内燃机活塞环_缸套摩擦磨损过程性能研究

内燃机活塞环_缸套摩擦磨损过程性能研究
内燃机活塞环_缸套摩擦磨损过程性能研究

45号钢的性能

1强度强度指金属在外力作用下,抵抗塑性变形和断裂的能力 1)抗拉强度ób 金属试样拉伸时,在拉断前所承受的最大负荷与试样原横截面面积之比称为抗拉强度 ób=Pb/Fo 式中Pb——试样拉断前的最大负荷(N) Fo——试样原横截面积(mm2) 2)抗弯强度óbb MPa 试样在位于两支承中间的集中负荷作用下,使其折断时,折断截面所 承受的最大正压力 对圆试样:óbb=8PL/Лd³; 对矩形试样:óbb=3PL/2bh² 式中P——试样所受最大集中载荷(N) L——两支承点间的跨距(mm) d——圆试样截面之外径(mm) b——矩形截面试样之宽度(mm) h——矩形截面试样之高度(mm) 3)抗压强度óbc MPa 材料在压力作用下不发生碎、裂所能承受的最大正压力,称为抗压强度 óbc=Pbc/Fo 式中Pbc—试样所受最大集中载荷(N) Fo—试样原截面积(mm²) 4)抗剪强度てMPa 试样剪断前,所承受的最大负荷下的受剪截面具有的平均剪应力 双剪:óて=P/2F;单剪:óて=P/Fo 式中P—剪切时的最大负荷(N) Fo—受检部位的原横截面积(mm²) 5)抗扭强度MPa 指外力是扭转力的强度极限 てb≈3Mb/4Wp(适用于钢材) てb≈Mb/Wp(适用于铸铁) 式中Mb—扭转力矩(N?mm) Wp—扭转时试样截面的极断面系数(mm²) 6)屈服点ós MPa 金属试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象称为“屈服”。发生屈服现象时的应力,称为屈服点或屈服极限 ós=Ps/Fo 式中Ps——屈服载荷(N) Fo——试样原横截面积(mm2) 7)屈服强度ó0.2 MPa 对某些屈服现象不明显的金属材料,测定屈服点比较困难,常把产生O.2%永久变形的应力定为屈服点,称为屈服强度或条件屈服极限 ó0.2=P0.2/Fo 式中P0. 2——试样产生永久变形为0.2%时的载荷(N) Fo——试样原横截面积(mm2) 8)持久强度ób/时间(h)MPa 金属材料在高温条件下。经过规定时间发生断裂时的应力称为持久强度。通常所指的持久强度,是在一定的温度条件下,试样经l05h后的断裂强度 9)蠕变强度温度ó应变量/时间 MPa 金属材料在高于一定温度下受到应力作 用,即使应力小于屈服强度,试件也会随着时间的增长而缓慢地产生塑性变形,此种现象称为蠕变。在给定温度下和规定的时间内,使试样产生一定蠕变变形量的应力称为蠕变强度,例如 500 ó----------------- =100MPa 1/100000 ,表示材料在500%温度下,105h后应变量为l%的蠕变强度为100MPa。蠕变强度是材料在高温下长期负荷下对塑性变形抗力的性能指标 2弹性弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性

摩擦衬片(衬块)的磨损特性计算

摩擦衬片(衬块)的磨损特性计算 摩擦衬片(衬块)的磨损与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。 汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。 制动器的能量负荷常以其比能量耗散率作为评价指标。比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W/mm2 双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为 式中:δ——汽车回转质量换算系数; ma——汽车总质量 v1 v2——汽车制动初速度与终速度,m/s;计算时轿车取v1= 100km/h(27.8m/s);总质量 3.5吨以下的货车取vl=80km/h

(22.2m/s);总质量3.5 t以上的货车取v1=65 km/h(18m/s); t一制动时间,s;按下式计算 j一制动减速度,m/ s2计算时取j=0.6g; A1,A2一前、后制动器材特(衬块)的摩擦面积; β一制动力分配系数,见式(3-12) 在紧急制动到v2=0时,并可近似地认为δ=1,则有 鼓式制动器的比能量耗散率以不大于1.8 W/mm2为宜,但当制动初速度油vl低于式(4-25)下面所规定的v1时,则允许略大于 1.8 W/mm2。轿车盘式制动器的比能量D 耗散率应不大于6.0 W/mm2发比能量耗散率过高,不仅会加快制动摩擦衬片(衬块)的磨损,而且可能引起制动鼓或盘的龟裂。 磨损特性指标也可用衬片(衬块)的比摩擦力即单位摩擦面积的摩擦力来衡量。单个车轮制动器的比摩擦力为 式(4-27)Tf中:Tf一单个制动器的制动力矩; R一制动鼓半径(或制动盘有效半径)

