,步长大时,跟踪速度快,电压波形波动大;步长过小,在光照变化快时,不能快速跟踪最大功率点电压,所以步长的选取很关键,基于本文建模h=0.2。

太阳能光伏发电系统的设计与控制技术研究

太阳能光伏发电系统的设计与控制技术研究 发表时间:2016-03-29T17:40:08.700Z 来源:《基层建设》2015年23期供稿作者:雷云 [导读] 中信建筑设计研究总院有限公司此外本文所设计的太阳能光伏发电系统可以将电能直接输送到交流电网系统中,这样可降低蓄电池的费用。 雷云 中信建筑设计研究总院有限公司 摘要:本文针对太阳能光伏发电系统的常规要求,提出了一种实用的太阳能光伏发电系统的主电路、控制电路方案,并设计了相关的硬件电路原理图。 关键词:最大功率跟踪;电导增量法;Boost变换器;太阳能光伏发电系统 一引言 本文设计的太阳能光伏发电系统的基本输出参数为:单相AC220V、50Hz,输出功率为3kVA。 系统的结构框图如图1.1所示。光伏电池96V~128V直流经过DC-DC升压变换器,升压得到400V的直流电压,再经过DC-AC逆变器,可输出220V、50Hz的正弦电压。 根据系统的输入输出的特点,整个系统分为两级,前级的DC-DC升压变换器和后级的DC-AC逆变器,从而避免了工频变压器的使用,缩小了装置的体积。此外本文所设计的太阳能光伏发电系统可以将电能直接输送到交流电网系统中,这样可降低蓄电池的费用。DC-DC变换器的功能主要是将光伏阵列的输出直流升压成400V直流电,并实现最大功率跟踪。因此,DC-DC变换器的拓扑结构采用Boost电路,采用电导增量法,使光伏阵列工作在最大功率点。 DC-AC逆变器的功能主要是将直流电转换成220V、50Hz的正弦交流电压,并维持DClink的电压为400V。DC-AC逆变器的拓扑结构采用全桥式逆变器,控制方法选用平均电流控制。 图1.1 太阳能光伏发电系统结构框图 二太阳能光伏发电系统的设计与控制技术研究 1 电导增量法(导纳微分法) (1)电导增量法 电导增量法在光伏发电系统中广泛使用,它通过比较光伏电池阵列的检测变量的增量和瞬时电导值跟踪最大功率点。电导值的增量通过测量光伏电池阵列的输出电压、电流的变化量来确定。 dP/dV的值是与输出电压值一一对应的: ●当dP/dV=0(≈0),在最大功率点处或在非常接近最大功率点处(电压应该保持不变)。由于d I和d V不是精确计算的结果,因此在实际中可以认为dP/dV= e(e ≈ 0)时系统就工作在最大功率点。 ●当dP/dV>0,在最大功率点左边(应该增加电压)。 ●当dP/dV<0,在最大功率点右边(应该减小电压)。 通过测量和计算I/V和dI/dV的值就可以通过上边的关系判断出太阳能输出电压与实际最大功率点输出电压的关系。具体的实现方法如下: V(k)、I(k)为阵列当前电压、电流值;V(k-1)、I(k-1)为阵列上一周期电压、电流值;Vref为Boost电路开关占空比的参考电压值;△V为单个采样周期的电压增量。 因为dP/dV=d(IV)/dV=I+VdI/dV,所以通过判断I/V+dI/dV即G+dG的符号,就可以确定工作点在曲线的左、右哪侧的位置,从而对电压Vref进行相应的调节。 ● 若dV=0(表示系统在上一周期已经工作在最大功率点): 若dI=0,电压Vref保持不变;若dI>0,增加Vref;若dI<0,减小Vref; ● 若dV≠0: 若dI/dV=-I/V,阵列已工作在最大功率点,无须再调节电压Vref;若dI/dV>-I/V,增加Vref;若dI/dV<-I/V,减小Vref。(2)改进的电导增量法 针对电导增量法存在固定步长的缺点,采用变步长的寻优策略。 期望的目标是:

