目前国内大规模硫化氢脱除工艺技术介绍

目前国内大规模硫化氢脱除工艺技术介绍
目前国内大规模硫化氢脱除工艺技术介绍

硫元素广泛存在于化石燃猜中,当石油进入精细分馏与深加工进程时,与氢构成硫化氢气体,该进程往往还伴生二氧化碳气体、氨气等。冶金工作的原猜中也存在硫元素,但由于其加工

进程多为高温工况,硫元素被氧化,首要生成二氧化硫酸性气。其它发作酸性气的工况多发

作在化工出产进程或化工产品运用进程。

石油化工工作的酸性气首要来自于天然气发掘、油田伴愤慨、煤化工、炼油化工工作。在动

力进行加工处理的进程中又会对后续的处理发作晦气影响(如催化剂中毒、管道腐蚀),因

此有必要操控工艺材料和产品中的硫含量。在脱硫的进程中硫元素以硫化氢的办法脱离工艺

系统外排进入锅炉燃烧,以二氧化硫的办法排入大气。我国烟气脱硫技术起步比较晚,脱硫

副产品运用率更低。所以,绝大部分脱硫副产品放置堆积,占用许多土地资源并构成二次污染。而选用脱硫剂循环再生运用、回收硫资源的脱硫技术,其回收产品为单质硫和硫酸等,

均可作为化工材料,相对于其他脱硫工艺而言,其回收产品有更好的市场前景。

我国炼厂酸性气的处理,首要是运用酸性气制备硫磺,现在比较常用的有两种工艺技术,一

种是二级克劳斯工艺结合尾气加氢恢复工艺,及溶剂吸收工艺技术。另一种工艺技术是美国Merichem公司气体技术产品公司开发的LO-CAT工艺技术。

克劳斯硫磺回收技术通过了一系列的展开和完善,现已构成了一个较为巨大的技术系统。开

始的克劳斯法是硫化氢和氧先进行混合,在必定的温度条件下催化氧化生成单质硫。原始克

劳斯法的首要特色是以空气为氧化剂,反应在一个固定床绝热反应器中进行。

1938年德王法本公司对原始克劳斯法进行改善,将硫化氢的氧化反应分为两个阶段进行:第

一阶段是1/3的硫化氢氧化为二氧化硫,反应热用蒸汽回收;第二阶段是剩下2/3的硫化氢和二氧化硫反应生成单质硫。这一技术改造处理了原始克劳斯法3个问题:一是克劳斯反应炉

首要是硫化氢氧化为二氧化硫的反应,不需要坚持低的反应温度;二是80%的反应热可以回收,回收办法为蒸汽;三是硫化氢的处理量比原始克劳斯法前进了50倍。这一技术被称为改善克劳斯法。在实践运用中,为了习气不同的酸性气组成和满足日益严厉的二氧化硫排放要求,改善克劳斯法构成了四种底子的工艺进程:直流法、分流法、硫循环法和直接氧化法。

改善克劳斯法被简称为克劳斯技术,或许被称为经典克劳斯法。克劳斯法作为现在运用最广

泛的硫磺回收技术,人们对此技术做了许多的研讨。在此基础上提出了富氧克劳斯技术、超

级克劳斯技术(SuperClaus99)、超优克劳斯技术(SuperClaus99.5)等。

迄今为止,处理硫化氢最首要的方法是醇胺法吸收工艺和克劳斯硫回收工艺,尤其在超级克

劳斯工艺开发今后,硫化氢的脱除率抵达了99%以上。现在,该法已在国内外得到广泛运用。

LO-CAT工艺选用多元络合的铁催化剂使硫化氢直接转化为元素硫,硫化氢的脱除率超越

99.99%。LO-CAT工艺可以合适酸性气量不坚定较大,以及硫化氢含量在0~100%的各种工况,材料习气条件广泛,习气酸性气不坚定改动的实践情况。且LO-CAT液体氧化恢复技术

处理方案不运用任何有毒的化学制品,并且不会发作任何有害的废气副产品,对环境安全的

催化剂可以在处理进程中不断再生。LO-CAT脱硫工艺工作的安稳性和经济效益首要取决于

脱硫液的安稳性以及化学品的消耗。根据铁离子和络合剂之间构成络合物的不同其安稳性也

不同特色,LO-CAT选择了不同的络合剂来配备络合铁溶液,避免硫化亚铁沉积的发作。

LO-CAT工艺技术特色是工艺流程简略,操作弹性大,占地面积小,初度出资费用低;工作

本钱低,化学溶剂消耗小,合适各种规划的脱硫设备。LO-CAT工艺国外首要致力于下降出

产本钱,减少设备标准以及改善硫磺的质量等。国内方面,LO-CAT工艺所运用的首要催化

剂和其他化学药剂现已彻底国产化,唐山绿源环保根据各个工况规划了相对应的催化剂,大

大下降了工作本钱,让许多民营企业可以用得起此技术以满足严峻的环保要求。

硫酸作为底子的化工材料之一,广泛用于各行各业。用酸性气中含有的硫化氢作为材料,可

以省去许多工艺进程,即节省了出资,又下降了本钱,还可以有用的回收运用硫资源。由于

小型炼厂酸性气气量较小,只能出产较低浓度的工业硫酸,不能出产价值更高的发烟硫酸,

经济效益不高,一起,由于硫酸的运送、储存均有必定难度,因此,炼油厂附近安稳的市场

需求是约束其展开的重要因素。

酸性气的归纳运用,可以选用出资较少的吸收法脱硫工艺技术,该技术以碱剂为吸收剂,将

硫化氢回收制备亚硫酸盐。该技术将酸性气进行燃烧生成二氧化硫,然后送入吸收塔进行化

学吸收生成亚硫酸盐溶液,再将溶液与碱性吸收剂反应,制备亚硫酸盐液体产品,或许生成

亚硫酸盐结晶物,经分离、枯燥等工序制备成亚硫酸盐固体产品。该工艺设备流程较短,反

应简略,操作弹性大,可适用于中小气量的酸性气工况,且气量不坚定对出产进程无影响,

可通过选择不同的工序出产固体或许液体产品,选择不同的吸收剂可出产不同类型的亚硫酸盐,且通过三段吸收完结尾气合格排放,完结净化尾气的意图。但实践出产进程中存在设备

腐蚀严峻,修理费用较高的情况。

酸性气的归纳运用,也可以选用出资较少的新式吸收法脱硫工艺技术,出产化工产品硫化碱。硫化碱广泛运用于选矿、农药、染料、制革出产以及有机组成等工业。其间,染料工业中硫

氢化钠用于组成有机中间体和制备硫化染料的助剂;制革工业用于生皮的脱毛及鞣革,运用

于制革工业惯例浸泡,能均匀懈怠皮料纤维组织,使皮料能缓慢胀大,具有显着的抗皱和前

进革得率作用,并可保证皮料蓝皮的色彩,保证皮料的感观和质量;化肥工业中硫氢化钠可

用于脱去活性炭脱硫剂中的单体硫;农药工业中是制造硫化铵及农药乙硫醇半成品的材料;

