微生物鉴别方法

微生物鉴别方法
微生物鉴别方法

微生物鉴别方法

一、微生物鉴别方法——传统方法

在传统的分类鉴定中,微生物分类鉴定的主要依据是形态学特征、生理生化反应特征、生态学特征以及血清学反应、对噬菌体的敏感性等。在鉴定时,我们把这些依据作为鉴定项目,进行一系列的观察和鉴定工作。

1、形态学特征

(1)细胞形态

在显微镜下观察细胞外形大小、形状、排列等,细胞构造,革兰氏染色反应,能否运动、鞭毛着生部位和数目,有无芽孢和荚膜、芽孢的大小和位置,放线菌和真菌的繁殖器官的形状、构造,孢子的数目、形状、大小、颜色和表面特征等。(2)群体形态

群体形态通常是指以下情况的特征:在一定的固体培养基上生长的菌落特征,包括外形、大小、光泽、黏稠度、透明度、边缘、隆起情况、正反面颜色、质地、气味、是否分泌水溶性色素等;在一定的斜面培养基上生长的菌苔特征,包括生长程度、形状、边缘、隆起、颜色等;在半固体培养基上经穿刺接种后的生长情况;在液体培养基中生长情况,包括是否产生菌膜,均匀浑浊还是发生沉淀,有无气泡,培养基的颜色等。如是酵母菌,还要注意是成醭状、环状还是岛状。

2、生理生化反应特征

(1)利用物质的能力

包括对各种碳源利用的能力(能否以CO2为唯一碳源、各种糖类的利用情况等)、对各种氮源的利用能力(能否固氮、硝酸盐和铵盐利用情况等)、能源的要求(光能还是化能、氧化无机物还是氧化有机物等)、对生长因子的要求(是否需要生长因子以及需要什么生长因子等)。

(2)代谢产物的特殊性

这方面的鉴定项目非常多,如是否产生H2S、吲哚、CO2、醇、有机酸,能否还原硝酸盐,能否使牛奶凝固、冻化等。

(3)与温度和氧气的关系

测出适合某种微生物生长的温度范围以及它的最适生长温度、最低生长温度和最高生长温度。对氧气的关系,看它是好氧、微量好氧、兼性好氧、耐氧还是专性厌氧。

3、生态学特征

生态学特征主要包括它与其他生物之间的关系(是寄生还是共生,寄主范围以及致病的情况)。在自然界的分布情况(pH情况、水分程度等)、渗透压情况(是否耐高渗、是否有嗜盐性等)。

4、血清学反应

很多细菌有十分相似的外表结构(如鞭毛)或有作用相同的酶(如乳酸杆菌属内各种细菌都有乳酸脱氢酶)。虽然它们的蛋白质分子结构各异,但在普通技术下

(如电子显微镜或生化反应),仍无法分辨它们。然而利用抗原与抗体的高度敏感特异性反应,就可用来鉴别相似的菌种,或对同种微生物分型。

用已知菌种、型或菌株制成的抗血清,与待鉴定的对象是否发生特异性的血清学反应来鉴定未知菌种、型或菌株。

该法常用于肠道菌、噬菌体和病毒的分类鉴定。利用此法,已将伤寒杆菌、肺炎链球菌等菌分成数十种菌型。

5、生活史

生物的个体在一生的生长繁殖过程中,经过不同的发育阶段。这种过程对特定的生物来讲是重复循环的,常称为该种生物的生活周期或生活史。

各种生物都有自己的生活史。在分类鉴定中,生活史有时也是一项指标,如黏细菌就是以它的生活史作为分类鉴定的依据。

6、对噬菌体的敏感性

与血清学反应相似,各种噬菌体有其严格的宿主范围。利用这一特性,可以用某一已知的特异性噬菌体鉴定其相应的宿主,反之亦然。

二、微生物鉴别方法——新技术新方法

1、细胞壁组分分析

细胞壁组分分析首先应用于放线菌分类中,把它作为区分“属”的依据之一。它比单纯用形态进行分类更全面。近年来,有人对18个属的放线菌的细胞壁进行了

分析,根据细胞壁的氨基酸组成,将其分为6个细胞壁类型,又根据细胞壁的糖的组成分成4个糖类型,在此基础上,结合形态特征提出了相应的科属检索表。

2、红外光谱IR

一般认为,每种物质的化学结构都有特定的红外光谱。若两个样品的吸收光谱完全相同,可以初步认为它们是同一种物质。因此,红外光谱技术被应用到微生物的分类中。它先后对芽孢杆菌、乳酸菌、大肠杆菌、酵母菌进行分类,近年来又应用于放线菌分类中。