土方计算网格法断面法等全法

由方格网来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成方格网来计算每一个方格内的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 系统首先将方格的四个角上的高程相加(如果角上没有高程点,通过周围高程点内插得出其高程),取平均值与设计高程相减。然后通过指定的方格边长得到每个方格的面积,再用长方体的体积计算公式得到填挖方量。方格网法简便直观,易于操作,因此这一方法在实际工作中应用非常广泛。 用方格网法算土方量,设计面可以是平面,也可以是斜面,还可以是三角网,如图8-38所示。 图8-38 方格网土方计算对话框 1、设计面是平面时的操作步骤: ● 用复合线画出所要计算土方的区域,一定要闭合,但是尽量不要拟合。因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结果的精度。 ● 选择“工程应用\方格网法土方计算”命令。 ● 命令行提示:“选择计算区域边界线”;选择土方计算区域的边界线(闭合复合线)。● 屏幕上将弹出如图8-38方格网土方计算对话框,在对话框中选择所需的坐标文件;在“设计面”栏选择“平面”,并输入目标高程;在“方格宽度”栏,输入方格网的宽度,这是每个方格的边长,默认值为20米。由原理可知,方格的宽度越小,计算精度越高。但如果给的值太小,超过了野外采集的点的密度也是没有实际意义的。 ● 点击“确定”,命令行提示: 最小高程=XX.XXX ,最大高程=XX.XXX 总填方=XXXX.X立方米, 总挖方=XXX.X立方米 同时图上绘出所分析的方格网,填挖方的分界线(绿色折线),并给出每个方格的填挖方,每行的挖方和每列的填方。结果如图8-39所示。 图8-39 方格网法土方计算成果图

风力发电机原理

《可再生能源与可持续发展》作业题目:风力发电机原理 班级:08机制4班 姓名:毛羽西 学号:0822405 教师:李永国 2011年11 月

目录 1 风力发电机概述 (2) 2 水平轴涡轮发电机 (2) 2.1 水平轴涡轮机结构 (3) 2.2 水平轴涡轮机叶片 (4) 2.3 发电机 (5) 2.4 制动系统 (6) 3 风力发电前景展望 (7) 结论 (7) 参考文献: (7)

风力发电机原理 1 风力发电机概述 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电机的基本工作原理比较简单,风轮在风力的作用下旋转,将风的动能转变为风轮轴的机械能,风轮轴带动发电机旋转发电。其中风能转化装置称为风力机。风力机的核心部分为叶轮的设计,随着空气动力学的飞速发展,叶轮设计已经取得了巨大的进步。[1] 2 水平轴涡轮发电机 正如其名字的含义,水平轴风力涡轮机的转轴是水平安装的,与地面平行。水平轴风力涡轮机需要使用偏航调整装置时刻根据风向进行调整。偏航系统通常包括电机和变速箱,用于缓慢左右移动整个转子。涡轮机的电子控制器读取风向标设备(机械或电子风向标)的位置,并调整转子位置以尽量捕获最大的风能。水平轴风力涡轮机使用塔架将涡轮机组件上升到最适合风速的高度(这样叶片便不会碰到地面),并且占用非常少的地面空间,因为几乎所有组件都在高达80米的空中。