采矿工业中硫氢化钠许多用于铜矿选矿;人造纤维出产中用于亚硫酸染色等方面;硫氢化钠

还可用于废水处理。跟着环保法规的日益严苛,硫磺产品在市场上的用量下降,价格也日益

走低,硫磺价格约600元/吨,而硫化钠的市场价格为2600元/吨,硫氢化钠的市场价格更是

抵达3200元/吨。

运用酸性气出产低浓度溶液产品:低浓度有用避免结晶,但溶液产品没有运用价值,有必要

进行多级蒸腾浓缩,能耗很高,没有经济性。

硫化氢基础知识培训

硫化氢基本知识培训 一、硫化氢的来源 硫化氢是由硫和氢结合而成的气体.硫和氢都存在于动、植物的机体内,动植物由于高温高压作用或细菌分解可产生硫化氢,如腐臭的尸体、蛋类的臭味就是由少量硫化氢的存在产生的。在油气井钻井、试油、井下作业施工及水井施工、酸化、酸洗的作业井现场、天然气加工厂、石油炼制厂、硫回收厂及矿井中常出现硫化氢。另外在纸浆厂、下水道、工业实验室、炸药爆炸现场也有硫化氢的出现 二、浓度概念的说明 ppm浓度是指百万分比浓度 有体积比浓度和重量比浓度两种: 1ppm=1/1000000 1ppm=1.537mg硫化氢/立方米。 三、名词注释 阈限值:几乎所有工作人员长期暴露都不会产生不利影响的某种有毒物质在空气中的最大浓度。硫化氢的阈限值为15mg/m3(10ppm),二氧化硫的阈限值为5.4 mg/m3(2ppm)。 安全临界浓度:工作人员在露天安全工作8h可接受的硫化氢最高浓度〔参考《海洋石油作业硫化氢防护安全要求》〕(1989)中硫化氢的安全临界浓度为30mg/m3(20ppm)。 危险临界浓度:达到此浓度时,对生命和健康会产生不可逆转的或延迟性的影响〔参考《海洋石油作业硫化氢防护安全要求》〕(1989)中硫化氢的安全临界浓度为150 mg/m3(100ppm)。 四、硫化氢的特性 1、剧毒:其毒性可与氰化物相比,是一种致命的气体。致死浓度为500ppm(氢氰酸为300ppm, CO为1000ppm,二氧化硫为1000ppm)。 2、硫化氢是无颜色的气体,沸点大约为-60度。 3、硫化氢气体比空气重,它的密度为空气的1.176倍,经常在通风条件差的环

境、低凹处聚集,不宜飘散。 4、硫化氢在低浓度(0.13---4.6ppm)时可闻到臭鸡蛋气味,当浓度高于4.6ppm 时,新来的人员刚接触感到刺热,但嗅觉迅速钝化而感觉不出硫化氢的存在。 5、当硫化氢在空气中体积浓度达到 4.3---46%范围时,形成易爆的混合气体,遇火发生强烈爆炸。 6、硫化氢是可燃气体,自燃温度是250度(甲烷为595度),燃烧时显现出兰色火焰,放出有毒气体和二氧化硫,二氧化硫危害人的眼睛和肺部。 爆炸极限4.3%----45.5%。引起火灾适用的灭火剂是醇类泡沫及二氧化碳。 7、硫化氢易熔于水、乙醇和汽油、原油和煤油等油类,在20度,1个大气压下,一体积的水可溶解2.9体积的硫化氢,温度升高则溶解度下降。 8、硫化氢显酸性,能与许多金属发生化学反应,水溶液对钢材具有强烈的腐蚀作用,以致造成泄漏。如果溶液中同时含有二氧化碳或氧,其腐蚀速度会迅速增加。液体硫化氢还对某些塑料、橡胶和涂层有侵蚀作用。 四、硫化氢对人体的危害 1、0.13ppm---4.6ppm:可嗅到臭蛋气味,对人体不产生危害。 2、4.6ppm以上:刚接触到有刺热感,但会迅速消失。 3、10ppm(20ppm):允许8小时暴露值,即安全临界浓度值(TLV),超过安全临界浓度必须戴上防毒面具。各国采用的安全临界浓度值不尽相同,美国职业与安全署(OSHA)标准为10ppm。我国现采用的标准允许空气中最高接触浓度为10ppm 4、50ppm:只允许直接接触10分钟。 5、100ppm:刺激咽喉,引起咳嗽,在3---10分钟内就会损伤嗅觉神经并损坏人的眼睛,使人感觉到轻微头痛、恶心及脉搏加快。长时间可能使人的眼睛和喉咙受到破坏。接触4小时以上可能导致死亡。 6、200ppm:立即破坏嗅觉系统,眼睛、咽喉有灼伤感。长时间接触会使眼睛和喉咙遭到灼伤并可能导致死亡。 7、500ppm:失去理智和平衡知觉,呼吸困难,2---15分钟内呼吸停止,如果不及时采取抢救措施,可能导致中毒死亡。 8、700ppm:很快失去知觉,停止呼吸,如果不及时采取抢救措施,可很快导致中毒死亡。

延迟焦化工艺新进展

延迟焦化工艺新进展 2005.01.28 09:05:59 中国石油信息网 放大字体缩小字体打印本页 延迟焦化工艺发展重点是优化操作条件,在增加产能的同时追求最大的液体产率、减少生焦率和尽可能处理劣质原料。 福斯特-惠勒公司、大陆石油公司(现大陆菲利浦斯公司)等有关延迟焦化工艺和设备的发展大大改进了延迟焦化技术。使循环时间已由24hr缩短到18hr以内,从而扩大了现有焦炭塔的处理能力。焦炭塔清焦的自动化作业提高了安全性,并有助于缩短循环时间。在低压(0.103MPa)下操作的无重油外部循环的新设计提高了液收,最大量减少了焦炭产率。循环馏出油代替循环重油,减少了焦炭产率,延长了停工维修之间的运转时间。新的双燃烧器加热炉设计和改进的炉管材质提高了焦化加热炉温度。现在标准的焦炭塔直径为8.2~8.5m,9.1m直径的焦炭塔也已投入应用。延迟焦化的总液收达到57%以上(占减压渣油进料)。 美国Valero炼制公司得克萨斯炼厂投资2.75亿美元,于2003年底投产的248万t/年延迟焦化装置,采用了福斯特-惠勒公司SYDEC工艺,该厂主要加工墨西哥重质、含硫的玛亚原油,延迟焦化装置加工玛亚减压渣油和中东原油沥青混合料,使用该劣质原料,使原料费用减小了1美元/bbl以上,使投资偿还率提高了3%。 延迟焦化装置可灵活加工各种原料,包括直馏、减粘、加氢裂化渣油、裂解焦油和循环油、焦油砂、FCC油浆、炼厂污油(泥)等60余种原料。处理原料油的CCR为3.8%~45%(m),API重度2 O~20O。委内瑞拉利用延迟焦化和加氢处理工艺对奥利诺柯原油进行改质,生产API 16 O~32 O、含硫<0.1%(m)的合成油。 较老的延迟焦化装置循环周期为12~14hr,目前新设计的循环周期一般为18~20hr,鲁姆斯公司的设计操作周期为<18hr。

