实验9虚拟存储器

实验9虚拟存储器
实验9虚拟存储器

实验9、Windows虚拟内存

1 背景知识

在Windows环境下,4GB的虚拟地址空间被划分成两个部分:低端2GB提供给进程使用,高端2GB提供给系统使用。这意味着用户的应用程序代码,包括DLL以及进程使用的各种数据等,都装在用户进程地址空间内(低端2GB)。用户过程的虚拟地址空间也被分成三部分:

1)虚拟内存的已调配区(committed):具有备用的物理内存,根据该区域设定的访问权限,用户可以进行写、读或在其中执行程序等操作。

2)虚拟内存的保留区(reserved):没有备用的物理内存,但有一定的访问权限o

3)虚拟内存的自由区(free):不限定其用途,有相应的PAGE_NOACCESS权限。

与虚拟内存区相关的访问权限告知系统进程可在内存中进行何种类型的操作。例如,用户不能在只有PAGE_READONL Y权限的区域上进行写操作或执行程序;也不能在只有PAGE_EXECUTE权限的区域里进行读、写操作。而具有PAGE_NOACCESS权限的特殊区域,则意味着不允许进程对其地址进行任何操作。

在进程装入之前,整个虚拟内存的地址空间都被设置为只有PAGE_NOACCESS权限的自由区域。当系统装入进程代码和数据后,才将内存地址的空间标记为已调配区或保留区,并将诸如EXECUTE、READWRITE和READONLY的权限与这些区域相关联。

如表1所示,给出了MEMORY_BASIC_INFORMA TION的结构,此数据描述了进程虚拟内存空间中一组虚拟内存页面的当前状态,其中State项表明这些区域是否为自由区、已调配区或保留区;Protect项则包含了Windows系统为这些区域添加了何种访问保护;Type 项则表明这些区域是可执行图像、内存映射文件还是简单的私有内存。VirtualQueryEX()API 能让用户在指定的进程中,对虚拟内存地址的大小和属性进行检测。

Windows还提供了一整套能使用户精确控制应用程序的虚拟地址空间的虚拟内存API。一些用于虚拟内存操作及检测的API如表2所示。

表2 虚拟内存的API

提供虚拟内存分配功能的是VinualAlloc()API。该API支持用户向系统要求新的虚拟内存或改变已分配内存的当前状态。用户若想通过VirtualAlloc()函数使用虚拟内存,可以采用两种方式通知系统:

1)简单地将内存内容保存在地址空间内。

2)请求系统返回带有物理存储区(RAM的空间或换页文件)的部分地址空间。

用户可以用flAllocation Type参数(commit和reserve)来定义这些方式,用户可以通知Windows按只读、读写、不可读写、执行或特殊方式来处理新的虚拟内存。

与VirtualAlloc()函数对应的是VirtualFree()函数,其作用是释放虚拟内存中的已调配页或保留页。用户可利用dwFreeType参数将已调配页修改成保留页属性。

VirtualProtect()是VirtualAlloc()的一个辅助函数,利用它可以改变虚拟内存区的保护规范。

2 实验目的

1)通过实验了解Windows内存的使用,学习如何在应用程序中管理内存,体会Windows 应用程序内存的简单性和自我防护能力。

2)学习检查虚拟内存空间或对其进行操作。

3)了解Windows的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。

3 实验内容与步骤

虚拟内存的检测

清单2所示的程序使用VirtualQueryEX()函数来检查虚拟内存空间。

步骤1:在“开始”菜单中单击“程序”、“Microsoft Visual Studio 6.0”、

“MicrosoftVisualC++6.0”,进入VisualC++窗口。

步骤2:运行以下程序清单

清单2 检测进程的虚拟地址空间

#include

#include

#include

#include

#pragma comment(lib,"shlwapi.lib")

//以可读方式对用户显示保护的辅助方法。

//保护标记表示允许应用程序对内存进行访问的类型以及操作系统强制访问的类型inline bool TestSet(DWORD dwTarget, DWORD dwMask)

{

return((dwTarget & dwMask)==dwMask);

}

#define SHOWMASK(dwTarget,type)\

if(TestSet(dwTarget,PAGE_##type))\

{std::cout<<","<<#type;}

void ShowProtection(DWORD dwTarget)