网格划分的几种基本处理方法

网格划分的几种基本处理方法 贴体坐标法: 贴体坐标是利用曲线坐标,并使其坐标线与燃烧室外形或复杂计算区域边界重合,这样所有边界点能够用网格点来表示,不需要任何插值。一旦贴体坐标生成通过变换,偏微分方程求解可以不在任意形状的物理平面上,而在矩形或矩形的组合(空间问题求解域为长方体或它们的组合)转换平面上进行。这样计算与燃烧室外形无关,也与在物理平面上网格间隔无关。 而是把边界条件复杂的问题转换成一个边界条件简单的问题;这样不仅可避免因燃烧室外形与坐标网格线不一致带来计算误差,而且还可节省计算时间和内存,使流场计算较准确,同时方便求解,较好地解决了复杂形状流动区域的计算,在工程上比较广泛应用。 区域法: 虽然贴体坐标系可以使坐标线与燃烧室外形相重合,从而解决复杂流动区域计算问题。但有时实际流场是一个复杂的多通道区域,很难用一种网格来模拟,生成单域贴体网格,即使生成了也不能保证网格质量,影响流场数值求解的效果。因此,目前常采用区域法或分区网格,其基本思想是,根据外形特点把复杂的物理域或复杂拓扑结构的网格,分成若干个区域,分别对每个子区域生成拓扑结构简单的网格。由这些子区域组合而成的网格,或结构块网格。对区域进行分区时,若相邻两个子域分离边界是协调对接,称为对接网格;若相邻两子域有相互重叠部分,则此分区网格称为重叠网格。根据实际数值模拟计算的需要,把整个区域(燃烧室)分成几个不同的子区域,并分别生成网格。这样不仅可提高计算精度,而且还可节省计算机内存,提高收敛精度。但是计算时,必须考虑各区域连接边界处耦合以及变量信息及时、准确地传递问题。处理各个区域连接有多种方法,其中一个办法是在求解各变量时各区域可以单独求解若干次而对压力校正方程.设压力校正值在最初迭代时为零,为了保证流量连续各个区域应同时求解,然后对各个速度和压力进行校正。或者采用在两个区域交界处有一个重叠区,两个区域都对重叠区进行计算,重叠区一边区域内的值,要供重叠区另一边区域求解时用。或通过在重叠内建立两个区域坐标对应关系,实现数据在重叠区内及时传递。如果两个区采用网格疏密分布不相同,要求重叠区二边流量相等。区域法能合理解决网格生成问题,已被大量用来计算复杂形状区域流动。 区域分解法: 对于复杂几何形状的实际燃烧装置,为了保证数值求解流场质量,目前常采用区域分解法。该法基本要点是:根据燃烧室形状特点和流场计算需要,把计算区域分成一个主区域和若干个子区域,对各个区域(块)分别建立网格,并对各个区域分别进行数值求解。区域分解原则是尽量使每个子区域边界简便以便于网格建立,各个子区域大小也尽可能相同,使计算负载平衡有利于平行计算。各区域的网格间距数学模型以及计算方法都可以不同,通常在变量变化梯度大的区域,可以布置较细网格,并采用高阶紊流模型和描述复杂反应的紊流燃烧模型,以便更合理模拟实际流场。对于变量变化不太大区域,可采用较疏的网格和较简单的数学模型,这样可节省计算时间。各子区域的解在相邻子区域边界处通过耦合条件来实现光滑,相邻子区域连接重叠网格或对接网格来实现,在各子区域交界处通过插值法提供各子域求解变量的信息传递,满足各子域流场计算要求通量和动量守恒条件以便实现在交界面处各子域流场解的匹配和耦合,从而取得全流场解。 非结构网格法: 上述各方法所生成的网格均属于结构化网格,其共同特点是网格中各节点排列有序,每个节点与邻点之间关系是固定的,在计算区域内网格线和平面保持连续。特别是其中分区结构网格生成方法已积累了较多经验,计算技术也较成熟,目前被广泛用来构造复杂外形区域

风力发电机的工作原理

风力发电机的工作原理 风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公路可用它做夜晚的路标灯;山区的孩子可以在日光灯下晚自习;城市小高层楼顶也可用风力电机,这不但节约而且是真正绿色电源。家庭用风力发电机,不但可以防止停电,而且还能增加生活情趣。在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。无线电爱好者可用自己的技术在风力发电方面为山区人民服务,使人们看电视及照明用电与城市同步,也能使自己劳动致富。