硫化氢废气的处理

硫化氢废气处理 1.引言 随着人类的环境保护的逐渐增强,人类越来越关心周围生存环境的质量。工业排放的废气中所含的H2S气体,不仅能够引起管道和催化剂的中毒、致使工艺条件恶化、设备的腐蚀,而且会造成相当严重的环境污染,甚至危害人类生存。因此,必须对排放的H2S气体进行治理。硫化氢气体是一种日益引起全球重视的大气污染公害,它是典型的恶臭类气体,具有污染范围很广、影响很大的特点。而硫磺在能源、化工、医药、农业等方面都是很宝贵的化工行业的原料。因此,合理利用硫化氢,使硫化氢气体变废为宝,在现实生产中具有非常重要的现实意义。 2.国内外硫化氢废气处理的方法 近年来,关于处理H2S气体技术研究越来越活跃。根据去除硫化氢的方法的不同特点,可把净化方法分为: 吸收法:物理溶剂吸收法、化学溶剂吸收法; 分解法:热分解法、微波技术分解; 吸附法:可再生的吸附剂法、不可再生的吸附剂吸附法; 氧化法:干法氧化法、湿法氧化法;生物法等。 按照硫化氢去除方法和工艺的不同,可以分为吸收法和吸附法。吸收法又可以分为:物理吸收和化学吸收。 2.1硫化氢的处理方法 常规的处理硫化氢的方法的方法有吸收法和吸附法。 2.1.1吸收法 吸收法包括:物理吸收和化学吸收法。 物理吸收: 物理吸收法通常情况下是采用有机溶剂作为硫化氢的吸收剂,有机溶剂有两大优点: (1)可以有选择性地吸收硫化氢; (2)加压吸收后只需降压即可解吸。 物理吸收法流程简单,通常情况下只需吸收塔,在常压闪蒸罐和循环泵,不需外加蒸汽和外加其他来源的热源。 物理吸收大的溶剂必须具备的特点: (1)的溶解度要比在水中溶解度高数倍,而对烃类、氢气溶解度比它们在水中的溶解度低;该溶剂的蒸汽压需要尽量的低,以免其溶剂的蒸发而造成溶剂的损失; (2)该溶剂须具有很低的粘度和吸湿性; 该溶剂对金属基本不发生腐蚀;溶剂的价格应当是相对较低的。 目前提出的有机溶剂物理吸收H2S的工艺有很多,也逐步走向成熟,有很多工艺已有工业化装置在运行,应用的吸收剂有磷酸三定酷(埃斯塔索尔法)、N-甲基-2-砒咯烷酮(普里索尔法)、碳酸丙烯酷(福洛尔法)、甲醇(勒克梯索尔法)等。

目前国内大规模硫化氢脱除工艺技术介绍

硫元素广泛存在于化石燃猜中,当石油进入精细分馏与深加工进程时,与氢构成硫化氢气体,该进程往往还伴生二氧化碳气体、氨气等。冶金工作的原猜中也存在硫元素,但由于其加工 进程多为高温工况,硫元素被氧化,首要生成二氧化硫酸性气。其它发作酸性气的工况多发 作在化工出产进程或化工产品运用进程。 石油化工工作的酸性气首要来自于天然气发掘、油田伴愤慨、煤化工、炼油化工工作。在动 力进行加工处理的进程中又会对后续的处理发作晦气影响(如催化剂中毒、管道腐蚀),因 此有必要操控工艺材料和产品中的硫含量。在脱硫的进程中硫元素以硫化氢的办法脱离工艺 系统外排进入锅炉燃烧,以二氧化硫的办法排入大气。我国烟气脱硫技术起步比较晚,脱硫 副产品运用率更低。所以,绝大部分脱硫副产品放置堆积,占用许多土地资源并构成二次污染。而选用脱硫剂循环再生运用、回收硫资源的脱硫技术,其回收产品为单质硫和硫酸等, 均可作为化工材料,相对于其他脱硫工艺而言,其回收产品有更好的市场前景。 我国炼厂酸性气的处理,首要是运用酸性气制备硫磺,现在比较常用的有两种工艺技术,一 种是二级克劳斯工艺结合尾气加氢恢复工艺,及溶剂吸收工艺技术。另一种工艺技术是美国Merichem公司气体技术产品公司开发的LO-CAT工艺技术。 克劳斯硫磺回收技术通过了一系列的展开和完善,现已构成了一个较为巨大的技术系统。开 始的克劳斯法是硫化氢和氧先进行混合,在必定的温度条件下催化氧化生成单质硫。原始克 劳斯法的首要特色是以空气为氧化剂,反应在一个固定床绝热反应器中进行。 1938年德王法本公司对原始克劳斯法进行改善,将硫化氢的氧化反应分为两个阶段进行:第 一阶段是1/3的硫化氢氧化为二氧化硫,反应热用蒸汽回收;第二阶段是剩下2/3的硫化氢和二氧化硫反应生成单质硫。这一技术改造处理了原始克劳斯法3个问题:一是克劳斯反应炉 首要是硫化氢氧化为二氧化硫的反应,不需要坚持低的反应温度;二是80%的反应热可以回收,回收办法为蒸汽;三是硫化氢的处理量比原始克劳斯法前进了50倍。这一技术被称为改善克劳斯法。在实践运用中,为了习气不同的酸性气组成和满足日益严厉的二氧化硫排放要求,改善克劳斯法构成了四种底子的工艺进程:直流法、分流法、硫循环法和直接氧化法。 改善克劳斯法被简称为克劳斯技术,或许被称为经典克劳斯法。克劳斯法作为现在运用最广 泛的硫磺回收技术,人们对此技术做了许多的研讨。在此基础上提出了富氧克劳斯技术、超 级克劳斯技术(SuperClaus99)、超优克劳斯技术(SuperClaus99.5)等。 迄今为止,处理硫化氢最首要的方法是醇胺法吸收工艺和克劳斯硫回收工艺,尤其在超级克 劳斯工艺开发今后,硫化氢的脱除率抵达了99%以上。现在,该法已在国内外得到广泛运用。 LO-CAT工艺选用多元络合的铁催化剂使硫化氢直接转化为元素硫,硫化氢的脱除率超越 99.99%。LO-CAT工艺可以合适酸性气量不坚定较大,以及硫化氢含量在0~100%的各种工况,材料习气条件广泛,习气酸性气不坚定改动的实践情况。且LO-CAT液体氧化恢复技术 处理方案不运用任何有毒的化学制品,并且不会发作任何有害的废气副产品,对环境安全的 催化剂可以在处理进程中不断再生。LO-CAT脱硫工艺工作的安稳性和经济效益首要取决于 脱硫液的安稳性以及化学品的消耗。根据铁离子和络合剂之间构成络合物的不同其安稳性也 不同特色,LO-CAT选择了不同的络合剂来配备络合铁溶液,避免硫化亚铁沉积的发作。

H2S脱除技术方案(三种)

含硫化氢废气脱除工艺 技术方案 洛阳市天誉环保工程有限公司 2012年9月

目录 第一章工程概况 (1) 第二章设计方案 (1) 第三章工艺介绍 (2) 方案1:氨吸收氧化及副产品回收工艺 (2) 1.工艺原理 (2) 2工艺流程 (2) 3 装置组成 (5) 4 投资预算 (5) 5 经济运行效益 (7) 方案2:焚烧及余热利用工艺 (8) 1工艺原理 (8) 2 装置组成 (9) 3 投资预算 (9) 4 运行费用 (10) 方案3:非水溶液中一步法氧化及硫回收工艺 (11) 1 工艺原理 (11) 2 工艺流程 (11) 第四章工艺对比 (14) 1 氨吸收氧化及副产品回收工艺 (14) 2 原料气焚烧及余热利用工艺 (15) 3 非水溶液中一步法硫回收新工艺 (15)

第一章工程概况 根据甲方提供资料,待处理气体(下称原料气)含H2S 约40%、CO2 约60%,以及其他少量的CO、H2、CH4、N2、CH3OH。H2S为酸性、恶臭气体,对环境的污染影响极大,而CO2 的环境危害则相对较小。为了保护环境并改善生产条件,使排放气体达到环保排放标准,需设计配套装置进行净化处理。 要求装置建设完成后,排放的气体指标能够符合国家和地方的环境保护政策及污染物排放标准,无新增“三废”产生,并进行硫回收,以利于企业发展和环境改善。 第二章设计方案 原料气参数:温度:35.55℃,压力:230kPa(绝),流量:175.72kmol/h。组成(摩尔分率):CO:0.0094,H2:0.0051,CO2:61.4232,CH4:0.0090,N2:1.9495,H2S:36.5197,CH3OH:0.0841。 根据气体成分并结合我公司技术资源,设计三套技术方案: 1.氨吸收氧化及副产品回收工艺; 2.原料气焚烧及余热利用工艺; 3.非水溶液中一步法氧化及硫回收工艺。