各种材料摩擦系数表分析

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

摩擦磨损性能测试试验

典型黑色金属磨损性能测试实验 史秋月 一、实验目的 1.了解M-2000型摩擦磨损试验机的结构,及材料进行耐磨性测试的意义; 2.掌握滑动摩擦、滚动摩擦及其在不同条件下(干式、湿式、磨粒等)的 实验方法; 3.掌握摩擦磨损性能指标的评估方法; 4.了解典型黑色金属灰铁和球铁在滑动摩擦条件下(干式)的耐磨情况。 二、实验设备 M-2000型摩擦磨损试验机,如图2-1 图2-1 三、实验材料 1.灰铁滑动摩擦试样一对,试样尺寸如附图(a) 2.球铁滑动摩擦试样一对,试样尺寸如附图(a) 四.实验原理与方法 将试样分别装在上下试样轴上,接通电源,双速电动机○1通过三角皮带○3齿12使下试样轴以200转/分(或400转/分)的速度转动;通过轮○4带动下试样轴○ 48的传递。使上试样轴○14以180转/分(或360转/ 47和齿轮○ 蜗杆轴○ 44,滑动齿轮○ 47分)的速度转动。当做滑动摩擦试验时,为使上试样轴不转动,应将滑动齿轮○ 46上。试验时,两试样间的压移至中间位置,齿轮○48必须用销子○22固定在摇摆头○ 19的作用下获得(弹簧中间是一重力传感器),负荷的增大或减少力负荷在弹簧○ 21上即可读出。也可将复合传感器接入25进行调整;负荷的数值从标尺○ 可用螺帽○ 电脑,从显示屏上读出,本实验载荷直接从显示屏上读出。试验的终止条件可由时间或总转速控制。试验结束之后根据不同的方法评估材料的耐磨情况。

五、实验内容 将加工好的滑动摩擦试样装在实验机上,在给定的条件下(干式、滑动摩擦、压力:200N、时间60min)进行试验,试验结束后将试样取下,评估耐磨性能。 根据所选取磨损试验方法的不同以及材料本质的差异,可以选择不同的耐磨性能评定方法,以期获得精确的试验数据,现简单例举下述几种方法以供参考。 1、称重法:采用试样在试验前后重量之差,本表示耐磨性能的方法,由于两试 样之间的摩擦所引起的磨损量,可以采用精度达万分之一的分析天平称量出试样试验前后重量之差非凡获得。试样在磨损前后必须严格进行去油污,烘干后再进行称量否则因残余的没污会影响试验数据的准确性。 计算可按下式进行: W=W0-W1 式中:W—试样的磨损量。 W0—试样在试验前的重量。 W1—试样在试验后的重量。 2、测量直径法:采用试样在试验前后直径的变化大小来表示耐磨性能的方法。 (1)用测微计(或其它测量仪器)测量试样试验前后的直径变化而获得。 (2)本试验机所带小滚轮○6可用来精确测量试样直径试验前后的变化。 测量方法:使用时首先将装有小滚轮○6的支架拆下来装在下试样轴轴承座的小轴(附图)上,在试验前后把试验机各开一分钟或下试样试验前后运转同样转数可得小滚轮转数N1和N2,由此通过下列计算可得到磨损量“S” 如果:D1—试样试验前的直径。 D2—试样试验后的直径。 D0小滚轮○6的直径。 N1—磨损前一分钟内小滚轮○6的转数。