{

SHOWMASK(dwTarget,READONL Y);

SHOWMASK(dwTarget,GUARD);

SHOWMASK(dwTarget,NOCACHE);

SHOWMASK(dwTarget,READWRITE);

SHOWMASK(dwTarget,WRITECOPY);

SHOWMASK(dwTarget,EXECUTE);

SHOWMASK(dwTarget,EXECUTE_READ);

SHOWMASK(dwTarget,EXECUTE_READWRITE);

SHOWMASK(dwTarget,EXECUTE_WRITECOPY);

SHOWMASK(dwTarget,NOACCESS);

}

//遍历整个虚拟内存并对用户显示其属性的工作程序的方法

void WalkVM(HANDLE hProcess)

{

//首先,获得系统信息

SYSTEM_INFO si;

::ZeroMemory(&si,sizeof(si));

::GetSystemInfo(&si);

//分配要存放信息的缓冲区

MEMORY_BASIC_INFORMATION mbi;

::ZeroMemory(&mbi,sizeof(mbi));

//循环整个应用程序地址空间

LPCVOID pBlock=(LPVOID)si.lpMinimumApplicationAddress;

while(pBlock

{

//获得下一个虚拟内存块的信息

if(::VirtualQueryEx(

hProcess, //相关的进程

pBlock, //开始位置

&mbi, //缓冲区

sizeof(mbi))==sizeof(mbi)) //大小的确认

{

//计算块的结尾及其大小

LPCVOID pEnd=(PBYTE)pBlock+mbi.RegionSize;

TCHAR szSize[MAX_PATH];

::StrFormatByteSize(mbi.RegionSize,szSize,MAX_PATH);

//显示块地址和大小

std::cout.fill('0');

std::cout<

<

<<(strlen(szSize)==7?"(":"(")<

//显示块的状态

switch(mbi.State)

{

case MEM_COMMIT:

std::cout<<",Committed";

break;

case MEM_FREE:

std::cout<<",Free";

break;

case MEM_RESERVE:

std::cout<<",Reserved";

break;

}

//显示保护

if(mbi.Protect==0&&mbi.State!=MEM_FREE)

{

mbi.Protect=PAGE_READONL Y;

}

ShowProtection(mbi.Protect);

//显示类型

switch(mbi.Type)

{

case MEM_IMAGE:

std::cout<<",Image";

break;

case MEM_MAPPED:

std::cout<<",Mapped";

break;

case MEM_PRIV A TE:

std::cout<<",Private";

break;

}

//检验可执行的影像

TCHAR szFilename[MAX_PATH];

if(::GetModuleFileName(

(HMODULE)pBlock,

szFilename,

MAX_PATH)>0)

{

//除去路径并显示

::PathStripPath(szFilename);

std::cout<<",Module:"<

}

std::cout<

//移动块指针以获得下一个块

pBlock=pEnd;

}

}

}

void main()

{

//遍历当前进程的虚拟内存

::WalkVM(::GetCurrentProcess());

}

清单2中显示一个WalkVM()函数开始于某个进程可访问的最低端虚拟地址处,并在其中显示各块虚拟内存的特性。虚拟内存中的块由VirtualQueryEx()APl定义成连续块或具有相同状态(自由区、已调配区等)的内存,并分配以一组统一的保护标志(只读、可执行等)。

回答下列问题:

1)分析运行结果

按committed、reserved、free等三种虚拟地址空间分别记录实验数据,其中“描述”是指对该组数据的简单描述,例如,对下列一组数据:

00010000—00012000<8.00KB>Committed,READWRITE,Private可描述为:具有READWRITE权限的已调配私有内存区。

将系统当前的自由区(free)虚拟地址空间填入表1中。(表课可以自己画)