硫化氢气体处理方法

硫化氢气体处理方法(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

硫化氢气体处理方法 一.国内外硫化氢废气处理的方法总结 这些年,关于H2S气体的净化方法研讨越来越活跃。依据各自的特点,可把硫化氢废气的净化方法分为: 吸收法,物理溶剂吸收法、化学溶剂吸收法; 吸附法,可再生的吸附法、不可再生的吸附法; 氧化法,干法氧化法、湿法氧化法;

生物法等。 二.吸收法 吸收法包含:物理吸收和化学吸收法。 2.1物理吸收法 物理吸收法通常情况下是选用有机溶剂作为硫化氢的吸收剂,有机溶剂有两大优点: (1)能够有选择性地吸收硫化氢(2)加压吸收后只需降压即可解吸。 物理吸收法流程简单,通常情况下只需吸收塔,常压闪蒸罐和循环泵,不需外加蒸汽和外加其他热源。 物理吸收法对溶剂的要求: (1)H2S在溶剂中的的溶解度要比在水中溶解度高数倍,而烃类、氢气在溶剂中的溶解度比它们在水中的溶解度低(2)该溶剂的蒸汽压要求尽量的低,防止其溶剂的挥发而造成溶剂的丢失(3)该溶剂须具有很低的粘度和吸湿性(4)该溶剂对金属没有腐蚀(5)溶剂的成本相对较低。 目前有机溶剂物理吸收H2S的技术有很多,运用的吸收剂有磷酸三定酷(埃斯塔索尔法)、N-甲基-2-砒咯烷酮(普里索尔法)、碳酸丙烯酷(福洛尔法)、甲醇(勒克梯索尔法)等。 2.2化学吸收法

化学吸收发法是将被吸收的气体导入吸收剂中使被吸收的气体中的一个或多个组分在吸收剂中发生化学反应的吸收进程。 硫化氢溶于水后,水溶液呈酸性,并且考虑到吸收液的再生问题,因此可以选用具有缓冲效果的强碱弱酸盐溶液处理硫化氢废气,如酚盐、磷酸盐、硼酸盐、氨基酸盐等,这些溶液的PH值大多在9~11之间。 除此之外,还可选用一些弱碱,如二甘醇胺、乙醇胺类、氨、二甘油胺、二乙丙醇胺等水溶液作吸收剂来吸收含H2S气体的废气。 化学吸收的溶剂通常是在常压加热下再生,化学溶剂对H2S的吸收率比物理溶剂高。 三.吸附法 吸附法即是运用某些多孔性物质具有的吸附功能,对H2S气体进行净化,该办法常用于处理H2S气体浓度较低的排放气。 吸附设备通常选用固定床吸附器,为防止吸附颗粒被粉尘等阻塞,在气体流入吸附床层前,应先经过预净化设备。 目前常用的吸附剂分为:可再生吸附剂与不可再生吸附剂。 3.1可再生吸附剂 自1950年以来,工程上选用的吸附剂最早是水合氧化铁。常温下的氧化铁脱硫剂的脱硫进程反应方程式为: 脱硫:Fe2O3·H2O+3H2S=Fe2S3+ 3H2O

硫化氢基本知识测试题答案

1、硫化氢特性 硫化氢是一种强烈的神经毒物,虽有恶臭,但极易使人嗅觉中毒而毫无觉察,常发生在沼气池、地窖或疏通下水道、阴沟、隧道、矿井以及在某些化工生产过程中。生产环境空气中,硫化氢最高允许浓度为10mg/m3,人若暴露在超过1000mg/m3的硫化氢浓度下,吸入极大量的硫化氢,可发生“电击样”中毒,在数秒内突然倒下,呼吸停止,来不及抢救而死亡。 2、硫化氢中毒的表现 轻度中毒,表现为畏光、流泪、眼刺痛、异物感、流涕、鼻及咽喉灼热感等症状,并有头昏、头痛、乏力,检查可见眼结膜充血等;中度中毒为立即出现头昏、头痛、乏力、恶心、呕吐、走路不稳,可有短暂意识障碍等;重度中毒表现为头晕、心悸、呼吸困难、行动迟钝、继出现烦躁、意识模糊、呕吐、腹泻、腹痛和抽搐,迅速进入昏迷状态,最后可因呼吸麻痹而死亡。 3.硫化氢侵入人体的主要途径:吸入,经人体的黏膜吸收比皮肤吸收造成的中毒更快 4.引起硫化氢中毒事故最主要的原因有以下方面: 1)违章及误操作:①违章指挥,②误操作,③密闭系统置换不合格,④置换完的设备出入口法兰未加盲板,造成串气,⑤进入密闭空间未进行氧含量分析。 2)对硫化氢认识不足,安全意识差:①对物料中的硫化氢及其危害没有预见性,②作业时不佩戴空气呼吸器,③防护器材采用不当,④作业时无人监护,⑤作业现场未设置警示标识,⑥安全教育不到位,⑦现场人员缺乏自救互救知识。 3)废水、废渣无组织排放。 4)设计或工艺不合理:①通风不良或通风设施不完善,②工艺流程缺陷,含硫化氢气体倒串。 5)设备、管道故障:①工艺设备阀门、密封泄漏,②报警器故障。 5.硫化氢中毒的处置原则 (1)尽快使中毒者脱离毒物的危害 (2)切断毒源 (3)划定危险区,疏散人员 6.防毒器材的使用原则 硫化氢含量<10000ppm(即<1%体积浓度)时可佩戴有4号滤毒罐的防毒面具(滤毒罐必须有效,面罩及导气管密封性良好);硫化氢浓度≥10000ppm时必须戴隔离式防毒面具。作业时应有两人同时到现场,并站在上风向,一人作业,一人监护。 7.急救原则——立即、就地、先救命后治伤、先救重后救轻 8、如何判断心脏骤停 三大主要指标 1. 意识丧失,深昏迷,呼之不应; 2. 大动脉搏动摸不到; 3. 叹气样呼吸或呼吸停止。