几类硬质薄膜的摩擦磨损性能测试

几类硬质薄膜的摩擦磨损性能测试 华敏奇1 张广安1袁振海2张莎莎3 1、中国科学院兰州化学物理研究所 2、广州有色金属研究院 3、兰州华汇仪器科技有限公司 摘要:采用摩擦磨损试验机考察了几类复合硬质薄膜的摩擦磨损行为,结果表明:复合薄膜的摩擦磨损性能均极大提高。CrN基复合薄膜的硬度与抗磨损性能均较CrN薄膜有极大提高;Al/AlN纳米多层膜具有软质Al层和硬质AlN层的交替结构,在摩擦过程中,硬质AlN层可以起到良好的承载作用,软质层可以起到良好的减摩作用,有效的降低了Al/AlN 纳米多层膜的摩擦和磨损,具有非常优异的摩擦学性能;Ti-DLC薄膜与S i3N4、钢、Ti-DLC 对摩时,均表现出良好的耐磨减摩性能,但摩擦系数与磨损率各不相同。 硬质薄膜材料包括难溶化合物(氮化物、碳化物、氧化物等)、类金刚石碳膜及硬质合金等硬度高、耐磨性好,已经取得了广泛的应用。但如何评价硬质薄膜的摩擦磨损行为,已经成为研究此类硬质薄膜的关键问题,主要包括研制各种新型的摩擦学薄膜材料及摩擦学性能评价、薄膜的摩擦磨损原理及指导实际工况材料的摩擦学设计。本文考察了几类物理气相沉积(PVD)复合硬质涂层的摩擦磨损行为,并探讨了其摩擦磨损机制。 1.实验过程 采用自制的摩擦磨损试验机评价薄膜的摩擦学性能, 采用往复滑动方式, 频率为5Hz,单次滑动行程为6mm,,对偶件为GCr15钢球、氮化硅陶瓷球。采用JSM-5600LV型电子显微镜(SEM)观测磨痕表面形貌。采用MicroXam型三维表面形貌仪测量磨痕轮廓,并计算得到薄膜的磨损率。 2.结果与讨论 2.1 CrN基复合薄膜 采用中频反应磁控溅射制备了CrN与CrSiN、CrAlN复合薄膜。通过EDS检测CrSiN 复合薄膜中Si/Si+Cr的相对含量为12.6%,CrAlN复合薄膜中Al/Al+Cr的相对含量为48.4%。所制备的薄膜均呈现柱状生长, 且连接紧密, 间距很小, 结构密实, 薄膜的厚度约为1-1.5μm。Si 与Al的复合对薄膜的断面形貌没有明显的影响, 但薄膜更加致密, 柱状晶粒明显细化, XRD

气缸套异常磨损的机理及特征

1或 2 [ 率损耗、燃油和润滑油的消耗、使用寿命以及排气的颜色等都有着重大的影响。因此,正确地认识气缸套磨损的类型及其产生的机理,并采取积极的预防措施和修复工艺,对于提高船舶柴油机的整机寿命和机械设备的使用效益有十分重要的意义。本文探讨了船全面而系统地分析了船舶柴油机气缸套磨损的 。}{摘要与关键词之间空一行} {

[英文标题三号 Ari al 字体(加粗),居中,[Abstract] The cylinder liner is an important part of Marine diesel engine, as the poor working conditions of inner wall, it is easily to wear and its wear conditions will directly impact the seal performance between the cylinder liner and piston ring,and will have a significant impact on the start , power loss, the consumption of fuel and lubricants, life and exhaust gas colors of diesel engine. Therefore, the correct understanding the types and the producing mechanism of cylinder liner wear, and it has very great significance to take active preventive measures and rehabilitation process for raising the all marine diesel engine life and the use efficiency of mechanical equipment. In this paper, studying the marine diesel engine cylinder liner wear characteristics and the formation of laws, comprehensivly and systematicly analysising the types and the mechanism of the cylinder liner wear of marine diesel engine producing, and on this basis, putting forward the preventive measures and rehabilitation process of reducing the marine diesel engine cylinder wear in the using and repairing.{英文摘要两字采用四号Ari al 字体(加粗)}{[Abstract]后空一格,摘要内容均用小四号Arial 字体。} [Key words]

耐磨及减摩材料的摩擦磨损特性的探究..

耐磨耐蚀材料 题目:耐磨及减摩材料的摩擦磨损特性探究 学院:材料科学与工程学院 专业:材料加工工程 指导老师:路阳杨效田 学生姓名:王鹏春 学号: 132080503043 2104年5月1日

耐磨及减摩材料的摩擦磨损特性探究 摘要:综述了耐磨及减摩材料的基本性能要求,简单阐述了常见的耐磨及减摩材料的成分、组织与性能等和目前耐磨及减摩材料的新进展及方向。最后,论述了耐磨及减摩材料在表面工程技术中的应用形式,及耐磨涂层的发展方向。 关键词: 耐磨材料;减摩材料;耐磨涂层 0前言 众所周知,摩擦磨损特性的探究对国民经济来说,有着非凡的意义。据统计,全世界大约有2/1-3/1的能源以各种形式消耗在摩擦上。而摩擦导致的磨损是机械设备零件失效的三大原因之一,大约有80%的损坏零件是由于各种磨损形式引起的[1]。为了节约能源和材料,解决因磨损带来的损失显得至关重要,随着技术水平的发展,而其解决措施也变得各种各样,而本文主要从最基础的材料的选择上入手,来综述耐磨及减摩材料的摩擦磨损特性的探究现状及发展方向。 1 耐磨材料 材料的耐磨性通常是指在一定的工作环境下,摩擦副材料在,摩擦过程中抵抗磨损的能力。材料的耐磨性不是材料固有的本性,而是材料性质在一定的摩擦规范、表面状态、环境介质、工件结构、材料配对等某种条件下的体现。因此材料的耐磨性是相对的、有条件的。耐磨材料的一般性要求有以下几点[2]: 1.机械性能方面要有高的抗拉、抗压、抗拉、抗剪切强度;有高的硬度和韧性;有较高的相对延伸率;在摩擦的高温、高压下,机械性能应该稳定。 2.物理、化学性能方面要有良好的导热性,低的热膨胀系数,且各相的线膨胀系数差别要小;合金元素在其内的溶解度要高,分布要均匀;各相间微观电势要小,抗腐蚀性好;各相成分要在较宽的温度、压力范围内保持稳定。 3.金相结构方面金属晶体的滑移系要少;固溶体与强化相要恰当配合;强化相要有高的弥散性,分布要均匀;各相的位向要互相接近。 4.工艺性能方面要有良好的淬透性和机加工性,以及其他必要工艺性能,如铸件的铸造性。