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

四川大学 操作系统上机实验 实验五 Windows虚拟存储器管理

实验报告 实验名称:Windows虚拟存储器管理 实验时间:2013年5月27日 实验人员:____郑笑凡___(姓名)__1143041243__(学号)____2011____(年级) 实验目的:1、了解Windows 2000/XP的内存管理机制,掌握页式虚拟存储技术。 2、理解内存分配原理,特别是以页面为单位的虚拟内存分配方法。 3、学会使用Windows 2000/XP下内存管理的基本API函数 实验环境:windows xp 实验步骤: 1、下载virtumem.cpp; 2、建立工程,将virtumen.cpp加入; 3、编译工程,观察结果,确信六种状态都出现至少一次,必要时可改程 序,方便观察结果; 4、看懂程序,按要求另写一段小程序; 5、编译,执行,观察结果。 6,总结。 实验陈述: 1、基础知识: pagefile.sys文件的位置在:__安装的系统盘根目录下____________________________________此文件的作用:____实现物理内存的扩展__________________________________________________ 改变此文件大小的方法:右击”我的电脑”,依次选择”属性”—“高级”—“性能选项”— “更改”_______________________________________ 虚拟地址空间中的页面分为:提交页面,保留页面,空闲页面 页面的操作可以分为:保留、提交、回收、释放、加锁 2、编程准备. 页面属性是在结构体MEMORY_BASIC_INFORMATION_的字段AllocationProtect 和字段中Protect体现出来的。 简述VirtualFree,VirtualPtotect,VirtualLock,VirtualUnlock,VirtualQuery的作用:_ VirtualFree:__释放虚存___________________________________________________ VirtualPtotect:_保留虚存_________________________________________________ VirtualLock:___加锁虚存_________________________________________________ VirtualUnlock:_解锁虚存________________________________________________ VirtualQuery:____查询虚存_______________________________________________ 3、编程 1)将virtumem.cpp加入工程,编译,执行。 是否能编译成功?是 请描述运行结果:

静态存储器-实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称静态随机存储器实验 班级 学号 姓名 同组人员无 实验日期 2015-10-24

一、实验目的与要求 掌握静态随机存储器RAM 工作特性及数据的读写方法 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 实验所用的静态存储器由一片6116(2K ×8bit)构成(位于MEM 单元),如下 图所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS 常接地线。 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如下图所示,由于T3的参与,可以保证MEM 的写脉宽与T3一致,T3由时序单元的TS3给出。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1时为读,WR=1时为写。 XMRD XIOR XIOW XMWR RD IOM WE T3 读写控制逻辑 实验原理图如下如所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实 页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页 的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号, 取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定

存储管理实验报告.doc

存储管理实验报告

北方工业大学 《计算机操作系统》实验报告 实验名称存储管理实验序号 2 实验日期2013.11.27实验人 一、实验目的和要求 1.请求页式存储管理是一种常用的虚拟存储管理技术。本实验目的 是通过请求页式存储管理中页面置换算法的模拟设计,了解虚拟存储 技术的特点,掌握请求页式存储管理的页面置换算法。 二、相关背景知识 1.随机数产生办法 关于随机数产生办法, Linux 或 UNIX 系统提供函数 srand() 和 rand() ,分 别进行初始化和产生随机数。 三、实验内容 (1).通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: 1.50% 的指令是顺序执行的; 2.25% 的指令是均匀分布在前地址部分; 3.25% 的指令是均匀分布在后地址部 分;具体的实施方法是: 1.在[0, 319]的指令地址之间随机选取一起点 m; 2.顺序执行一条指令,即执行地址为 m+1 的指令; 3.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4.顺序执行一条指令,其地址为 m’+1; 5.在后地址 [m ’+2, 319]中随机选取一条指令并执行; 6.重复上述步骤 1~5,直到执行 320 次指令。 (2)将指令序列变换成页地址流,设 1.页面大小为 1K ; 2.用户内存容量为 4 页到 32 页; 3.用户虚存容量为 32K 。 在用户虚存中,按每 K 存放 10 条指令排列虚存地址,即 320 条指令在虚存 中存放的方式为: 第 0 条至第 9 条指令为第 0 页(对应虚存地址为 [0, 9]); 第 10 条至第 19 条指令为第 1 页(对应虚存地址为 [10, 19]); 第 310 条至第 319 条指令为第 31 页(对应虚存地址为 [310,319]); 按以上方式,用户指令可以组成 32 页。 (3)计算并输出下述各种算法在不同内存容量下的命中率。