根据有关学者的试验表明,这种方法简便快速,样品少,结果较好,不仅可以初步了解各属菌的细胞成分的化学性质,同时也有助于微生物间系统发育关系的探索。但是它也有不足之处,借助于红外线光谱区分属内的种和菌株是困难的,但可以作为“属”的分类特征。

3、气相色谱GC

4、高效液相色谱HPLC

5、质谱分析MS

三、微生物鉴别方法——分子生物学方法

1、DNA碱基比

DNA碱基比[(G+C)mol%],以G+C物质的量分数(mol%)表示:

(G+C)mol%=(G+C)/(A+T+G+C)%

该比值的变化范围很大,原核生物变化范围是20-78%,真核生物的变化范围为30%-60%。

目前已经测定了大量生物的DNA碱基组成,从中可以发现一些带有规律性的结论:①亲缘关系密切而表型又高度相似的微生物应该具有相似的DNA碱基比;不同微生物之间的DNA碱基比差别很大,则表明它们之间亲缘关系疏远。②DNA 碱基比相同或相似的微生物并不一定表明它们之间的亲缘关系就一定相近,这是因为DNA碱基比只是指DNA中4种碱基的含量,并未反映出碱基在DNA分子中的排列顺序。③一般认为,DNA碱基比相差超过5%就不可能是属于同一个种,DNA碱基比相差超过10%可考虑是不同属。

DNA碱基比可用化学方法或物理方法测定。由于化学方法比较费时,而且误差也较大,因此目前比较常用物理方法进行测定,尤其是热变性温度法。该法操作比较简便,重复性较稳定,常被作为首选而采用。该法是用紫外分光光度计测定DNA的熔解温度(Tm)。它的基本原理是:首先将DNA溶于一定离子强度的溶液中,然后加热。当温度升到一定的数值时,两条核苷酸单链之间的氢键开始逐渐被打开(DNA开始变性)分离,从而使DNA溶液365紫外吸收明显增加;当温度高达一定值时,DNA完全分离成单链,此后继续升温,DNA溶液的紫外吸收也不再增加。DNA的热变性过程(即增色效应的出现)是在一个狭窄的温度范围内发生的,紫外吸收增加的中点值所对应的温度称为该DNA的热变性温度或熔解温度。在DNA分子中,GC碱基对之间有3个氢键,而AT碱基对只有2个氢键。因此,若细菌的DNA分子G+C含量高,其双链的结合就比较牢固,使其分离成单链则需较高的温度。在一定离子浓度和一定pH的盐溶液中,

DNA的Tm值与DNA的G+C含量成正比。因此,只要用紫外分光光度计测出一种DNA分子的Tm值,就可以计算出该DNA的G+C含量。

2、核酸的分子杂交

前面已经谈到,亲缘关系相近的微生物,其DNA碱基比相同或相近。反之则不然,也就是说,DNA碱基比相同或相近的微生物,其亲缘关系并不一定相近。这是因为DNA碱基比的相同或相近并不反映碱基对的排列顺序相同或相近,而微生物间的亲缘关系主要取决于它们碱基对的排列顺序的相同程度。因此,要确定它们之间的亲缘关系就要进行核酸的分子杂交试验,以比较它们之间碱基对序列的相同程度。核酸的分子杂交试验在微生物分类鉴定中的应用主要包括

DNA-DNA分子杂交和DNA-rRNA分子杂交等方法。

①DNA-DNA分子杂交:该方法的基本原理是利用DNA双链解离成单链(变性),单链结合成双链(复性),碱基配对的专一性,将不同来源的DNA在体外解链,并在合适的条件下使单链中的互补碱基配对结合成双链DNA。然后根据能生成双链的情况,测定杂合百分比。如果两条单链DNA的碱基序列完全相同,则它们能生成完整的双链,即杂合率100%;如果两条链的碱基序列只是部分相同,则它们生成的“双链”含有部分单链,其杂合率小于100%。因此,杂合率越高,表示两个DNA之间碱基序列的相似性越高,说明它们之间的亲缘关系也就越近。许多资料表明,DNA-DNA杂交最适合于微生物种一级水平的研究。根据约翰逊1981年的试验指出,DNA-DNA杂交同源性在60%以上的菌株可视为同一个种,同源性低于20%者为不同属的关系,同源性在20-30%之间可视为属内紧密相关的种。