发动机气缸套磨损原因及维护

发动机气缸套磨损原因及维护 发动机气缸套和活塞环是在高温、高压、交变载荷和腐蚀的情况下工作的一对摩擦副。长期在复杂多变的情况下工作,其结果是造成气缸套磨损变形,影响了发动机的动力性、经济性和使用寿命。认真分析气缸套磨损变形的原因,对于提高发动机的使用经济性有十分重要的意义。 一、气缸套磨损的原因分析 气缸套的工作环境十分恶劣,造成磨损的原因也很多。通常由于构造原因允许有正常的磨损,但使用和维修不当,就会造成非正常磨损。 1 构造原因引起的磨损 1)润滑条件不好,使气缸套上部磨损严重。气缸套上部邻近燃烧室,温度很高,润滑条件很差。新鲜空气和未蒸发的燃料冲刷和稀释,加剧了上部条件的恶化,使气缸上都处于干摩擦或半干摩擦状态,这是造成气缸上部磨损严重的原因。 2)上部承受压力大,使气缸磨损呈上重下轻。活塞环在自身弹力和背压的作用下紧压在缸壁上,正压力越大,润滑油膜形成和保持越困难,机械磨损加剧。在作功行程中,随着活塞下行,正压力逐渐降低,因而气缸磨损呈上重下轻。 3)矿物酸和有机酸使气缸表面腐蚀剥落。气缸内可燃混合气燃烧后,产生水蒸气和酸性氧化物,它们溶于水中生成矿物酸,加上燃烧中生成的有机酸,对气缸表面产生腐蚀作用,腐蚀物在摩擦中逐步被活塞环刮掉,造成气缸套变形。 4)进入机械杂质,使气缸中部磨损加剧。空气中的灰尘、润滑油中的杂质等,进入活塞和缸壁间造成磨料磨损。灰尘或杂质随活塞在气缸中往复运动时,由于在气缸中部位置的运动速度最大,故加剧了气缸中部的磨损。 2 使用不当引起的磨损 1)润滑油滤清器滤清效果差。若润滑油滤清器工作不正常,润滑油得不到有效的过滤,含有大量硬质颗粒的润滑油必然使气缸套内璧磨损加剧。 2)空气滤清器滤清效率低。空气滤清器的作用是清除进入气缸的空气中所含的尘土和沙粒,以减少气缸、活塞和活塞环等零件的磨损。实验表明,发动机若不装空气滤清器,气缸的磨损将增加6-8倍。空气滤清器长期得不到清洗保养,滤清效果差,将加速气缸套的磨损。3)长时间低温运转。长时间地低温运转,一是造成燃烧不良,积碳从气缸套上部开始蔓延,使气缸套上部产生严重的磨料磨损;二是引起电化学腐蚀。 4)经常使用劣质润滑油。有的车主为图省事省钱,常在路边小店或向不法油贩购买劣质润滑油使用,结果造成缸套上部强烈腐蚀,其磨损量比正常值大1-2倍。 3 维修不当引起的磨损 1)气缸套安装位置不当。在安装气缸套时,若存在安装误差,气缸中心线和曲轴轴线不垂直,会造成气缸套非正常磨损。