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

新能源发电与控制技术复习题完整版

《新能源发电与控制技术》 蓄能元件及辅助发电设备 3大部分组成。 多晶硅太阳电池、非晶硅太阳电池 、碲化镉太阳电池 与 铜铟硒太阳电池5种类型。 18. 天然气是指地层内自然存在的以 碳氢化合物为主体的可燃性气体。 19.燃气轮机装置主要由 燃烧室、压气机 和 轮机装置3部分组成。 二、简答题 1. 简述能源的分类? 答:固体燃料、液体燃料、气体燃料、水力、核能、电能、太阳能、生物质能、风能、海洋能、地 热能、核聚变能。还可以分为:一次能源、二次能源、终端能源,可再生能源、非可再生能源,新能源、 常规能源,商品能源、非商品能源。 2. 什么是一次能源? 所谓一次能源是指直接取自自然界没有经过加工转换的各种能量和资源 ,它包括:原煤、原油、天然 气、油页岩、核能、太阳能、水力、风力、波浪能、潮汐能、地热、生物质能和海洋温差能等等 3. 什么是二次能源? 由一次能源经过加工转换以后得到的能源产品 ,称为二次能源,例如:电力、蒸汽、煤气、汽油、柴 油、重油、液化石油气、酒精、沼气、氢气和焦炭等等 4. 简述新能源及主要特征。 答:新能源是指技术上可行,经济上合理,环境和社会可以接受,能确保供应和替代常规化石能源 的可持续发展能源体系。新能源的关键是准对传统能源利用方式的先进性和替代性。广义化的新能源体系 主要包涵两个方面:①、新能源体系包括可再生能源和地热能,氢能,核能;②、新能源利用技术,包括高 效利用能源,资源综一、填空题 1. 一次能源是指直接取自 自然界没有经过加工转换 的各种能量和资源。 2. 二次能源是指由一次能源经过加工转换以后得到 的能源产品。 3. 终端能源是指供给社会生产、非生产和生活中直接用于消费的各种能源。 4. 典型的光伏发电系统由 光伏阵列、蓄电池组、控制器、电力电子变换器和 负载等组成。 5. 光伏发电系统按电力系统终端供电模式分为 独立光伏发电系统和并网光伏发电系统。 6. 风力发电系统是将 风能转换为电能,由机械、电气和控制3大系统组合构成。 7. 并网运行风力发电系统有 恒速恒频方式和变速恒频方式两种运行方式。 8. 风力机又称为风轮,主要有 水平轴风力机和垂直轴风力机。 9. 风力同步发电机组并网方法有 自动准同期并网和自同步并网 10. 风力异步发电机组并网方法有 直接并网、降压并网 和晶闸管软并网 11. 太阳的主要组成气体为 氢 和氦。 12. 太阳的结构从中心到边缘可分为 核反应区、辐射区 、对流区和太阳大气。 13. 太阳能的转换与应用包括了太能能的 采集、转换、 储存、运输与应用。 14. 光伏发电是根据 光生伏特效应 原理,利用 太阳电池 将太阳光能直接转化为电能。 15. 光伏发电系统主要由 太阳电池组件 ,中央控制器、充放电控制器、逆变器 和蓄电池、 17.生物质能是绿色植物通过叶绿素将 太阳能转化为化学能而储存在生物质内部的能量。 16.太阳电池主要有单晶硅太阳电池

奇像记忆法基本原理

奇像记忆法基本原理 奇像记忆法基本原理远古时代,人们就已发现有关记忆的许多规律了。三千多年前的古埃及文献《阿德·海莱谬》有过记载:“我们每天所见到的琐碎的、司空见惯的小事,一般情况下是记不住的,而听到或见到的那些稀奇的、意外的、惊人等的异乎导常的事情,却能长期记忆。这真是神奇的现象!” 现代心理学、神经学揭示:人的大脑各构成的皮层及左右脑是各有分工的,右脑主管空间的、色彩等形象的思维,当碰到与常规不同的信号刺激,细胞异常兴奋,从而留下深刻的记忆痕迹,因此奇特夸张、生动强烈的图像容易产生强烈的记忆印象;而左脑擅长记忆逻辑性强的顺序关联事物。奇像顺序超级记忆法,正是根据现代科学研究成果,充分发挥和结合左右脑的优势,并经过长期实践证明效果令人惊奇的记忆方法。 奇像记忆原理:就是把平凡的、枯燥的事物转化成奇特夸张、生动强烈、顺序关联的图像进行记忆的方法。核心在于联想出奇特的的画面,尽可能地使之新颖独特、荒诞离奇、鲜明生动、超脱现实、违背逻辑,从而留下深刻的印象。 奇象记忆法的四个特征1,清晰性 就是要使奇象的形象尽量清晰、真切,千万不要似是而非、似有非有、朦朦胧胧。刚开始练习时,不要图快,否则不清晰,欲速则不达。