核酸的分子杂交的具体测定方法很多。按杂交反应的环境可分为液相杂交和固相杂交两大类,前者在溶液中进行,后者在固体支持物上进行。在这些方法中,有的需要用同位素标记的DNA,有的则用非同位素标记。在细菌分类中,常用固相杂交法进行测定。这种方法的大致做法是:将未标记的各微生物菌株的单链DNA预先固定在硝酸纤维素微孔滤膜(或琼脂等)上,再用经同位素标记的参考菌株的单链DNA小分子片段在最适复性温度条件下与膜上的DNA单链杂交;杂交完毕后,洗去滤膜上未配对结合的带标记的DNA片段;然后测定各菌株DNA 滤膜的放射性强度。以参考菌株自身复性结合的放射性计数值为百分之百,即可计算出其他菌株与参考菌株杂交的相对百分数。这些百分数值即分别代表这些菌株与参考菌株的同源性或相似性水平,并以此数值来判断各菌种间的亲缘关系。

②DNA-rRNA分子杂交:DNA中(G+C)mol%测定和DNA-DNA分子杂交方法为微生物种和属的分类鉴定研究开辟了新的途径,解决了以表型特征为依据所无法解决的一些疑难问题。但是对许多属以上的分类单元的正确关系仍不能解决。因为许多研究表明,当两个菌株的DNA配对碱基少于20%时,DNA-DNA 分子杂交往往不能形成双链,因而限制了DNA-DNA分子杂交方法在微生物种以上单元分类中的应用。要解决这个问题,就要研究RNA的碱基序列,需要用rRNA 与DNA进行杂交。RNA是RNA转录的产物。在生物进化过程中,其碱基序列的变化比基因组要慢得多,保守得多,它甚至保留了古老祖先的一些碱基序列。因此,当两个菌株的DNA-DNA杂交率很低或不能杂交时,用DNA-rRNA杂交仍可能出现较高的杂交率,因而可以用来进一步比较关系更远的菌株之间的关系,进行属和属以上等级分类单元的分类。DNA-rRNA杂交和DNA-DNA杂交的原理和方法基本相同,都是利用核酸复性的规律。但两种方法也有差异:

A. 在DNA-rRNA分子杂交中,同位素标记部位在rRNA。

B. DNA-rRNA分子杂交结果是以Tm值来表示。Tm值越高,表示亲缘关系越近。

③核苷酸序列分析从本章第一节可以看出,16SRNA大分子在生物进化研究中起着重要的作用。伍斯就是根据对60株细菌的16SRNA的核苷酸序列分析研究后,提出了生命的第三种形式---古细菌。16SrRNA序列同源性的应用不仅发现了古细菌,同时还揭示了细菌域各群间的系统发育关系,修正了许多细菌的分类地位,提出了不同于传统细菌分类体系的新的分类系统。新的分类系统体现了微生物分类的研究从表观特征向系统发育体系的发展。新的细菌分类系统与传统的细菌分类体系相比,也存在较多的差异,这主要表现在:

A、改变了细胞壁结构作为亲缘关系划分的标志之一,如无细胞壁的支原体,实际是革兰氏阳性的芽孢梭菌的一个后代分支。

B、改变了营养类型作为种系发生的特征,如光合细菌并非是独立于非光合种群的进化分支,而是每种光合种群都代表了一个高阶的分类单元,其后代分支包括非光合细菌。

C、尽管革兰氏阳性细菌是系统发育关系密切的一群细菌,但革兰氏阴性菌却包括了10个亚群。

应用16SrRNA核苷酸序列分析法进行微生物分类鉴定,首先要将微生物进行培养,然后提取并纯化16SrRNA,进行16SRNA序列测定,获得各相关微生物的序列资料,再输入计算机进行分析比较,由计算机分析微生物之间系统发育关系并确定其地位。