磨损的特性 2

磨损特性 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的

屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

柴油发动机气缸套磨损原因分析及预防措施

柴油发动机气缸套磨损原因分析及预防 【摘要】:气缸套的正常磨损有着一定的规律性。汽缸套的正常磨损也具有必然性,但对设备不规范的操作,维修保养造成的早期磨损是可以避免的。掌握汽缸套磨损规律对了解汽缸套早期磨损原因提供了理论依据,知其然,知其所以然,通过对造成汽缸套正常磨损和早期磨损原因的分析和总结,掌握正确操作和维修保养设备的方法和措施。努力提高设备的完好率和使用率。 【关键词】:气缸套磨损规律正常磨损早期磨损 汽缸套的磨损主要集中在轴向方向和径向方向。 1.气缸套正常磨损的规律 1.1轴向截面的磨损规律:沿着气缸套轴向方向,在活塞环的有效行程范围里呈上大下小趋势,即磨成一定的锥度。在第一道活塞环最上点略下处磨损最大,气缸活塞环接触不到的部位几乎没有磨损,于是形成了“缸肩”。而最后一道活塞环以下部位几乎没有磨损。 1.2径向截面的磨损规律:在平行于气缸圆周方向的横截面上,气缸磨损不均匀,磨损成不规则的椭圆形。一般是前后或左右方向磨损最大。 1.3.在同一台发动机上,不同气缸磨损情况也不相同,一般水冷式发动机的第一缸前壁和最后一缸的后壁处磨损较严重。 2.气缸正常磨损的原因。 2..1气缸磨损成锥角的原因。 2.1.1.摩擦力不等的影响:做功行程中,燃烧的高压气体通过活塞环间隙与活塞环与活塞之间的配合间隙,穿入活塞环背面,增大了活塞环对气缸壁的压力,活塞在上止点处,第一道活塞环对气缸壁的压力最大,可达2940kpa,第二道活塞环为735kpa,第三道活塞环为294kpa。随着活塞的下行,工作气压逐渐降低,活塞环对气缸壁的压力也随之下降,由于活塞环对气缸壁的正压力大,摩擦力也随之增大大,气缸摩擦损失增加,所以越靠近气缸上部磨损越严重。 2.1.2.润滑条件不同的影响:活塞在它的工作行程中,不仅压力由大逐渐减小,而且

摩擦磨损

博士入学考试 名词解释 粗糙度:评定加工过的材料表面由峰、谷和间距等构成的微观几何形状误差的物理量。 固体润滑:利用固体所具有的减摩作用的润滑方法。 固体润滑材料:为了防止相对运动中的表面损伤,并降低摩擦与磨损而使用的薄膜或粉状固体。 滑动磨损:两个相对滑动物体公共接触面积上产生的切向阻力和材料流失的现象。 自由磨料磨损和固定磨料磨损:两者皆为磨料磨损,自由磨料磨损磨料保持自由状态,而固定磨料磨损磨料保持固定状态。 耐磨性和相对耐磨性:材料的耐磨性是指一定条件下材料耐磨性的特性;相对耐磨性是指两种材料在相同的外部条件下磨损量的比值。 微切削和微犁沟:微切削是磨料(磨粒或硬突起)从被磨损表面切削下微切屑的磨料磨损过程;在相对滑动中,硬颗粒或两表面中硬微突体使较软表面塑性变形而形成犁痕式的破坏。 问答题 1.简述摩擦的概念和分类。 摩擦:两个相互接触的物体在外力作用下发生相对运动或具有相对运动的趋势时,就会发生摩擦。 摩擦学:摩擦学是研究相对运动互作用表面的科学与技术,它包括材料的摩擦、磨损和润滑三个部分。 分类: (1)按摩擦副表面的润滑情况分: 干摩擦:物件间或试样间不加任何润滑剂时的摩擦。 边界摩擦:两接触表面间存在一层极薄的润滑膜,其摩擦和磨损不是取决于润滑剂的粘度,而是取决于两表面的特性和润滑特性。 流体摩擦:由流体的黏滞阻力或流变阻力引起的内摩擦。 半干摩擦:部分干摩擦,部分边界摩擦。半流体摩擦:部分边界摩擦,部分流体摩擦。 (2)按摩擦副的运动形式分: 滑动摩擦:当接触表面相对滑动或具有相对滑动趋势时的摩擦。 滚动摩擦:当物体在力矩的作用下沿接触表面滚动时的摩擦。

超声表面滚压工艺参数对45钢摩擦磨损性能的影响研究

超声表面滚压工艺参数对45钢摩擦磨损性能的影响研究 超声表面滚压(Ultrasonic Surface Rolling Extrusion,USRE)是一种基于弹塑性变形的新型表面强化方法,它利用超声频机械振动和静载滚压的耦合作用对加工表面处理,实现对金属材料表面质量的改善,提高材料的耐磨性能。USRE 具有主轴转速、横向进给量、静压力、输出振幅、加工次数、振动频率等众多工艺参数,在不同工艺参数下对材料加工,对其表面质量的改善必然不尽相同,从而会影响到材料性能。 本文使用豪克能HK30C型系列的超声滚压设备和普通卧式车床对调质态45钢加工处理,通过金相制样设备、金相显微镜、表面粗糙度测定仪、显微硬度测试仪和X射线粉末衍射仪对USRE试样进行了表面特性的分析。使用MMG-10型高温摩擦磨损试验机对不同静压力、输出振幅和加工次数的USRE试样进行了磨损试验,通过光学读数分析天平、相关软件及扫描电子显微镜对USRE试样磨损后的重量磨损量、摩擦因数和表面微观形貌进行了对比分析,评定了材料的耐磨性,研究得出了USRE工艺参数对调质态45钢的耐磨性能的影响。 本文的主要研究结果如下:(1)其它工艺参数一定,横向进给量越小,则材料表面粗糙度越小,表面硬度越大,表层残余压应力越大。当其它工艺参数一定时,主轴转速与横向进给量具有相似性,不过对材料表面硬度的影响不明显。 所以,在实际加工确保机床工作精度及加工效率的前提下,尽可能的选择较低的主轴转速和横向进给量。(2)其它工艺参数一定,静压力为300N时,材料磨损量和摩擦因数最低,晶粒细化程度最高、材料耐磨性能呈现最好。 静压力过小,改善材料耐磨性能的作用是甚微的。静压力过大,会降低表面特性,使材料微观组织变得宽大,从而降低材料的耐磨性。