例如,想像飞机的奇象时,我们光想着天空中飞着一架飞机还不够,应该进一步想,天空中飞着一架银灰色的飞机,飞机的银灰色甚至刺痛你的眼睛; 想像树的奇象时,光想着路边有一棵树还不够,你可以想像一棵挂满着果实的大树就在你眼前,那一颗颗金黄色的果子真让你垂涎三尺。 2,运动性 就是要使物体动起来,使其行动有趣。 “体温计”与其静静地放着,不如让它敲击器物,发出声音,而且竟然不会碰碎。 “白云”忽儿像羊群,忽儿像棉花,悠悠地在天上飘动。 事物的平常状态与运动状态的区别是非常显著的,请看下面几组例子: 课桌上有一本书(平常)——课桌上的书向你的头上飞来(运动); 松树边站着一只老虎(平常)——松树边有一只老虎在荡秋千(运动); 3,夸张性 为了使奇象在头脑里形成强烈的深刻的刺激,留下难以忘怀的印象,呈现奇象时就要有意使代表现实形象的奇象,比现实生活中的形象夸大和加深,给大脑带来强烈的刺激。 例如,体温计可以比真的体温计大许多倍,长许多倍,它可以自己飞到患者腋下去测量;苍蝇的个头比真的苍蝇大得多。 请看下面几组例子:

风力发电原理课后解析

▲1-3 风能具有哪些特点? (1)风能蕴藏量大、分布广。(2)风能是可再生能源。(3)风能利用基本没有对环境的直接污染和影响。(4)风能的能量密度低。(5)不同地区风能差异大。(6)风能具有不稳定性。 ▲1- 风力发电技术的发展状况 当前风电技术和设备的发展主要呈现大型化、变速运行、变桨距、无齿轮箱等特点。 (1)水平轴风电机组技术成为主流。(2)风电机组单机容量持续增大。(3)变桨距技术得到普遍应用。(4)变速恒频技术得到快速推广。(5)直驱式、全功率变流技术得到迅速发展。(6)大型风电机组关键部件的性能日益提高。(7)智能化控制技术广泛应用。(8)叶片技术不断进步。(9)适应恶劣气候环境的风电机组得到重视。(10)低电压穿越技术得到应用。 (11)海上风电技术成为重要发展方向。(12)标准与规范逐步完善。 ▲2-8 为什么国际上通行的计算平均的时间间隔都取在10min至2h范围? 由范德豪芬的平均风速功率谱曲线可知,在10min至2h范围的平均风速功率谱低而平坦,平均风速基本上是稳定值,可以忽略湍流的影响。 ▲2-9 什么是风速廓线? 在大气边界层中,由于空气运动受地面植被、建筑物等得影响,风速随距地面的高度增加而发生明显的变化,这种变化规律成为风剪切或风速廓线。 ▲2-11 什么是风向玫瑰图? 风向玫瑰图常用来表示某一风向一年或一个月出现的频率。 ▲2-15 风在静止叶片上的空气动力是如何形成的? 由于叶片上方和下方的气流速度不同(上方速度大于下方速度),因此叶片上、下方所受的压力也不同(下方压力大于上方压力),总得合力F即为叶片在流动空气所受到的空气动力。 ▲2- 风的测量设备? 风向:风向标、光电管、码盘。风速:皮托管、热线风速仪、风杯、螺旋叶片。▲2- 风能资源评估及风电场选址 评估参数:平均风速、主要风向分布、风功率密度、年风能可利用小时。宏观