延迟焦化工艺流程

延迟焦化 1. 延迟焦化工艺流程: 本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。原料油与来自焦炭塔油气中被凝的循环油一起流入塔底,在380~390℃温度下,用辐射泵抽出打入焦化炉辐射段,快速升温至495~500℃,经四通阀进入焦碳塔底部。 循环油和减压渣油中蜡油以上馏分在焦碳塔内由于高温和长时间停留而发生裂解、缩合等一系列的焦化反应,反应的高温油气自塔顶流出进入分馏塔下部与原料油直接换热后,冷凝出循环油馏份;其余大量油气上升经五层分馏洗涤板,在控制蜡油集油箱下蒸发段温度的条件下,上升进入集油箱以上分馏段,进行分馏。从下往上分馏出蜡油、柴油、石脑油(顶油)和富气。 分馏塔蜡油集油箱的蜡油在343℃温度下,自流至蜡油汽提塔,经过热蒸汽汽提后蜡油自蜡油泵抽出,去吸收稳定为稳定塔重沸器提供热源后降温至258℃左右,再为解吸塔重沸器提供热源后降温至242℃左右,进入蜡油原料油换热器与原料油换热,蜡油温度降至210℃,后分成三部分:一部分分两路作为蜡油回流返回分馏塔,一路作为下回流控制分馏塔蒸发段温度和循环比,一路作为上回流取中段热;一部分回焦化炉对流段入口以平衡大循环比条件下的对流段热负荷及对流出口温度;另一部分进水箱式蜡油冷却器降温至90℃,一路作为急冷油控制焦炭塔油气线温度,少量蜡油作为产品出装置。 柴油自分馏塔由柴油泵抽出,仅柴油原料油换热器、柴油富吸收油换热器后一部分返回分馏塔作柴油回流,另一部分去柴油空冷器冷却至55℃后,再去柴油水冷器冷却至40℃后分两路:一路出装置;另一路去吸收稳定单元的再吸收塔作吸收剂。由吸收稳定单元返回的富吸收油经柴油富吸收油换热器换热后也返回分馏塔。 分馏塔顶油气经分馏塔顶空冷器,分馏塔顶水冷器冷却到40℃,流入分馏塔顶气液分离罐,焦化石脑油由石脑油泵抽出送往吸收稳定单元。焦化富气经压缩机入口分液罐分液后,进入富气压缩机。 焦炭塔吹汽、冷焦产生的大量蒸汽及少量油气,进入接触冷却塔下部,塔顶部打入冷却后的重油,洗涤下来自焦炭塔顶大量油气中的中的重质油,进入接触冷却塔底泵抽出后经接触冷却塔底油及甩油水冷器冷却后送往接触冷却塔顶或送出装置。塔顶流出的大量水蒸气经接触冷却塔顶空冷器、接触冷却塔顶水冷器冷却到40℃进入接触冷却塔顶气液分离罐,分出的轻污油由污油泵送出装置,污水由污水泵送至焦池,不凝气排入火炬烧掉。甩油经甩油罐及甩油冷却器冷却后出装置。 2. 吸收稳定工艺流程: 从焦化来的富气经富气压缩机升压至1.4Mpa,然后经焦化富气空冷器冷却,冷却后与来自解吸塔的轻组份一起进入富气水冷器,冷却到40℃后进入气液分离罐,分离出的富气进入吸收塔;从石脑油(顶油)泵来的粗石脑油进入吸收塔上段作吸收剂。从稳定塔来的稳定石脑油打入塔顶部与塔底气体逆流接触,富气中的C3、C4组分大部分被吸收下来。吸收塔设中段回流,从吸收塔顶出来带少量吸收剂的贫气自压进入再吸收塔底部,再吸收塔

延迟焦化工艺流程教学提纲

延迟焦化工艺流程

炼油厂的炼油工艺流程介绍 上传时间:2009-07-31 12:03 点 击:110 正文: 延迟焦化、加氢精制、制氢工艺流程 工艺流程简述 前言:根据济南炼油厂、海化集团等公司的延迟焦化装置、加氢装置、制氢装置的工艺流程整理而成。并参考洛阳设计院、北京设计院、华西所提供材料。 一、100万吨/年延迟焦化装置 本装置原料为减压渣油,温度为150℃,由常减压装置直接送入焦化装置内与柴油换热,换热后温度为170℃,进入原料油缓冲罐(D-101)。原料油缓冲罐内的减压渣油由原料油泵抽出,与热蜡油经过两次换热再进加热炉对流段(Ⅱ)加热后分两股入焦化分馏塔(C-102)下段的五层人字挡板的上部和下部,在此与焦炭塔(C-101/1,2)顶来的油气接触,进行传热和传质。原料油中蜡油以上馏分与来自焦炭塔顶油气中被冷凝的馏分(称循环油)一起流入塔底,在384℃温度下,用加热炉幅射进料泵抽出打入加热炉幅射段,在这里快速升温至500℃,然后通过四通阀入焦炭塔底。 循环油和原料油中蜡油以上馏分在焦炭塔内由于高温和长停留时间,产生裂解和缩合等一系列复杂反应,最后生成油气(包括富气、汽油、柴油和蜡油),由焦炭塔进入分馏塔,而焦炭则结聚在焦炭塔内。 从焦炭塔顶逸出的油气和水蒸气混合物进入分馏塔,在塔内与加热炉对流段来的原料换热,冷凝出循环油馏分,其余大量油气从换热段上升进入蜡油集油箱以上的分馏段,在此进行传热和传质过程,分馏出富气、汽油、柴油和蜡油。焦化分馏塔油集油箱的蜡油经换热至90℃出装置进蜡油罐;另外引出两分路90℃冷蜡油作焦炭塔顶急冷油和装置封油用。 中段回流经中段回流蒸汽发生器发生蒸汽。 分馏塔顶回流从分馏塔抽出,经冷却后返回。 柴油从分馏塔进入汽提塔,经蒸汽汽提,柴油由汽油塔下部抽出,经换热冷却至70℃后分成两路,一路至加氢装置;另一路冷却至40℃进入柴油吸收塔作吸收剂来自压缩富气分液罐的富气进入柴油吸收塔下部,经吸收后,塔顶干气出装置进入全厂燃料气管网;塔底吸收油利用塔的压力(0.4MPa 表)自压入分馏塔作回流。 分馏塔顶油气经分馏塔顶空冷器和分馏塔顶油气后冷器冷却后进入分馏塔顶油气分离罐分离,分离出的汽油由汽油泵抽出分两路,一路去加氢装置,另一路返回塔顶作回流(不常用)。油气分离罐顶的富气经富气压缩机加压后经压缩富气空冷器、压缩富气后冷器冷却后进入压缩富气分液罐,冷凝液凝缩油至加氢装置;富气进入柴油吸收塔下部(一些装置的实际生产证明,经柴油吸收后的干气带残液比较严重,约占干气的20%,我公司设计时可以将油气分离罐顶的富气经富气压缩机加压后并入芳构化装置的吸收稳定系统或催化装置的吸收稳定系统,以防止干气带残液。)。此外,为了防止分馏塔底部结焦,分馏塔底设分馏塔底循环泵。 切焦采用有井架双钻具方式,切焦水用高压水泵抽高位水箱的水,打到焦炭塔面,进行水力除焦。焦炭和水一同流入贮焦池,经分离后切焦水流入沉淀池重新利用。 焦炭塔吹汽时,油气首先进入油气闪蒸罐,罐底污油经污油泵送出装置;罐顶油气进入水箱冷却器,冷却后进入吹汽放空油水分离罐,罐底污油经污油泵送出,含硫油污水经污水泵送至装置外污水处理场。不凝气进入放空油气脱水罐,然后进入瓦斯系统去火炬烧掉。