磨损特性曲线2

磨损特性曲线2 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很

高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

柴油机缸套磨损

船舶柴油机气缸套的磨损及管理对策 (标题:三号黑体,可以分为1或2行居中打印,题目下空一行打印摘要) [摘要] 气缸套是船舶柴油机的重要零件之一,因其内壁工作条件十分恶劣,很容易发生磨损,其磨损情况将直接影响气缸套与活塞环之间的密封性能,对柴油机的启动、功率损耗、燃油和润滑油的消耗、使用寿命以及排气的颜色等都有着重大的影响。因此,正确地认识气缸套磨损的类型及其产生的机理,并采取积极的预防措施和修复工艺,对于提高船舶柴油机的整机寿命和机械设备的使用效益有十分重要的意义。本文探讨了船舶柴油机气缸套磨损的特征及形成规律,全面而系统地分析了船舶柴油机气缸套磨损的类型及其产生的机理,并在此基础上,提出了在使用和保修中减少船舶柴油机气缸套磨损的预防措施及修复工艺。 [关键词] 船舶柴油机;气缸套;磨损;管理对策 0 引言-------------------------------------------------------------------1 1 1.1 粘着磨损1.2 磨粒磨损1.3 腐蚀磨损1.4 撞击磨损1.5 复合磨损2 气缸套正常磨损规律3 气缸套异常磨损的特征及原因3.1 气缸套异常磨损的特征---------------------------------------------8 3.2 气缸套异常磨损的原因--------------------------------------------10 4 防止气缸套异常磨损的预防措施------------------------------------------11 4.1 气缸油的选择与注油率的确定--------------------------------------11

MM1000系列型摩擦磨损性能试验设备

MM1000系列型摩擦磨损性能试验设备 由西安顺通机电应用技术研究所研制成功的我国最新型全自动化控制的惯性系列摩擦磨损性能试验机,己在国内的摩擦材料领域得到了普及应用和配置。 全自动控制的系列摩擦磨损性能试验机应用现代工业控制技术和计算机应用技术从主机的结构、动力源、采集值、测试技术、应用瞬间值的采集技术即提取同一瞬间的压力值和扭矩值计算出该瞬间的摩擦系数等相关的测试值,提高了测试数据的精度等级及准确性,实现了测试数据的可靠性和重复性。它集机、电、气技术和传感器技术、变频调速技术、现代工业控制技术、计算机应用技术为一体,成功的实现了摩擦材料性能测试自动化,涉入全部摩擦材料领域。在实现全自动控制的工艺过程时全部按照国标、行标、(企标)的工艺路线和模拟实际工况试验条件设置进行,制作出符合企业生产、科研院所、大专院校进行摩擦材料生产、研究、配方工艺、质量控制和新材料研制、开发的专业检测设备。应用现代先进的科学技术,提供科学的试验方法和准确的测试数据使该试验机具备了小样试验机和整片1:1台架试验功能。它保持了与产品工况的一致性,又保持了与台架试验的一致性。保持与路试、航试有稳定的对应关系,应用小样试验的跟踪工艺性强,满足了快速变化的试验步骤,为企业赢得了时间,节约了资金。 全自动控制的系列摩擦磨损性能试验机应用了小样缩比模拟制动惯性试验原理,建立了模拟制动的试验方法,应用了全自动控制技术,实现了实验室条件下小样缩比模拟制动试验的功能。应用了多元相似原理模拟实际工况完成了(惯性制动)热冲击刹车试验的功能. 该检测设备不但具备了髙速、髙压、低速、低压、变速、变压、变温等技术条件下的测试功能,完成了摸拟飞机、坦克、火车、汽车、轨道列车等重载大惯量等制动工况进行的摩擦材料的摩擦、磨损、热负荷、及可靠性的试验研究要求,以材料可承载的最大负荷完成各种试验项目和极限试验功能;对于全部试验参数的采集频率高、采集精度高、采集速度快、采集数量大都较之所有试验机、试验台无以比拟的,实现采控一体采集信号,能与计算机通讯完成数据的转存和试验机的监测系统。全系统在全自动控制实验过程中有安全警示、有过载保护能力,以专用控制程序完成全系统控制指令,试验参数任意设置,测试数据随机采集,测试软件参数完全放开可设置,试验曲线坐标随试验条件变化,在整亇制动曲线中反映出实验全过程绘制的七条曲线并记录其任一瞬间的压力、转速、扭矩、温度值,即可计算出这一状态下的.动、静摩擦力矩;动、静摩擦系数、;摩擦功、;