计算机组成原理存储器读写和总线控制实验实验报告

信息与管理科学学院计算机科学与技术 实验报告 课程名称:计算机组成原理 实验名称:存储器读写和总线控制实验 姓名:班级:指导教师:学号: 实验室:组成原理实验室 日期: 2013-11-22

一、实验目的 1、掌握半导体静态随机存储器RAM的特性和使用方法。 2、掌握地址和数据在计算机总线的传送关系。 3、了解运算器和存储器如何协同工作。 二、实验环境 EL-JY-II型计算机组成原理实验系统一套,排线若干。 三、实验内容 学习静态RAM的存储方式,往RAM的任意地址里存放数据,然后读出并检查结果是否正确。 四、实验操作过程 开关控制操作方式实验 注:为了避免总线冲突,首先将控制开关电路的所有开关拨到输出高电平“1”状态,所有对应的指示灯亮。 本实验中所有控制开关拨动,相应指示灯亮代表高电平“1”,指示灯灭代表低电平“0”。连线时应注意:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。 1、按图3-1接线图接线: 2、拨动清零开关CLR,使其指示灯显示状态为亮—灭—亮。 3、往存储器写数据:

以往存储器的(FF ) 地址单元写入数据“AABB ”为例,操作过程如下: 4、按上述步骤按表3-2所列地址写入相应的数据 表3-2 5、从存储器里读数据: 以从存储器的(FF ) 地址单元读出数据“AABB ”为例,操作过程如下: (操作) (显示) (操作) (显示) (操作) (显6、按上述步骤读出表3-2数据,验证其正确性。 五、实验结果及结论 通过按照实验的要求以及具体步骤,对数据进行了严格的检验,结果是正确的,具体数据如图所示:

操作系统实验五虚拟存储器管理

操作系统实验 实验五虚拟存储器管理 学号1115102015 姓名方茹 班级11 电子A 华侨大学电子工程系

实验五虚拟存储器管理 实验目的 1、理解虚拟存储器概念。 2、掌握分页式存储管理地址转换盒缺页中断。 实验内容与基本要求 1、模拟分页式存储管理中硬件的地址转换和产生缺页中断。 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说 明哪些页已在主存,哪些页尚未装入主存。作业执行 时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转 换机构按页号查页表,若该页对应标志为“ 1”,则表示该页 已在主存,这时根据关系式“绝对地址 =块号×块长 +单元号”计算出欲访问的主 存单元地址。如果块长为 2 的幂次,则可把块号作为高地址部分,把单元号作为低 地址部分,两者拼接而成绝对地址。若访问的页对 应标志为“ 0”,则表示该页不在主存,这时硬件发“缺页中断”信号, 有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后 再重新执行这条指令。设计一个“地址转换”程序来模拟硬件的地址转 换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执 行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主 存时,则输出“ * 该页页号”,表示产生了一次缺页中断。 2、用先进先出页面调度算法处理缺页中断。 FIFO 页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时, 把开始的 m 个页面装入主存,则数组的元素可定为m 个。 实验报告内容 1、分页式存储管理和先进先出页面调度算法原理。 分页式存储管理的基本思想是把内存空间分成大小相等、位置固定

南京中医药大学虚拟存储器管理实验

实验三虚拟存储管理 实验性质:验证 建议学时:3 实验目的: 存储管理的主要功能之一是合理的分配空间。请求页式管理是一种常用的虚拟存储管理技术。本实验的目的是请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换方法。 预习内容: 阅读教材《计算机操作系统》第四章,掌握存储器管理相关概念和原理。 实验内容: (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分。 具体的实施方法是: ①在[0,319]的指令地址之间随机选取一起点m; ②顺序执行一条指令,即执行地址为m+1的指令; ③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; ④顺序执行一条指令,其地址为m’+1; ⑤在后地址[m’+2,319]中随机选取一条指令并执行; ⑥重复上述步骤,直至执行320次指令。 (2)将指令序列变换成页地址流。 设:①页面大小为1K; ②用户内存容量为10块到32块; ③用户虚存容量为32K; 在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应的虚存地址为[0,9]); 第10条~第19条指令为第1页(对应的虚存地址为[10,19]); …… 第310条~第319条指令为第31页(对应的虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下述各种算法在不同的内存容量下的缺页率。 ①先进先出的算法(FIFO); ②最近最少使用算法(LRU); ③最佳淘汰法(OPT):先淘汰最不常用的页地址; ④最少访问页面算法(LFU)。 缺页率=(页面失效次数)/(页地址流长度)= 缺页中断次数/ 320 在本实验中,页地址流的长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。