焦化厂脱除硫化氢工艺方案

焦化厂脱除硫化氢工艺方案 一、焦化厂硫化氢的来源及危害 目前,焦化项目主要分为清洁型热回收型焦化项目和化产回收型焦化项目两大部分。化产回收焦化项目是煤在蒸馏过程中,对产生的荒煤气进行回收。热回收型焦炉是利用蒸馏过程中产生的高温热废气用于发电或者供热使用。化产回收型焦炉相对于热回收型焦炉工艺流程相对比较长,污染影响相对大。 目前焦化项目熄焦方式主要分为湿熄焦和干熄焦两种。湿熄焦过程主要产生尘、SO2和BaP以及BSO、H2S、CO、HCN和酚等污染物,产生的烟气量与处理能力有关。湿熄焦过程目前焦化工程多采用折流板除尘器,除尘效率为60%。干熄焦[干法熄焦简称干熄焦(CDQ)],是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。]干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。作为相对于湿熄焦工艺比较清洁的方式,目前从环保上推行比较多,在实际投产建设中对于小型和中型焦化厂由于前期投资比较大,目前运行实例较少, 在熄焦过程中,由于煤种含有一定量的硫分,在高温状态下,不管是湿熄焦还是干熄焦工艺均会产生H2S等有毒有害气体。 二、脱除硫化氢工艺简述 > 熄焦工艺尾气中含有大量H2S (出口浓度约4000mg/m3),本工艺采用Na2CO3为吸收剂,在MTS(磺化钛氰钴)做催化剂的情况下吸收H2S。具体工艺流程如下: 熄焦工艺尾气经引风机进吸收塔,与吸收剂逆流接触,循环进入反应槽,在反应槽中加入催化剂MTS促进吸收反应。反应生成的多组分盐溶液由离心泵送入再生塔。在再生塔底部鼓入氧气,促进硫单质的生成。硫单质由鼓泡效应漂浮在再生塔顶部,通过抽真空进入熔硫釜。再生液通过溢流进入吸收塔循环吸收反应。其主要反应如下: Na2CO3+H2S= NaHS+NaHCO3 NaHCO3+H2S=NaHS+H2O+CO2↑

延迟焦化工艺介绍

随着原油的变重及劣质化,以及市场对轻质油品需求结构的变化,石油深度加工已发展成为最重要的二次加工过程。石油深度加工是通过改变氢碳比(H/C)来提高轻质油收率,其基本途径不外乎是采取加氢或脱碳的办法。 其中脱碳方法主要有催化裂化、焦化、减粘裂化等,而加氢则是加氢转化过程。按渣油加工工艺大致可分为5种类型:(1)分离工艺,如减压渣油溶剂脱沥青;(2)脱碳工艺,如热裂化、减粘裂化、延迟焦化、灵活焦化、流化焦化、减粘裂化与热裂化联合工艺;(3)催化转化工艺,如渣油催化裂化;(4)加氢工艺,如渣油加氢裂化,加氢处理;(5)脱碳与加氢联合工艺,如热裂化一加氢裂化联合工艺。 在上述加工工艺中,渣油的加氢裂化和延迟焦化是渣油转化的最主要方法。 焦化过程按其焦化方法可分为釜式焦化、平炉焦化、延迟焦化、接触焦化和流化焦化等。釜式及平炉焦化属于间歇操作,已被淘汰。接触焦化与流化焦化由于设备结构复杂、维修费用高,工业上没有得到发展。流化焦化在西欧一些国家采用较多,仅次于延迟焦化。延迟焦化应用范围最为广泛。 世界上第一套延迟焦化工艺技术于1982年开发成功,1930年投入工业化生产。随着延迟焦化工艺技术的不断改进和完善,在世界各国得到了迅速发展。我国于1958年在石油二厂建立了10万吨/年焦化工业试验装置,并于1963年底在石油二厂建成第一套30万吨/年延迟焦化工业装置。1998年中国石油化工集团公司的延迟焦化能力达到1040×104t/a,占一次加工能力(12954×104 t/a)的8.0%,延迟焦化已成为重质油轻质化的重要手段之一。 延迟焦化与热裂化相似,只是在短时间内加热到焦化反应所需温度,控制原料在炉管中基本上不发生裂化反应,而延缓到专设的焦炭塔中进行裂化反应,“延迟焦化”也正是因此得名。 延迟焦化装置主要由8个部分组成:(1)焦化部分,主要设备是加热炉和焦炭塔。有一炉两塔、两炉四塔,也有与其它装置直接联合的。(2)分馏部分,主要设备是分馏塔。(3)焦化气体回收和脱硫,主要设备是吸收解吸塔,稳定塔,再吸收塔等。(4)水力除焦部分。(5)焦炭的脱水和储运。(6)吹气放空系统。(7)蒸汽发生部分。(8)焦炭焙烧部分。国内选定炉出口温度为495~500℃,焦炭塔顶压力为0.15~0.2 Mpa。

硫化氢基础知识

硫化氢(H2S)是硫的氢化物中最简单的一种。其分子的几何形状和水分子相似,为弯曲形。因此它是一个极性分子。硫化氢由于H-S键能较弱所以300℃左右硫化氢分解。常温时硫化氢是一种无色有臭鸡蛋气味的剧毒气体,应在通风处进行使用必须采取防护措施。 目录 结构 理化性质 主要用途: 对环境的影响 健康危害 毒理学资料及环境行为 现场应急监测方法 实验室监测方法 环境标准 应急处理处置方法 泄漏应急处理 防护措施 急救措施 制取方法 原理 用品 操作 备注 化学性质 不稳定性 酸性 还原性 可燃性 沉淀性 中毒临床表现 中枢神经系统损害最为常见 呼吸系统损害 心肌损害 急性硫化氢中毒诊断主要依据 救援人员在发生硫化氢中毒 煤矿瓦斯中硫化氢的成因危害与防治 H2S的成因 煤矿瓦斯中H2S异常的原因 H2S的危害与防治 硫化氢安全防护七大注意事项 相对浓度危险度 危险区域 中毒症状 中毒急救 预防措施

过滤式防毒面具的使用要求 空气呼吸器的使用要求 毒理学简介 结构 理化性质 主要用途: 对环境的影响 健康危害 毒理学资料及环境行为 现场应急监测方法 实验室监测方法 环境标准 应急处理处置方法 泄漏应急处理 防护措施 急救措施 制取方法 原理 用品 操作 备注 化学性质 不稳定性 酸性 还原性 可燃性 沉淀性 中毒临床表现 中枢神经系统损害最为常见 呼吸系统损害 心肌损害 急性硫化氢中毒诊断主要依据 救援人员在发生硫化氢中毒 煤矿瓦斯中硫化氢的成因危害与防治H2S的成因 煤矿瓦斯中H2S异常的原因 H2S的危害与防治 硫化氢安全防护七大注意事项 相对浓度危险度 危险区域 中毒症状 中毒急救 预防措施

石油焦用途及延迟焦化装置工艺路线的选择(1)

石油焦用途及延迟焦化装置工艺路线的选择(1) 1石油焦用途 石油焦可以用于不同工业,用于电厂和水泥厂作燃料的石油焦,需要高的热值及良好的研磨性;用于铝厂和钢铁厂或碳素厂作为原料的石油焦,无论是作为阳极糊和人造石墨电极的原料或是作为生产碳化物的原料均需要控制其含硫量和挥发分,对于制作电极原料的石油焦还应对金属含量加以控制。 1.1石油焦用作电厂CFB锅炉的燃料 为配合进口含硫原油加工及油品质量升级,需要在沿海及沿江企业新增或扩建一批延迟焦化装置,预计石油焦的产量可达3600kt。要消化这些含硫高、价格低廉的石油焦,可以采用先进的循环流化床技术,配套建设一批以石油焦为原料的CFB锅炉,为炼厂提供低成本的蒸汽、电、氢气。这是一举三得的事,既消化了价格低廉的高硫石油焦,又满足了企业新增项目的用汽、用电需求,还可以替代部分现有烧油锅炉,节约出宝贵的重油资源。武汉石油化工厂2000年新建一台75t/h烧石油焦的循环床锅炉,能在燃烧过程中用石灰石作床料实现炉内脱硫,同时降低NOx的排放量,锅炉燃烧效率可达95%~99%。镇海石化大量加工国外含硫原油,每年生产几十万吨高硫石油焦,由于石油焦中硫含量高,处理比较困难,利用价值不大。 1999年,采用CFB锅炉技术将高含硫石油焦用于发电,每度