光伏发电技术及应用专业课程

公共必修课 思想道德修养及法律基础、毛泽东思想、邓小平理论和“三个代表”重要思想概论、大学英语、大学体育、计算机文化基础、大学语文、军事理论、大学生就业与创业指导、沐浴经典、红色江西、形势政策 专业基础课 高等数学、大学物理、光伏技术概论、电工电子学、半导体物理器件、太阳电池材料、光伏设备概论 专业课 专业技能课 工程计价与计量、工程制图、AutoCAD 专业必修课 太阳电池原理与工艺、太阳能发电技术、光伏建筑电气控制技术、光伏系统设计与施工、供配电系统、光伏建筑工程 专业任选课 高级语言程序设计、工业计算机控制技术、新能源发电技术、专业英语 集中实践教学 太阳能发电技术课程设计、光伏系统设计与施工课程设计、光伏建筑工程课程设计、军事训练、入学教育、岗位实训、毕业设计(论文) 主干课程 (1)《太阳电池原理与工艺》 课程简介:本课程主要讲授光生伏打效应机理、p-n结、太阳电池的工作原理、制造工艺、测试和应用等方面的技术,使学生对太阳电池器件的原理及工艺有较为系统的掌握。 (2)《太阳能发电技术》 课程简介:本课程主要讲授太阳能光伏发电工作原理、内容包括太阳能电池组件的特性、结构及种类,功率调节器的工作原理、功能、电路构成及种类、选择方法、相关设备及部件,太阳能光伏发电系统设计与施工、维护检查与测量,熟悉太阳能光伏发电系统的法律法规及并网系统技术要求准则。 (3)《光伏系统设计与施工》 课程简介:主要介绍光伏系统的构成及设计原理和规则,阐述光伏系统的施工技术和方法。使学生初步掌握光伏系统的设计方法,了解光伏系统的施工步骤,为学生将来独立参与光伏系统的设计和施工打下基础。 (4)《光伏建筑电气控制技术》 课程简介:本课程主要结合光伏发电讲授建筑配电系统常用的电器元件、继电器、接触器控制的基本控制电路、建筑电气控制技术的设计、建筑中常用的电气设备的控制原理、可编程控制器的基本工作原理及其在光伏建筑中的应用等方面知识。 (5)《太阳电池材料》 课程简介:介绍太阳能及光电转换的基本原理、太阳电池的基本结构和工艺,着重从材料制备和性能的角度出发,阐述常用的太阳能光电材料的基本制备原理、制备技术以及材料结构组成对太阳电池的影响。 (6)《工程计价与计量》 课程简介:本课程主要介绍太阳发电建设项目在决策、设计、招投标、实施、竣工验收等阶段的计价方法,使学生初步掌握工程计价与计量专业技能,扩展学生的工程经济知识与相关能力。

(完整版)【速度收藏】风力发电机工作原理

风力发电机工作原理__图文 前言:由于环境污染,人类对大自然的过度开采,我们对无污染、可再生的能源越来越重视。风能就是这样一种无须燃料、无污染、可再生的能源。风力发电机作为把风能运用率较高的产品,受到世界各国的重视。为了让风力发电机更好的为人们服务,今天我们来研究一下风力发电机工作原理。 关键词:风力发电机,风力发电机工作原理,风力发电机结构 一、风力发电机结构 高 由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。 7、电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 8、液压系统:用于重置风力发电机的空气动力闸。 9、冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。

10、塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 11、风速计及风向标:用于测量风速及风向。 二、风力发电机原理 现代风力发电机采用空气学原理,就像飞机的机翼一样。风并非“推动”风轮叶片,而是吹过叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。 面向来风,从而令风轮刹车。 在风速很低的时候,风力发电机风轮会保持不动。当到达切入风速时(通常每秒3到4米),风轮开始旋转并牵引发电机开始发电。随著风力越来越强,输出功率会增加。当风速达到额定风速时,风电机会输出其额定功率。之后输出功率会保留大致不变。当风速进一步增加,达到切出风速的时候,风电机会刹车,不再输出功率,为免受损。 青岛恒风风力发电机有限公司是一家专注研发、制造、销售为一体的科技型企业,公司始建于2004年,厂房占地面积5000 余平。公司主要生产150瓦至500千瓦的水平和垂直轴的中小型风力发电机组,风光互补供电系统,广泛应用于离网和并网型发电系统。生产中我们严格按照ISO9001国际标准生产管理体系,并拥有标准的生产线,自动包装流水线,严