16SrRNA核苷酸序列测定和分析方法可分两类:16SrRNA寡核苷酸编目分析法和16SrRNA全序列分析法。

16SrRNA寡核苷酸编目分析法的大致做法如下:从培养的微生物中提取并纯化16SrRNA,再将纯化的16SrRNA用核糖核酸酶(如T1核酸酶)处理,水解成片段,并用同位素体外标记(也可以在培养微生物时进行活体标记),然后用双向电泳层析法,分离这些片段,用放射自显影技术确定不同长度的寡核苷酸斑点在电泳图谱中的位置,根据寡核苷酸在图谱中的位置,小片段的寡核苷酸分子序列即可确定。对于不能确定序列的较大片段核苷酸,还需要把斑点切下,再用不同核糖核酸酶或碱水解,进行二级分析,有的可能还要进行三级分析,直至弄清所有片段的序列为止。在此基础上,对6个或更多核苷酸的片段按不同长度进行编目。将所有要比较的微生物的序列目录编好后,即可对这些序列目录资料进行分析比较,采用相似性系数法比较各微生物之间的亲缘关系。相似性系数法是通过计算相似性系数SAB值来确定微生物之间的关系。

如果SAB等于1,说明所比较的两菌株rRNA序列相同,两菌株亲缘关系相近,若SAB值小于0.1,则表明亲缘关系很远。

寡核苷酸编目分析法只获得了16SrRNA分子的大约30%的序列资料,加上采用的是一种简单相似性的计算方法,所以其结果有可能出现误差,应用上受到一定限制。随着核酸序列分析技术的发展,20世纪80年代末又陆续发展了一些rRNA 全序列分析方法,其中最常用的是直接序列分析法。这种方法用反转录酶和双脱氧序列分析,可以对未经纯化的rRNA抽提物进行直接的序列测定。

数值分类法是根据数值分析,借助计算机将拟分类的微生物按其性状的相似程度归类的方法。

(1)数值分类法的主要分类原则

该法主要的分类原则是:①分类时视每个性状为同等重要,以避免分类者的主观偏见,使结果比较客观。②根据尽可能多的性状分类,以揭示分类单位间的真实关系。③按性状的相似度归为等同分类单元。

(2)数值分类法的基本程序

数值分类法的基本程序如下:

①分类对象与性状的选择:数值分类时,分类对象可能是菌株,也可能是种或属,所以称每个分类对象为一个操作分类单位。很多场合下,OTU是指菌株。数值分类时,应根据工作目的认真地选择菌株,其中须包括与该分类单元有关的分类单元的模式菌株。如有可能,新近分离的菌株与世界不同地区的菌株也应包括在内。

为达到更客观和精确区分的目的,选择的性状应尽可能多,通常不应少于50个,多者可达上百个甚至几百个。一般地说,所选性状数目越多,分类结果越可靠。所选性状应是尽可能广泛而又均匀地遍布于所研究的微生物中,形态的、生理生化的、生态的、免疫的、遗传的等性状都可以。但要注意,无意义性状和全同性状不宜选用,相关性状如运动性与鞭毛也不能同时选用。

②性状编码将观察和测得的性状用计算机所能识别和运算的符号记录下来。以分类中用得最多的两态性状,如对某种碳源利用与否,有无某种酶,能否在45°生

长等为例,阳性结果(能利用某种碳源,有某种酶,能在45°生长等)用“+”表示,阴性结果用“-”表示。如资料缺乏或可疑,可用“NC”表示。对于定量多态性状或定性多态性状采用加权递增编码法,将1个多态性状转化成多个3态性状。将性状编好码后,把它们排列成顺序号,形成一个性状(原始数据)矩阵,然后输入计算机。输入计算机时分别用1和0表示,“NC”输入计算机时用“3”代表。

③相似度系数的计算:相似度系数是被比较的OTU对偶间整体相似程度的度量,它是根据每一对性状的相似程度计算出来的。计算相似度的方法很多,最简单的方法是计算对偶间相似性状的数目。

其计算公式如下:

S=NS/(NS+ND)

上式中的NS表示比较的OTU对偶有相同性状的数目,ND表示被比较的OTU 对偶有不同性状的数目。算出的相似度以百分数或比例表示。

④系统聚类(或等级聚类):根据相似度系数对OTU进行系统(或等级)聚类归群,得到相似度矩阵,即S矩阵。如对10个菌株进行数值分类,经过系统聚类可得到S矩阵,相似度为百分数,100表示每个OTU自己与自己相比。