网络存储实验报告

湖北文理学院《网络存储》 实验报告 专业班级:计科1211 姓名:*** 学号:*** 任课教师:李学峰 2014年11月16日

实验01 Windows 2003的磁盘阵列技术 一、实验目的 1.掌握在Windows 2003环境下做磁盘阵列的条件和方法。 2.掌握在Windows 2003环境下实现RAID0的方法。 3. 掌握在Windows 2003环境下实现RAID1的方法。 4. 掌握在Windows 2003环境下实现RAID5的方法。 5. 掌握在Windows 2003环境下实现恢复磁盘阵列数据的方法。 二、实验要求 1.在Windows 2003环境下实现RAID0 2.在Windows 2003环境下实现RAID1 3.在Windows 2003环境下实现RAID5 4.在Windows 2003环境下实现恢复磁盘阵列数据 三、实验原理 (一)磁盘阵列RAID技术的概述 RAID是一种磁盘容错技术,由两块以上的硬盘构成冗余,当某一块硬盘出现物理损坏时,换一块同型号的硬盘即可自行恢复数据。RAID有RAID0、RAID1、RAID5等。RAID 技术是要有硬件来支持的,即常说的RAID卡,如果没RAID卡或RAID芯片,还想做RAID,那就要使用软件RAID技术,微软Windows系统只有服务器版本才支持软件RAID技术,如Windows Server 2003等。 (二)带区卷(RAID0) 带区卷是将多个(2-32个)物理磁盘上的容量相同的空余空间组合成一个卷。需要注意的是,带区卷中的所有成员,其容量必须相同,而且是来自不同的物理磁盘。带区卷是Windows 2003所有磁盘管理功能中,运行速度最快的卷,但带区卷不具有扩展容量的功能。它在保存数据时将所有的数据按照64KB分成一块,这些大小为64KB的数据块被分散存放于组成带区卷的各个硬盘中。 (三)镜像卷(RAID1) 镜像卷是单一卷的两份相同的拷贝,每一份在一个硬盘上。它提供容错能力,又称为RAID1技术。 RAID1的原理是在两个硬盘之间建立完全的镜像,即所有数据会被同时存放到两个物理硬盘上,当一个磁盘出现故障时,系统仍然可以使用另一个磁盘内的数据,因此,它具备容错的功能。但它的磁盘利用率不高,只有50%。 四、实验设备 1.一台装有Windows Server 2003系统的虚拟机。 2.虚拟网卡一块,类型为“网桥模式”。 3.虚拟硬盘五块。 五、实验步骤 (一)组建RAID实验的环境 (二)初始化新添加的硬盘 (三)带区卷(RAID0的实现)

OS实验指导四——虚拟存储器管理

OS实验指导四——虚拟存储器管理

————————————————————————————————作者:————————————————————————————————日期: 2

《操作系统》实验指导四 开课实验室:A207、A209 2015/11/23 、2015/11/24 实验类型设计 实验项目(四)虚拟存储器管理实验 实验学时 4 一、实验目的 设计一个请求页式存储管理方案,并编写模拟程序实现。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发 环境,如C \C++\Java 等编程语言环境。 三、实验要求 1) 上机前认真复习页面置换算法,熟悉FIFO算法和LRU页面分配和置换算法的过程; 2) 上机时独立编程、调试程序; 3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行 结果截图)。 四、实验内容 1、问题描述: 设计程序模拟FIFO和LRU页面置换算法的工作过程。假设内存中分配给每个进程的最小物理块数为m,在进程运行过程中要访问的页面个数为n,页面访问序列为P1, … ,Pn,分别利用不同的页面置换算法调度进程的页面访问序列,给出页面访问序列的置换过程,并计算每种算法缺页次数和缺页率。 2、程序具体要求如下: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1)快表页面固定为4块 2)从键盘输入N个页面号 3)输出每次物理块中的页面号和缺页次数,缺页率 4)实现算法选择