光伏发电系统控制系统设计

编号 淮安信息职业技术学院 毕业论文 题目光伏发电系统控制系统设计 学生姓名*** 学号**** 系部电气工程系 专业机电一体化 班级***** 指导教师【***】【讲师】 顾问教师 二〇一二年十月 摘要 进入二十一世纪,人类面临着实现经济和社会可持续大战的重大挑战,而能源问题日益严重,一方面是常规能源的缺乏,另一方面石油等能源的开发带来一系列的问题,如环境污染,温室效应等。人类需要解决能源问题,实现可持续发展,只能依靠科技进进步,大规模开发利用可再生能源和新能源。太阳能是一种有前途的新型能源,具有永久性、清洁型和灵活性三大优点。太阳能电池寿命长,

只要有太阳在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染问题;光伏发电系统可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,而且还缓解了目前能源危机与环境危机,只是其它电源无法比拟。 关键词:太阳能供电系统蓄电池逆变

目录 编号 ..................................................................................................................... 错误!未指定书签。摘要 ................................................................................................................. 错误!未指定书签。目录 ............................................................................................................. 错误!未指定书签。第一章绪论 ................................................................................................... 错误!未指定书签。光伏发电控制系统简介 ........................... 错误!未指定书签。问题的提出 ..................................... 错误!未指定书签。本课题设计的主要目的和意义 ..................... 错误!未指定书签。本课题设计的主要内容 ........................... 错误!未指定书签。第二章可编程控制器()基础知识 ............................................................. 错误!未指定书签。可编程控制器() ............................... 错误!未指定书签。 的定义......................................... 错误!未指定书签。 的特点......................................... 错误!未指定书签。 的简介及模块................................... 错误!未指定书签。第三章系统硬件设计 ..................................................................................... 错误!未指定书签。 光伏供电装置................................... 错误!未指定书签。光伏供电系统 ................................... 错误!未指定书签。 基于的硬件电路设计............................. 错误!未指定书签。 基于的硬件电路设计............................. 错误!未指定书签。第四章系统软件设计 ..................................................................................... 错误!未指定书签。 主程序设计..................................... 错误!未指定书签。 子程序设计..................................... 错误!未指定书签。 监控界面的设计................................. 错误!未指定书签。第五章系统调试 ............................................................................................... 错误!未指定书签。 调试主要内容................................... 错误!未指定书签。调试结果 ....................................... 错误!未指定书签。第六章总结与展望 ........................................................................................... 错误!未指定书签。 总结........................................... 错误!未指定书签。 展望........................................... 错误!未指定书签。

第二章 光束传播法基本原理

第四章光束传播法基础 第一节数值计算方法 1.电磁场数值计算 它是一种基于麦克斯韦方程组,建立逼近实际工程电磁场问题的连续型的数学模型,(合理的假设)然后采用相应的数值计算方法,经离散化处理,(合适的方法,使离散化的模型既能反映连续型模型的特性,又便于计算机分析)把连续型数学模型转化为等价的离散型数学模型,计算出待求离散数学模型的离散解(数值解),从而获得相应结果的一种方法。 2.数值方法分类: 时域分析、频域分析。 时域分析:模拟光在波导中的传播过程 频域分析:求解波导模式 时域分析逼真:把原来因为速度太快、结构太小、不可见的现象模拟出来,能够直观地展示。求解:波导连接、耦合、非线性特性、波导模式。 频域分析:光场分布、给定具体结构波导的模式的有效折射率(色散、偏振)、损耗(材料吸收、结构本身导致)等。 问题: 频域结果能否推得时域信息? 反之? 3.常用数值方法简介 (1)有限差分法(频域有限差分法) (20世纪50年代出现)利用划分网格的方法将定解区域离散化为网格离散节点的集合,然后基于差分原理,以各离散点上函数的差商来近似替代该点上的偏导数,这样待求的偏微分方程定解问题可转化为一组相应的差分方程的问题。根据差分方程组,解出各离散点上的待求函数值,即为所求定解问题的离散解,再应用插值方法便可从离散解得到定解问题在整个场域上的近似解。