⑤聚类结果的表示:从矩阵看不出这10个菌株间的相互关系,因此需要对矩阵进行重新处理,将相似度高的和低的分别列在一起,得到另一组矩阵。

然后再由此矩阵转换成能显示这10个菌株相互关系的树状谱。数值分类得到的是表观群。实践证明,表观群是等同于分类单元的。大约是75%相似度的表观

群可视为同一种,比值达65%以上者可归入同一属。这样的结论和传统分类方法的结果通常是一致的。

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

什么是微生物检验

什么是食品微生物检验 吴崇食质12级1班学号:20122629 微生物是个体难以用肉眼观察的一切微小生物之统称。微生物包括细菌、病毒、真菌、和少数藻类等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。)病毒是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。根据存在的不同环境分为空间微生物、海洋微生物等,按照细胞机构分类分为原核微生物和真核微生物。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可能含有50 亿个细菌。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广

微生物检测培训考核试题-(附答案)

一、填空题(共35个空,共计70分) 1、菌落总数:食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。 2、平板计数琼脂培养基的成分有胰蛋白胨、酵母浸膏、葡萄糖、琼脂、蒸馏水。 3、菌落总数小于100 CFU 时,按“四舍五入”原则修约,以整数报告。 4、大肠菌群:在一定培养条件下能发酵乳糖、产酸产气的需氧和兼性厌氧革兰氏阴性无芽胞杆菌。 5、GB 4789.3-2016《食品安全国家标准食品微生物学检验大肠菌群计数》中第一法适用于大肠菌群含量较低的食品中大肠菌群的计数;第二法适用于大肠菌群含量较高的食品中大肠菌群的计数。 6、MPN法是统计学和微生物学结合的一种定量检测法。待测样品经系列稀释并培养后,根据其未生长的最低稀释度与生长的最高稀释度,应用统计学概率论推算出待测样品中大肠菌群的最大可能数。 7、GB 29921-2013《食品安全国家标准食品中致病菌限量》n为同一批次产品应采集的样品件数;c为最大可允许超出m值的样品数;m为致病菌指标可接受水平的限量值;M为致病菌指标的最高安全限量值。 8、无菌生理盐水的制法:称取8.5g氯化钠溶于1000mL蒸馏水中,121℃高压灭菌15min。 9、霉菌和酵母平板计数法的培养过程:琼脂凝固后,正置平板,置28±1℃培养箱中培养,观察并记录培养至第5天的结果。 10、菌落总数的培养过程:待琼脂凝固后,将平板翻转,36±1℃培养48±2h。 11、霉菌和酵母平板计数法:若空白对照平板上有菌落出现,则此次检测结果无效。 12、大肠菌群平板计数法:在固体培养基中发酵乳糖产酸,在指示剂的作用下形成可计数的红色或紫色,带有或不带有沉淀环的菌落。 二、简答题(共1题,共计30分) GB 2749-2015《食品安全国家标准蛋与蛋制品》中液蛋制品的菌落总数和大肠菌群的微生 菌落总数:25g(ml)样品+225ml稀释液,均质→10倍系列稀释→选择2~3个适宜稀释度的样品匀液,各取1ml分别加入无菌培养皿中→每皿中加入15~20ml平板计数琼脂培养基,混匀→培养→计数各平板菌落数→计数菌落总数→报告 大肠菌群(平板计数法):25g(ml)样品+225ml稀释液,均质→10倍系列稀释→选择2~3个适宜稀释度的样品匀液,倾入VRBA平板(36±1℃培养18~24h)→计数典型和可疑菌落→BGLB肉汤(36±1℃培养24~48h)→报告结果 1/ 1