3、程序流程图 3、源程序参考: (1)FIFO 算法部分 #include "stdio.h" #define n 12 #define m 4 void main() { int ym[n],i,j,q,mem[m]={0},table[m][n]; char flag,f[n]; printf("请输入页面访问序列\n "); for(i =0;i

实验四 虚拟存储器管理实验

实验四虚拟存储器管理实验 ◆实验名称:存储器管理实验 ◆仪器、设备:计算机 ◆参考资料:操作系统实验指导书 ◆实验目的: 设计一个请求页式存储管理方案,并编写模拟程序实现。 ◆实验内容: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1.快表页面固定为4块 2.从键盘输入N个页面号 3.输出每次物理块中的页面号和缺页次数,缺页率 ◆实验原理、数据(程序)记录: #define PAGES 4 /* 物理块数*/ #define N 16 /*最多输入的页面号*/ int pages[PAGES][2]; /*page[i][0]保存页面号,page[i][1]保存页面存留时间*/ int queue[N]; /*页面号数组*/ void initialise(void) /*------------初始化:快表和页面号数组++++++++++++++*/ { int i; for(i=0;i

存储管理实验报告

综合性实验报告 一、实验目的 通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。 页面置换算法是虚拟存储管理实现的关键,通过本次实验理解内存页面调度的机制,在模拟实现FIFO、LRU、OPT、LFU、NUR几种经典页面置换算法的基础上,比较各种置换算法的效率及优缺点,从而了解虚拟存储实现的过程。 二、总体设计 1、编写函数计算并输出下述各种算法的命中率 ①OPT页面置换算法 OPT所选择被淘汰的页面是已调入内存,且在以后永不使用的,或是在最长时间内不再被访问的页面。因此如何找出这样的页面是该算法 的关键。可为每个页面设置一个步长变量,其初值为一足够大的数,对 于不在内存的页面,将其值重置为零,对于位于内存的页面,其值重置 为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越 大表示该页是在最长时间内不再被访问的页面,可以选择其作为换出页 面。 ②FIFO页面置换算法 FIFO总是选择最先进入内存的页面予以淘汰,因此可设置一个先进先出的忙页帧队列,新调入内存的页面挂在该队列的尾部,而当无空闲 页帧时,可从该队列首部取下一个页帧作为空闲页帧,进而调入所需页 面。 ③LRU页面置换算法 LRU是根据页面调入内存后的使用情况进行决策的,它利用“最近的过去”作为“最近的将来”的近似,选择最近最久未使用的页面予以 淘汰。该算法主要借助于页面结构中的访问时间time来实现,time记

录了一个页面上次的访问时间,因此,当须淘汰一个页面时,选择处于 内存的页面中其time值最小的页面,即最近最久未使用的页面予以淘 汰。 ④LFU页面置换算法 LFU要求为每个页面配置一个计数器(即页面结构中的counter),一旦某页被访问,则将其计数器的值加1,在需要选择一页置换时,则 将选择其计数器值最小的页面,即内存中访问次数最少的页面进行淘 汰。 ⑤NUR页面置换算法 NUR要求为每个页面设置一位访问位(该访问位仍可使用页面结构中的counter表示),当某页被访问时,其访问位counter置为1。需要 进行页面置换时,置换算法从替换指针开始(初始时指向第一个页面) 顺序检查处于内存中的各个页面,如果其访问位为0,就选择该页换出, 否则替换指针下移继续向下查找。如果内存中的所有页面扫描完毕未找 到访问位为0的页面,则将替换指针重新指向第一个页面,同时将内存 中所有页面的访问位置0,当开始下一轮扫描时,便一定能找到counter 为0的页面。 2、在主函数中生成要求的指令序列,并将其转换成页地址流;在不同 的内存容量下调用上述函数使其计算并输出相应的命中率。 三、实验步骤(包括主要步骤、代码分析等) 主要步骤: 、通过随机数产生一个指令序列,共320条指令。其地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分; 具体的实施方法是: A.在[0,319]的指令地址之间随机选区一起点M; B.顺序执行一条指令,即执行地址为M+1的指令; C.在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’; D.顺序执行一条指令,其地址为M’+1; E.在后地址[M’+2,319]中随机选取一条指令并执行;