摩擦磨损测试及考核评价方式

摩擦磨损测试及考核评价方式 一、磨损 1.1磨损定义 磨损是指摩擦副相对运动时,表面物质不断损失或产生残余变形的现象。表面物质运动主要包括机械运动、化学作用和热作用:(1)机械作用使摩擦表面发生物质损失及摩擦表面的物理变形;(2)化学作用使摩擦表面发生性状改变;热作用是摩擦表面发生形状改变。典型的磨损曲线通常由三部分组成,如图1.1所示。 磨 损 量 图1.1 磨损曲线示意图 磨合阶段:磨损量随时间的增加而增加。发生在初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度较快。 稳定磨损阶段:摩擦表面磨合后达到稳定状态磨损率保持不变。稳定磨损阶段标志磨损条件保持相对稳定,是零件整个寿命范围内的工作过程。 剧烈磨损阶段:工作条件恶化,磨损量急剧增大。该阶段内零件精度降低、间隙增大,温度升高,产生冲击、振动和噪声,最终导致零部件完全失效。 1.2磨损种类 按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。 (1)粘着磨损 当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。粘着磨损再细分还有轻微磨损、涂抹、擦伤、划伤和咬死五种。

图1.1 粘着磨损机理 (2)磨料磨损 外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。磨料磨损是一种最常见的磨损,按照磨损机理还可细分为微观切削、挤压剥落和疲劳破坏三小类。

图1.2 二体/三体磨粒磨损机理 (3)化学磨损 化学磨损是在摩擦促进作用下,摩擦副的一方或双方与中间物质或环境介质中的某些成分发生化学或电化学作用,造成表面材料损失的过程。分为氧化磨损与特殊介质腐蚀磨损两类。 图1.3 化学磨损机理 (4)疲劳磨损 摩擦接触表面在交变接触压应力作用下,材料表面因疲劳损伤而引起表面脱落的现象。疲劳磨损有两种基本类型,宏观疲劳磨损和微观疲劳磨损。宏观疲劳磨损主要是指两个相互滚动或滚动兼滑动的摩擦表面,在循环变化的接触应力作用下,材料疲劳而发生脱落的现象;微观疲劳磨损是滑动接触表面由于微凸体相互接触使材料发生疲劳而引起的机械磨损现象。此外,疲劳磨损的破坏机理又分为麻点剥落、浅层剥落、深层剥落。