电成本仅为0.18元,而渣油发电成本高达0.58元,2000年消化石 油焦240kt。上海石化正进行热电总厂的扩建,采用CFB锅炉,每 年可以处理280kt高含硫石油焦。 另外,工业硅生产也用高硫焦,消耗量为300kg/t工业硅。 1.2石油焦用作冶炼厂阳极糊和石墨电极的原料含硫量低的石油焦,可以用于冶炼厂作为制作电极的原料。碳素厂使用石油焦,生产供铝厂使用的阳极糊,生产供钢铁厂使用的 石墨电极。 石油焦的硫含量影响到焦的使用和用焦制成炭素制品的质量。特别在制造石墨电极中硫含量是一项较为重要的指标,硫含量过高会直接影响到石墨电极的质量,也会影响到炼钢的质量。在500℃以上的高温下,石墨电极内的硫会被分解出来,过多的硫使电极晶体膨胀,致使电极收缩并产生裂纹,严重的可使电极报废。在生产石墨电极中,石油焦的硫含量会影响电耗量,用含硫为1.0%的石油焦生产电极时所用耗电量要比用含硫为0.5%的石油焦每吨多耗电9%左右。石油焦在作为阳极糊的原料时,其含硫量对耗电量也有明显的影响。我国延迟石油焦标准 SH0527-92见表1。 表1延迟石油焦标准SH0527-92

延迟焦化工艺流程

炼油厂的炼油工艺流程介绍 上传时间:2009-07-31 12:03 点 击:110 正文:

二、60万吨/年加氢装置 1、反应部分 焦化汽油、焦化柴油从延迟焦化装置直接进料,为控制加氢反应平稳,应严格控制其进料比例。两种原料进装置后经原料混合罐(D-201)混合,再经原料油泵(P-201/1、2)、过滤器(SR-201/1、2)、原料油脱水罐(D-202)进入原料油缓冲罐(D-203)。原料油过滤和脱水的目的是为了脱除堵塞反应器上部床层的固体颗粒和影响催化剂强度的水分。D-201、D-203用氮气气封保护。D-203中的原料经反应进料泵(P-202/1、2)升压至9.6MPa(A),经流量控制,与来自新氢压缩机(K-201/1、2)和循环氢压缩机(K-202/1、2)的混合氢混合,首先经混氢原料(I)/反应产物换热器(E-204/1、2)换热,再经由混氢原料(Ⅱ)/反应产物换热器(E-201)与反应产物换热至199℃进入反应加热炉(F-201),加热至303℃进入至加氢反应器(R-201)中,该反应器设置二段催化剂床层,两床层间设有注急冷氢设施。 自反应器(R-201)来的反应产物经混氢原料(Ⅱ)/反应产物换热器(E-201)、汽提塔底油/反应产物换热器(E-202)、低分油/反应产物换热器(E203)、混氢原料(I)/反应产物换热器(E-204/1、2)换热,然后依次经反应产物空冷器(EC-201/1、2)、反应产物后冷器(E-207/1、2)冷却至40℃,进入高压分离器(D-204)。为了防止反应产物中的铵盐在低温部位结晶,通过脱氧水泵(P-207/1、2)将脱氧水注入到(EC-201/1、2)或(E-204/1、2)上游的管道中。冷却后的反应物在D-204中进行油、气、水三相分离。高分气(循环氢)经K-202/1、2入口分液罐(D-208)分液后,进入循环氢压缩机(K-202/1、2)升压至8.8MPa(G),然后分两路:一路作为急冷氢进入R-201,一路与来自新氢压缩机(K-201/1、2)的新氢混合,混合氢与原料油混合作为反应进料。含硫、含氨污水自D-204底排出,至装置外统一处理。D-204油相在液位控制下,经减压调节阀进入低压分离器(D-205),D-205闪蒸气排至燃料气管网。 低分油经低分油/分馏塔底油换热器(E-206/1、2)和E-203分别与精制重石脑油、反应产物换热至200℃后去分馏部分汽提塔(C-201)。汽提塔底油经汽提塔底油/分馏塔底油换热器(E-205)和E-202分别与精制重石脑油、反应产物换热至245℃后去分馏部分分馏塔(C-202)。新氢自制氢装置来,经新氢压缩机入口分液罐(D-207)分液后进入K-201/1、2并经三级升压至 8.8MPa(G),再与K-202/1、2出口的循环氢混合。 2、分馏部分 从反应部分来的低分油经换热后进入C-201。塔底用0.8MPa过热蒸汽汽提。塔顶油气经汽提塔顶空冷器(EC-202/1、2)和汽提塔顶后冷器(E-208)冷凝冷却至40℃,进入汽提塔顶回流罐(D-210)进行气、油、水三相分离。闪蒸出的气体作为燃料进入燃料气管网。含硫污水送出装置。油相经汽提塔顶回流泵(P-203/1、2)升压后作为塔顶回流全部返回汽提塔(C-201)。 塔底油自压经E-205与精制重石脑油换热后去反应部分E-202换热器。从反应部分来的低分油经换热后进入C-202。塔底用重沸炉提供热源。塔顶油气经分馏塔顶空冷器(EC-203/1、2)和分馏塔顶后冷器(E-209)冷却至40℃,进入分馏塔顶回流罐(D-211)进行气、油、水三相分离。闪蒸出的气体通过放空罐至火炬。含硫污水送出装置。油相经分馏塔顶回流泵(P-204/1、2)升压后一部分作为塔顶回流,一部分作为精制轻石脑油出装置。 塔底精制重石脑油一小部分经分馏塔底产品泵(P-206/1、2)增压后经E-205和E-206/1、2分别与汽提塔底油、低分油换热至100℃左右,然后进入精制重石脑油后冷器(E-210)冷却至60℃出装置。塔底精制重石脑油大部分经分馏塔底循环泵(P-205/1、2)增压后用分馏塔底重沸炉(F-202)加热至290℃左右返回分馏塔下部,以补充分馏所需能量。 为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在塔顶管道注入缓蚀剂。缓蚀剂自缓蚀剂罐 (D-212)经缓蚀剂泵(P-209/1,2)抽出后分两路,一路注入C-201塔顶管道;另一路注入C-202塔顶管道。 3、催化剂预硫化部分

硫化氢的基础知识_120312175045

第一章硫化氢特性及中毒机理 硫化氢属有毒有害物质,一旦发生含硫天然气泄漏,由于采取措施不当,将会发生不可预料的群死群伤、中毒、职业病等事故。 为了使操作员工对硫化氢有清楚的认识,现将硫化氢的特性及中毒机理概述如下: 1、硫化氢(H2S) ⑴、H2S物理性质 H2S为无色、有强烈臭鸡蛋味的可燃有毒气体,可溶于水、乙醇、汽油、煤油、原油,比空气略重,自燃点246℃,爆炸极限:4.3%—46%。在0℃常压情况下每立方米重 1.521公斤,在常温、常压下为气态,在18℃、1.68Mpa的压力情况下为液态,经过燃烧生成SO2有毒气体,危害人体、腐蚀金属,在输气的过程中与管壁接触生成FeS,H2S极易溶于水,在常压和20℃情况下,每立方米水中可溶解 2.582m3的H2S气体。H2S 沸点为-61.8℃,硫化氢燃烧时呈蓝色火焰并产生二氧化硫,硫化氢与空气混合达爆炸范围可引起强烈爆炸。 ⑵、H2S侵入人体的途径 H2S主要是从人的呼吸道进入人体,人们在含有H2S气体的工作场所工作时,在呼吸过程中,一部分随着呼出的气体呼出体外,有一小部分存在体内氧化生成硫酸盐,随着小便排出,体内无蓄积作用。空气中最大允许浓度为10mg/m3。