微生物检测标准

微生物取样方法、微生物检测标准 举例一: 一、空气采样及检验方法 1培养基:普通营养琼脂平板,按GB4789.28中3.7条配制 2采样(空气沉降法) 2.1布点:面积小于30平方米的车间,设一对角线,在线上取3点,即中心一点,两端在距墙1米处各取一点;面积大于30平方米的车间,设东、西、南、北、中5个点,其中东、西、南、北点均距墙1米。 2.2采样高度:与地面垂直高度80-150厘米。 2.3采样方法;用直径为9厘米的普通营养琼脂平板在采样点上暴露20分钟盖上送检培养。 3培养:于37℃培养24小时。 4检测频率:每周 空气质量标准: 生车间、熟车间、成品车间:低于100个 半成品库、成品库:低于10个 二、设备的采样与检验方法 根据生产过程所要求的重点卫生部位,实验室对其进行涂抹采样,进行细菌总数检验。 1采样方法 1.1涂抹法(适用于表面平坦的设备和工器具产品接触面) 取经过灭菌的铝片框(框内面积为50平方厘米)放在需检查的部位上,用无菌棉球蘸上无菌生理盐水擦拭铝片中间方框部分,擦完后立即将棉球投入盛有10毫升无菌生理盐水的试管中,此液每毫升代表5平方厘米。 1.2贴纸法(适用于表面不平坦的设备和工器具接处面) 将无菌规格纸(5×5厘米,纸质要薄而软)用无菌生理盐水泡湿后,于需测部分分别贴上两张,两张纸面积共50平方厘米,然后取下放入盛有10毫升无菌生理盐水的试管中,此液每毫升代表5平方厘米。 2检验方法 2.1细菌总数的检验 将上述样液充分振摇,根据卫生情况,相应地做10倍递增稀释,选择其中2-3个合适的稀释度作平皿倾注培养,培养基用普通营养琼脂,每个稀释度作2个平皿,每个平皿注入1毫升样液,于37℃培养24小时后计菌落数。 结果计算 表面细菌总数(cfu/cm2)=平皿上菌落的平均数×样液稀释倍数/30×2 2.2致病菌的检验 沙门氏菌,参照GB4789.4进行 金黄色葡球菌,参照GB7918.5进行 4.检验合格标准:细菌总数10-100个∕cm2, 5.关键点:细菌总数≤10个∕cm2 一般区域:细菌总数≤100个∕cm2 三、人员手表面细菌污染情况的检验

食品中有害微生物快速检测方法概述

(一)、概述 食用被微生物污染的食品而导致的疾病,称作食源性疾病。导致这类疾病的微生物叫食源性致病菌。随着人们居住和卫生条件的不断改善,以及抗生素的滥用,人类对病菌的抵抗能力却在不断下降,食源性疾病一直呈上升的趋势。因此,对食品中致病菌的监测和检验也就越显示其重要性,常规的检验大多依靠培养目标微生物的方法来确定食品是否受到此微生物的污染,这些方法需要一定的培养时间,少则2~3天,多至数周,才能确定。而现行有效的一些快速检测方法不仅可以大大缩短检测时间提高微生物检出率并可用于微生物计数、早期诊断、鉴定等方面,以做到快速、简便、准确。快速方法包括了微生物学、分子化学、生物化学、生物物理学、免疫学和血清学等领域。 (二)、常见、常用的快速、简便的检测微生物数量的方法如下: 1、活细胞计数的改进方法 (1)、旋转平皿计数方法 (2)、疏水性栅格滤膜法(HGMF)或等格法(isogrid method) (3)、血膜系统(Pertrifilm) (4)、酶底物技术(ColiComplete) (5)、直接外荧光滤过技术(DEFT) (6)、“即用胶”系统(SimPlate) 2、用于估计微生物数量的新方法 (1)、阻抗法 (2)、A TP生物发光技术 3、其他方法 (1)、微量量热法 (2)、接触酶测定仪 (3)、放射测定法 (三)、食品中沙门氏菌的快速筛检方法 1、沙门氏菌显色培养基法 2、免疫学方法 3、分子生物学方法 4、自动传导法 (四)、大肠杆菌O157:H7快速检测方法 大肠杆菌O157:H7肠出血性大肠杆菌的主要血清型,自1982年在美国被分离并命名以来,陆续发现本菌与轻度腹泻、溶血性尿毒综合症、出血性肠炎、婴儿猝死综合症等多种人类病症密切相关,是食源性疾病的一种重要致病菌。E.coli O157:H7属于肠杆菌科埃希氏菌属,为革兰氏阴性杆菌,有鞭毛。近年来作为食品卫生及流行病学的研究热点,E.coli O157:H7的分离和鉴定方法已取得了较大进展。利用其生化特征、免疫原性建立的方法以及现代分子生物学技术的应用,可以从多方面对E.coli O157:H7进行检测。 1、E.coli O157:H7鉴别培养基及显色培养基 2、免疫学检测方法 3、分子生物学方法 (五)、金黄色葡萄球菌的快速检测方法 金黄色葡萄球菌为革兰氏阳性球菌,呈普通串状排列无芽孢,无鞭毛,不能运动。该菌在自然界中分布广泛,如空气、水、土壤、饲料和一些物品上,是最常见的化脓性球菌之一,食品受其污染的机会很多。金黄色葡萄球菌食物中毒是其肠毒引起的,目前已确认的肠毒素至少有A,B,C1,C2,C3,D,E和F8个型。由金黄色葡萄球菌肠毒素引发的中毒爆发事件,近年来