橡胶摩擦磨损特性的研究进展_吕仁国

第18卷第5期高分子材料科学与工程V o l.18,No.5 2002年9月POLYM ER M ATERIALS SCIENCE AN D EN GIN EERING Sept.2002橡胶摩擦磨损特性的研究进展 吕仁国,李同生,刘旭军 (中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州730000) 摘要:综述了近年来橡胶材料摩擦学的研究进展,论述了橡胶摩擦磨损的特点,讨论了影响橡胶摩擦学性能的各种因素,诸如物理力学性能、温度、溶胀、改性等。并针对橡胶摩擦磨损的研究现状及其发展前景,提出了今后值得重视的研究发展方向。 关键词:橡胶;摩擦磨损;影响因素 中图分类号:O631.2+1 文献标识码:A 文章编号:1000-7555(2002)05-0012-04 橡胶是非常重要且用量很大的工业材料之一,据不完全统计,2000年我国橡胶总消耗量将达220万吨,摩擦学性能是橡胶制品的一项非常重要的指标,例如橡胶轮胎的耐磨性能、刹车性能和行车效率、密封件的耐磨性等[1]。提高橡胶制品的耐磨性和使用寿命,可以在节约能源、材料、润滑剂等方面带来相当可观的经济效益和社会效益。因此,许多学者对此产生兴趣[2],橡胶摩擦磨损研究成为当今材料摩擦学研究的热点之一。 本文概括了近年来国内外橡胶摩擦磨损的研究进展,重点对橡胶摩擦磨损的特点和影响因素进行论述,并提出今后值得重视的研究发展方向。 1 橡胶摩擦的特点 橡胶是一种弹性模量很低、粘弹性很高的材料,因此橡胶的摩擦具有不同于金属和一般聚合物的特征。橡胶与刚性表面在滑动接触界面上的相互作用力包括粘着和滞后两项,而其摩擦力也正是由这两部分组成[3]: F=F a+F h(1)式中,F a——粘着摩擦力;F h——滞后摩擦力。 粘着摩擦起因于橡胶与对偶面之间粘着的不断形成和破坏[4],滞后摩擦则是由表面微凸体使滑动橡胶块产生周期性变形过程中能量的耗散引起的[5]。 当橡胶在坚硬光滑的表面上滑动时,摩擦力主要表现为粘着摩擦,根据弹性体摩擦的粘着理论,可以得出粘着摩擦力F a为[6]: F a=K1S(E′/p V)ta n W (V<1)(2)式中,K1——常数;S——滑动界面的有效剪切强度;p——正压力;E′——储能模量;tan W——损耗角正切(粘弹性参数)。显然,橡胶的粘着摩擦与材料的损耗角正切ta n W成正比。 润滑剂的存在可以阻止橡胶与对偶间的直接接触,使粘着摩擦成分大大降低,滞后摩擦起主要作用。根据弹性体滞后摩擦的松弛理论,可得出滞后摩擦力为[6]: F h=K2(p/E′)n tan W (n≥1)(3)式中,K2为与几何形状因子有关的常数。滞后摩擦力也与ta n W成正比,所不同的是,滞后摩擦力与变形程度因子(p/E′)n成正比。由此,橡胶的摩擦力可表示为: F=[K1S(E′/p V)+K2(p/E′)n]tan W(4) 2 橡胶磨损的特点 金属和塑料磨损表面的特征是磨痕与摩擦方向平行,而橡胶磨损表面的磨痕却垂直于摩擦方向,并且,磨痕在橡胶表面形成山脊状突 收稿日期:2000-10-18;修订日期:2001-02-20 作者简介:吕仁国,男,24岁,硕士生.

气缸套的磨损原因及正确维护共14页

气缸套的磨损原因及正确维护 发动机气缸套和活塞环是在高温、高压、交变载荷和腐蚀的情况下工作的一对摩擦副。长期在复杂多变的情况下工作,其结果是造成气缸套磨损变形,影响了发动机的动力性、经济性和使用寿命。认真分析气缸套磨损变形的原因,对于提高发动机的使用经济性有十分重要的意义。 一、气缸套磨损的原因分析 气缸套的工作环境十分恶劣,造成磨损的原因也很多。通常由于构造原因允许有正常的磨损,但使用和维修不当,就会造成非正常磨损。 1 构造原因引起的磨损 1)润滑条件不好,使气缸套上部磨损严重。气缸套上部邻近燃烧室,温度很高,润滑条件很差。新鲜空气和未蒸发的燃料冲刷和稀释,加剧了上部条件的恶化,使气缸上都处于干摩擦或半干摩擦状态,这是造成气缸上部磨损严重的原因。 2)上部承受压力大,使气缸磨损呈上重下轻。活塞环在自身弹力和背压的作用下紧压在缸壁上,正压力越大,润滑油膜形成和保持越困难,机械磨损加剧。在作功行程中,随着活塞下行,正压力逐渐降低,因而气缸磨损呈上重下轻。

3)矿物酸和有机酸使气缸表面腐蚀剥落。气缸内可燃混合气燃烧后,产生水蒸气和酸性氧化物,它们溶于水中生成矿物酸,加上燃烧中生成的有机酸,对气缸表面产生腐蚀作用,腐蚀物在摩擦中逐步被活塞环刮掉,造成气缸套变形。 4)进入机械杂质,使气缸中部磨损加剧。空气中的灰尘、润滑油中的杂质等,进入活塞和缸壁间造成磨料磨损。灰尘或杂质随活塞在气缸中往复运动时,由于在气缸中部位置的运动速度最大,故加剧了气缸中部的磨损。 2 使用不当引起的磨损 1)润滑油滤清器滤清效果差。若润滑油滤清器工作不正常,润滑油得不到有效的过滤,含有大量硬质颗粒的润滑油必然使气缸套内璧磨损加剧。 2)空气滤清器滤清效率低。空气滤清器的作用是清除进入气缸的空气中所含的尘土和沙粒,以减少气缸、活塞和活塞环等零件的磨损。实验表明,发动机若不装空气滤清器,气缸的磨损将增加6-8倍。空气滤清器长期得不到清洗保养,滤清效果差,将加速气缸套的磨损。 3)长时间低温运转。长时间地低温运转,一是造成燃烧不良,积碳从气缸套上部开始蔓延,使气缸套上部产生严重的磨料磨损;二是引起电化学腐蚀。

相关文档
最新文档