⑶、硫化氢中毒机理 H2S是一种强烈的神经毒物,对粘膜有一定的刺激作用,易引起角膜炎,与人体细胞色素氧化酶中的铁作用,引起组织缺氧而造成呼吸困难,大量吸入会引起肺水肿,H2S中毒的表现随着接触的浓度、时间不同而分为: ①轻度中毒:眼红和结膜肿胀、畏光流泪、胸部紧迫、咳嗽等。空气中H2S浓度达到20mg/ m3时就可引起轻度中毒,恢复较快,无后遗症。 ②中度中毒:结膜刺激、流泪、恶心、呕吐、腰痛、呼吸困难、头痛、轻度肺炎或肺水肿,支气管炎、乏力、失调。空气中H2S浓度达到700mg/ m3时即可引起中度中毒。 ③重度中毒:先是头痛、心悸、呼吸困难、行动迟缓、意识模糊,抽筋、昏迷、因心脏瘫痪或呼吸停止而死亡。空气中H2S浓度达到1000mg/ m3时即可立即引起重度中毒,就向电击一样死亡。

硫化氢基础知识

1 硫化氢的物性、来源及危害性 1.1 硫化氢的物性 硫化氢是可燃性无色气体,具有典型的臭鸡蛋味,相对分子量34.08,对空气的相对密度1.19,熔点-85.5℃,沸点-60.4℃,易溶于水,20℃时,2.9体积硫化氢气体溶于1体积水中,也易溶于醇类、醛类、二硫化碳、石油溶剂和原油中。在空气中爆炸极限为 4.3%-45.5%(体积比),自燃温度为260℃。 硫华氢对空气的相对密度是1.19,比空气重,因此,它容易聚集在地势较低的地方——坑里、井里和沟道里,很容易溶解于水,又非常容易从溶解状态转变成游离状态。 1.2 硫化氢的来源 原油是多种物质的混和成份,分布于地层中的孔隙和裂缝中。由于地层中含硫化合物较多,加上地层中各种成岩作用,使H2S生成的渠道多种多样。总的来说,石油中含硫化合物形成机理的各种见解可归纳为以下3点: ①石油中的硫是从生物系统继承下来的; ②石油中的含硫化合物是在碳酸盐岩地层中元素硫和石油中的化合物反应的产物; ③含硫有机化合物的形成是由于微生物还原硫酸盐的结果。 目前已知的石油中硫化物有:硫化氢(H2S),元素硫S,硫醇(RSH),硫醚(R__S__R/ ),二硫化物(RSSR)及残余硫(残余硫是一类结构暂时还不清楚的含硫化合物)。在众多硫化物中,H2S所占的比例较大,其它含硫物质在一定的条件下也可能转化为H2S。 1.3 硫化氢的危害性 硫化氢的危害,直接地主要体现在对人的伤害,对金属设备的腐蚀,对非金属元件、设备的老化;间接地对环境造成破坏、对生物产生毒副作用。在油田开发生产中,硫化氢的危害突出地表现在对人的伤害,对设备的腐蚀破坏和对非金属设备的老化。 1.3.1 硫化氢对人体的伤害 硫化氢为剧毒气体,空气中H2S含量达0.035mg/m3,人们即可嗅到臭鸡蛋味,当达到10mg/m3时,由于嗅神经麻痹,臭味反而不易嗅到,这正是最危险的时刻,往往会出现“闪电“式中毒死亡。H2S可以与人体内某些酶发生作用,可抑制细胞呼吸酶活性,造成组织缺氧,对人体有全身毒性作用。急性中毒时出现意识不清,过度呼吸迅速转向呼吸麻痹,很快死亡;慢性中毒一般为眼结膜的损伤,对人体有局部刺激作用,这是由于H2S接触湿润的粘膜之后,形成Na2S,以及本身的酸性所致。长期低浓度接触,可出现神经衰弱综合症和植物神经功能紊乱。硫化氢和其它毒物除了引起危险的慢性中毒外,还能改变人的机体的重要分析系统的功能和人的行为。后者对于劳动安全和高工作效率具有重要意义。 1.3.1.1 人体硫化氢中毒机理: 硫化氢主要通过呼吸器官进入机体,也有少量通过皮肤和胃进入机体。现已证实,硫化氢的毒性主要表现在三个过程中,即对中枢神经系统以及氧化过程和血液的影响。 ①1884年人们就查出了硫化氢对中枢神经系统的特殊的毒性作用。少量硫化氢会压迫中枢神经系统;中等浓度的硫化氢能刺激神经;而高浓度硫化氢则会引起麻痹,特别是引起呼吸中枢和血管中枢神经的麻痹。在多数情况下,这些变化是功能性的,并且是可复原的。 ②硫化氢对氧化过程有毒性作用,使血液中氧气的饱和能力降低。在硫化氢慢性中毒过程中,

第8章-硫化氢基础知识

第八章硫化氢基础知识 一、硫化氢简介 1、油气井中H2S气体的来源 随着地层埋藏的加深,地层的温度就会越高,产生硫化氢的可能性越大,有数据表明:井深为 2600米左右, H S气体的含量在 0.1~ 2 S气体的含量在 2~23%。0.5%。井深超过 2600米或更深,则H 2 S 若地层温度超过200~250℃,将可能产生大量的、高浓度的H 2气体。 1)高温热作用于油层,使油层中原油所含的有机硫化物分解,产生H S气体。 2 2)原油中的烃类和有机物通过与储集层水中的硫酸盐在高温条 S气体。 件下,热还原作用而产生H 2 S气体进入井筒。 3)下部地层中硫酸岩层里的H 2 4)某些钻井液处理剂在高温热分解作用下、钻井液里的细菌作用下产生H S气体。 2 2、石油行业易出现硫化氢的场所 天然气加工厂、炼油厂、橡胶制品厂、纸浆厂、工业实验室、爆炸现场、废弃的坑道、下水道、不流动的污水池、沼气池、井喷现场 S气体。在上述场所作业前,勿忘测试等地方都可能会产生和聚集H 2 S气体的含量与浓度,应当有防H2S气体的意识。 H 2 3、油气田H2S气体分布与分类

就地下而言,H 2S 气体多存在于碳酸盐岩中,特别是与碳酸岩伴 生的硫酸岩沉积环境中大量、普遍的存在着H 2S 气体。 在同一气田,H 2S 气体浓度含量上也差别很大。例如:四川卧龙 河气田北部的石炭系气藏中,H 2S 气体的含量在 1500~4500 mg/m 3之 间,而气田南部H 2S 含量仅20mg /m 3以下,南北H 2S 含量相差在 100—200倍。根据天然气中H 2S 气体含量,可将气藏划分为五类: 1)世界上含H 2S 气体最高的地区要属美国的南德克萨斯气田,H 2S 气体含量高达98%。 2)我国油田H 2S 气体含量分布如下 华北油田冀中坳陷赵兰庄气田下第三系孔店组碳酸岩气藏H 2S 含量跨度在10—90%。 四川油田川东卧龙河气田三迭系嘉陵江灰岩气藏H 2S 含量 9.6—10%。 新疆塔里木的轮古油田H 2S 含量300~400ppm 。以上地区皆属于 中、高含H 2S 气体地区。 克拉玛依油田在南缘的卡10井、西4井、东湾1井、安4井等在钻井施工中都出现过H 2S 气体。在红山嘴、八区、稠油区等区块的 油田开发过程中也出现过H 2S 气体。

相关文档
最新文档