微生物检验(完整版)

微生物检验(完整版) 名解 微生物:是一群个体微小结构简单肉眼不能看见的微小生物的总称 种:亲缘关系较近的微生物群体在进化发育阶段上有一定的共同形态和生理特征 微生物学:生物学的一个分支是研究微生物在一定条件下的形态结构生理生化遗传变异特性及微生物的进化分类生态等生命活动规律以及微生物之间与人类动植物自然界互相关系的一门科学 抗生素:是由某些微生物在代谢过程中产生的能抑制或杀灭某些其他微生物和肿瘤细胞的微量生物活性物质 细菌素:是某些细菌菌株产生的一类具有抗菌作用的蛋白质 条件致病菌:正常菌群在宿主体内具有相对稳定性一般不致病 消毒:指杀死物体上的病原微生物但不一定能杀死细菌芽孢的方法 灭菌:指杀灭物体上所有的微生物的方法 防腐:指防止或抑制微生物生长繁殖的方法 无菌:指没有货的微生物的存在 质粒:是细菌染色体外的遗传物质也是环状闭合的双联DNA分子比染色体小存在于细胞质中可自主复制 突变:是指细菌遗传物质的机构发生突然而稳定的改变所致的变异现象可遗传给后代 基因转移:外源性物质由供体菌转入受体细胞内的过程 基因重组:供体菌的基因进入受体菌细胞并在其中自行复制与表达或矛受体菌DNA整合在一起的过程 病毒:是一类个体微小结构简单只含一种核酸只能在活的易感细胞内以复制方式增殖的

非细胞型微生物 复制周期:病毒的增殖被人为分成吸附穿入脱壳生物合成装配成熟与释放七个步骤的完整过程 缺陷病毒:是指因病毒基因组不完整或因基因某一点改变而不能进行正常增殖的病毒 顿挫感染:病毒进入宿主细胞若细胞缺乏病毒复制所需的酶能量和必要成分等则病毒无法合成自身成分不能够装配和释放子代病毒的现象 干扰现象:两种病毒感染同一种细胞时可发生一种病毒抑制另一种病毒增殖的现象 人工自动免疫:是将疫苗等免疫原接种于人体刺激机体免疫系统产生特异性免疫应答使机体获得特异性免疫力 人工被动免疫:是指注射含某种病毒特异性中和抗体的免疫血清等一系列细胞因子是机体立即获得特异性免疫 干扰素:是由病毒或干扰素诱生剂作用于中性粒细胞成纤维细胞或免疫细胞产生的一种糖蛋白 致病性:一定种类的病原微生物在一定的条件下能在特殊的宿主体内引起特定疾病的能力半数致死量:在规定时间内通过一定途径能使一定体重或年龄的某种动物半数死亡或感染需要的最小病原体数量或毒素量 急性感染:发作突然病程较短一般是数天或数周 局部感染:病原体侵入机体后局限就在一定部位生长繁殖引起病变的一种感染类型 毒血症:致病菌侵入宿主体后只在机体局部生长繁殖病菌不进入血液循环但其产生的外毒素入血引起特殊的毒性症状 败血症:致病菌侵入血流后在其中大量繁殖并产生毒性产物引起全身性毒性症状 内毒素血症:革兰阴性菌侵入血流并在其中大量繁殖崩解后释放出大量毒素也可有病灶