原理:偏导→差分 方法特点:原理简单、通用性好;对复杂结构,计算量大(矩阵运算)。(频域分析) 适用范围:计算光波导的模式求解。 现状:适用于较简单结构的分析。但有限差分(偏导→差分)法广泛应用于数值方法中 (2) 有限元法 20世纪40年代提出,其在电磁问题方面的应用有约40多年历史。 以变分原理为基础,把所要求解的微分方程转化为相应的变分问题,即泛函求极值问题。常见方法为把要分析的区域划分为很多三角形(每个三角形成为一个基元),每个基元内的场用多项式来表达,然后加入不同基元间场的连续条件,就可得到整个横截面的场分布。 特点:较复杂---需要前处理(三角化,剖分);后处理:(场分布,伪解剔除)(通用性强,精度高)根据该方法对于各种各样的电磁计算问题具有较强的适应能力性,所形成的代数方程矩阵求解容易、收敛性好。 主要缺点: 对于形状和分布复杂的三维问题,由于其变量多和剖分要求细,往往因计算机内存而受到限制。程序设计复杂、计算量较大。 适用范围:求解光波导的模式(有效折射率、色散、双折射、传输损耗等)。 现状:功能最强大的数值方法之一。特别是上世纪90年代出现的矢量有限元方法,完全解决了有限元方法出现的伪解问题,大大降低了有限元法的后处理过程。 有限元光束传播法。 (3)时域有限差分法 时域有限差分法是近年来开始流行的一种数值模拟方法,它通过将麦克斯韦方程在时间空间上离散化的方法实现对电磁波传播的模拟。它能够得到电磁波传输的瞬态(即时域)信息,通过傅里叶变换即可得到相应的频域信息。

网格竹节法

1) 网格区间的确定: 就是指你的网格的最高价和最低价, 确定个总网格很容易的: 高点就是大概6000点时候的历 史最高价, 最低点的参考有几个:a.大盘跌到1500点你手的股票是多少钱? b.既然是好股票,跌到1-2倍净资产(具体看行业,净资产收益率)左右,你买了就是白捡了金子.c. 比这两天的最低价再跌去:40-50%....上面这三种情况是最坏的了吧?这三种情况下的价格(三种方法计算的差不多)就算做网格的最低点吧.总网格的最低最高还是很容易的吧?如果你想做很长期的打算,或者一点风险也不想有,可以简单的用总网格来操作就行....现在有了点问题:用总网格两点小遗憾:最好最坏的情况你都考虑到了,有得就必有失:市场总是离你的最高点差的远,你手里的大部分筹码就没参与交易少赚很多.同样:如果市场离你留的最低点也差的远,你就浪费了很多资金...所以:拿起剪刀吧,上下各剪去一块,以提高操作效率...上面:看今年5月上半月(3780点)你手里的股票的最高价.那个左右估计未来半年到一年不会超过的.把那个价格多点算最高价格吧,如果你对后市看好,就稍留多点,但是:剪掉一大块肯定是要做的.下面:把你预留的比这两天的最低价格跌40-50%<改成:比这两天最低价:跌:20-30%.....做完了这些:你的网格从最高到最低少了一半了吧?举例:某基金重仓的白马股代码A:6000点的时候最高是:35.00..... 五月上半月最高是: 20.. 这两天最低点是: 12.00, 每股净资产

是; 8.00.,这个例子算是很有代表性的吧?.... 总网格就是:8.00-35.00....实际操作空间我建议使用: 10.00-22.00........ 2)怎么画网格:就是把你确定的操作区间画分成几十格..两个原则:a: ...510050等ETF每两格之间的间隔:2.5%,, 银行等权重股: 3%左右, 一般绩优股: 4%左右, 活跃的中小盘股: 5%左右... b: 网格的数目:最少不少与15格,最多不要超过30格. 20格左右是最好的....画网格的时候注意上面两原则的平衡.....还有: 均分的话:上下的百分比会有点不同,用最简单的办法就好.上面的间隔大点,下面小点就是....,就以上面的股票A为例吧:..区间10.00-22.00(他是一般绩优股): 画20格: 总空间是: 22-10=12.00,每格就是:12/20=0.6为了照顾上下的利润百分比: 10-14之间:每两格间隔:就用:0.5吧;14-18之间:0.6;18-22之间:就:0.7吧....最后:网格密度可能不是很整齐的3%,或者4%.,也可以这样:你想按标准的:4%.最后画了21格.....都没问题....越简单越好.......

风力发电系统的控制原理

风力发电系统的控制原理 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。 涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统

相关文档
最新文档