实验五存储器读写实验报告

实验五存储器读写实验报告 实验报告 课程名:《计算机组成原理》题目:实验五存储器读写班级:计算机+ 自动化0901班姓名:张哲玮,郑俊飞 《计算机组成原理》实验报告- 1 - 实验五、存储器读写实验 一、目的与要求 (1)掌握存储器的工作特性 (2)熟悉静态存储器的操作过程,验证存储器的读写方法 二、实验原理及原理图 (1)?静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的静态存储器芯片,封在24引脚的封装中,封装型式如图2-7所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输入状态,输出状态和高阻状态,高阻状态数据线处于一种特殊的“断开”状态;11根地址线A10-A0,指示芯片内部2048个存储单元号;3根控制线CS片选控制信号,低电平时,芯片可进行读写操作,高电平时,芯片保存信息不能进行读写;WE 为写入控制信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存储单元中;0E为输出使能控制信号,低电平时,把地址线A10-A0指示的存储单元中的数据读出送到数据线上。

6116芯片控制信号逻辑功能表 (2).存储器实验单元电路 因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片的3根地址线A11-A8接地也没有多片联用问题,片选信号CS接地使芯片总是处于被选中状态。芯片的WE和0E信号分别连接实验台的存储器写信号M-W和存储器读信号M-Ro这种简化了控制过程的实验电路可方便实验进行。 存储器部件电路图 (3)?存储器实验电路 存储器读\写实验需三部分电路共同完成:存储器单元(MEM UNIT),地址寄存器单元(ADDRESS UNIT)和输入,输出单元(INPUT/OUTPIT UNIT).存储器单元6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送入地址寄存器,向存储器单元电路提供地址信息,输入,输出单元作用与以前相同。

实验四 虚拟存储器管理

实验四虚拟存储器管理 一、实验目的 1、为了更好的配合《操作系统》有关虚拟存储器管理章节的教学。 2、加深和巩固学生对于请求页式存储管理的了解和掌握。 3、提高学生的上机和编程过程中处理具体问题的能力。 二、实验内容 请求页式存储管理是一种常用的虚拟存储管理技术。本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 1.通过随机数产生一个指令序列,共320条指令。 指令的地址按下述原则生成: a.50%的指令是顺序执行的。 b.25%的指令是均匀分布在前地址部分。 c.25%的指令是均匀分布在后地址部分。 具体的实施方法是: a.在[0,319]指令地址之间随机选取一起点; b.顺序执行一条指令,即执行地址为m+1的指令; c.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; d.顺序执行一条指令,其地址为m’; e.在后地址[m’+2,319]中随机选取一条指令并执行; f.重复上述步骤a~e,直到执行320次指令。 2.将指令序列变换成为页地址流 设: a.页面大小为1K; b.用户内存容量为4到32页; c.用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页,对应虚存地址为[0,9];

第10条~第19条指令为第1页,对应虚存地址为[10,19] . . 第310条~第319条指令为第31页,对应虚存地址为[310,319]。 按以上方式,用户指令可组成32页。 3、输出下述各种算法在不同内存容量下的命中率。 a.先进先出的算法; b.最近最少访问算法; c.最近最不经常使用算法。 其中:命中率=1-页面失效次数/页地址流长度 页地址流长度为320,页面失效次数为每次访问相同指令时,该指令所对应的页不在内存的次数。 三、实验要求 实验课时4学时。要求画出利用各种算法置换时的置换图,并可以分析说明。编程可分 为几个部分完成:指令的分页,算法的选择,算法的实现,命中率的输出。编写程序前可先 阅读Linux源代码页面换入: static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma,unsigned long address, pte_t * page_table,swp_entry_t entry,int write_access) { struct page *page = lookup_swap_cache(entry); pte-t pte; if (!pgae){ lock_kernel( ); swapin_readahead(entry); page = read_swap_cache(entry); unlock_kernel( ); if (!page) return -1;

计算机组成原理实验五存储器读写实验

实验五 存储器读写实验实验目的 1. 掌握存储器的工作特性。 2. 熟悉静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 表芯片控制信号逻辑功能表

2. 存储器实验单元电路 芯片状态 控制信号状态 DO-D7 数据状态 M-R M -W 保持 1 1 高阻抗 读出 0 1 6116-^总钱 写人 1 0 总线-*6116 无效 报警 ^2-10 D7—DO A7—A0

團2-8存储器实验电路逻辑图 三、实验过程 1. 连线 1) 连接实验一(输入、输出实验)的全部连线。 2) 按逻辑原理图连接M-W M-R 两根信号低电平有效信号线 3) 连接A7-A0 8根地址线。 4) 连接B-AR 正脉冲有效信号 2. 顺序写入存储器单元实验操作过程 1) 把有B-AR 控制开关全部拨到0,把有其他开关全部拨到1,使全部信号都处 于无效 状态。 2) 在输入数据开关拨一个实验数据,如“ 00000001”即16进制的01耳 把IO-R 控制开关拨下,把地址数据送到总线。 3) 拨动一下B-AR 开关,即实现“1-0-1 ”产生一个正脉冲,把地址数据送地 址寄存器保存。 4) 在输入数据开关拨一个实验数据,如“ 10000000',即16进制的80耳 把IO-R 控 制开关拨下,把实验数据送到总线。 3. 存储器实验电路 0 O O 0 0 olo O O O O 0 00 OUTPUT L/O :W 8-AR £ ■」2 ■七 ol^Fgr' L P O 74LS273 A7- AO vz 0 o|o 0 r 6116 A7 INPUT D7-O0 [olololololololol T2

虚拟存储器管理实验报告

淮海工学院计算机科学系实验报告书 课程名:《操作系统》 题目:虚拟存储器管理 页面置换算法模拟实验 班级: 学号: 姓名:

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

实验四 操作系统存储管理实验报告

实验四 操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1) 通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命 中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。 (2) produce_addstream 通过随机数产生一个指令序列,共320条指令。 A 、 指令的地址按下述原则生成: 1) 50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3) 25%的指令是均匀分布在后地址部分 B 、 具体的实施方法是: 1) 在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令; 3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4) 顺序执行一条指令,地址为m ’+1的指令 5) 在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令 页地址流长度页面失效次数命中率- =1

C、将指令序列变换称为页地址流 在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0,9]); 第10条~第19条指令为第1页(对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页(对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法(FIFO); 2)最近最少使用算法(LRU); 3)最佳淘汰算法(OPT); 4)最少访问页面算法(LFR); 其中3)和4)为选择内容

实习五虚拟存储器实验报告

实习五虚拟存储器 一、实习内容 模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。 二、实习目的 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实习帮助同学理解在分页式存储管理中怎样实现虚拟存储器。 三、实习题目 本实习有三个题,其中第一题必做,第二、第三题中可任选一个。 第一题:模拟分页式存储管理中硬件的地址转换和产生缺页中断。 [提示]: (1) 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为: 其中,标志——用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。 主存块号——用来表示已经装入主存的页所占的块号。 在磁盘上的位置——用来指出作业副本的每一页被存放在磁盘上的位置。 (2) 作业执行时,指令中的逻辑地址指出了参加运算的操作数存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式: 绝对地址=块号 块长+单元号 计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。按计算出的绝对地址可以取到操作数,完成一条指令的执行。若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。 (3) 设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“*该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图5-1。 (4) 假定主存的每块长度为128个字节;现有一个共七页的作业,其中第0页至第3

《操作系统》存储管理实验报告

____大学____学院实验报告 课程名称:计算机操作系统实验名称:存储管理实验实验日期: 班级:姓名:学号:仪器编号:XX 实验报告要求:1.实验目的 2.实验要求 3.实验步骤 4.程序清单 5.运行情况 6.流程图7.实验体会 1、实验目的 ①通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰法。 ②通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 2、实验要求 ①设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 ②设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。 ③编写并调试一个段页式存储管理的地址转换的模拟程序。 首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。 3、实验步骤 (1)理解实验要求,联系所学知识;(2)根据要求编写调度算法;(3)编写完整的实验代码并在VC++ 6.0环境下编译运行;(4)调试程序直至得出结果。 4、程序清单 ① #include #include #include #include #define NUM 4 #define alloMemory(type) (type*)malloc(sizeof(type)) struct partiTab { int no; int size; int firstAddr; char state; }parTab[NUM];

相关文档
最新文档