空气中微生物检测1

一、空气中微生物的检测 一、实验目的 1了解空气中微生物的分布状况,学习空气采样方法 2掌握空气中微生物的检测方法 二实验原理 空气是人类赖以生存的必须环境,也是微生物借以扩散的媒介。空气中存在着细菌、真菌、病毒、放线菌等多种微生物粒子,这些微生物粒子是空气污染物的重要组成部分。空气微生物主要来自于地面及实施、人和动物的蹑手呼吸道、皮肤和毛发等,它附着在空气气溶胶细小颗粒物表面,可较长时间停留在空气中。某些微生物还可以随着空气中细小颗粒穿过人体肺癌存留在肺的深处,给身体健康带来严重危害,也可以随着空气中细小颗粒物被输送到较远地区,给人体带来许多传染性的疾病和上呼吸道疾病。因此,空气微生物含量多少可以反映所在区域的空气质量,是空气环境污染的一个重要参数评价空气的清洁程度,需要测定空气中的微生物数量和空气污染微生物。测定的细菌指标有细菌总数和绿色链球菌,在必要时则测病原微生物。 空气并非微生物的繁殖场所,空气中缺乏水分和营养,紫外线的照射对微生物也有致死作用。微生物产生的孢子本身也可以飘浮到空气中,形成“气溶胶”,借风力传播。 空气中的微生物中,真菌的孢子数量最多,细菌较少。而且藻类、酵母菌、病毒都会存在于空气中。 目前,还无统一的关于空气的卫生学指标,一般以室内1m3 空气中细菌总数为50~1,000个以上作为空气污染的指标。 病原菌在空气中一般很易死亡,但结核菌、白喉杆菌、葡萄球菌、链球菌、肺炎双球菌、炭疽杆菌、流感病毒和脊髓灰质炎病毒等,也可以在空气中存活一段时间。 尘埃多的地方,如畜舍、公共场所、医院、城市街道的空气中,微生物数量较多。高山、海洋、森林、积雪的山脉和高纬度地带的空气中,微生物较少。 在本次实验中测量空气中微生物含量,主要是利用空气的自然沉降法,也有其它方法,如撞击法,过滤法等。 三实验器材 电炉,培养基,培养箱,无菌台 四实验步骤

空气微生物污染检验方法

空气、物表、器械、医务人员手微生物检测参考标准 一、空气微生物污染检验方法 采用平板暴露法操作 结果计算:按平均每皿的菌落数报告:CFU/(皿·暴露时间)。 结果判断: Ⅱ环境: 手术室、供应室、计生手术室、产房、眼科治疗室 、婴儿室、 ≤4.0cfu/皿(15min ) Ⅲ环境 各科治疗室、处置室、ICU 、胃肠镜室、儿科病房、妇科检查室、急救室、 化验室血库、口腔科。 ≤4.0cfu/皿(5min ) 二、物体表面微生物污染检查方法 检测方法: 把采样管充分震荡后,取不同稀释倍数的洗脱液1.0ml ,接种平皿,将冷至40℃~45℃的熔化营养琼脂培养基每皿倾注15~20ml,36℃±1℃恒温培养箱48h ,计数菌落数,必要时分离致病性微生物。(采样面积都为100cm 2) 结果计算: 物体表面菌落总数(CFU/cm 2)= 结果判断: Ⅱ环境: 手术室、供应室、计生手术室、产房、眼科治疗室 、婴儿室。 ≤5.0cfu/cm 2 平均每皿菌落数×采样液稀释倍数 采样面积(cm 2)

Ⅲ环境各科治疗室、处置室、ICU、胃肠镜室、儿科病房、妇科检查室、急救室、化验室血库、口腔科。≤10.0cfu/cm2 三、消毒医疗器材的检验方法 检验方法: 把采样管充分震荡后,取不同稀释倍数的洗脱液1.0ml,接种平皿,将冷至40℃~45℃的熔化营养琼脂培养基每皿倾注15~20ml,36℃±1℃恒温培养箱48h,计数菌落数,必要时分离致病性微生物。 检验标准 1、高度危险性医疗器材应无菌 2、中度危险性医疗器材的菌落数应≤20 CFU/件(CFU/g或CFU/100cm2),不得检 出致病性微生物。 3、低度危险性医疗器材的菌落数应≤200 CFU/件(CFU/g或CFU/100cm2),不得 检出致病性微生物。 (1)、高度危险性物品: 手术器械、穿刺针、腹腔镜、活检钳、心脏导管、植入物等。 (2)、中度危险性物品: 胃肠道内镜、气管镜、喉镜、肛表、口表、呼吸机管、麻醉机管道、压舌板、肛门压力测量导管、直肠压力测量导管等。 (3)、低度危险性物品: 听诊器、血压计、袖带、病床围栏、床面以及床头柜、被褥、墙面、地面、痰盂(杯)和便器等。 四:医务人员手卫生

实验3环境微生物的检测

实验三环境微生物的检测 一、实验目的 1.了解周围环境中微生物的分布情况。 2.懂得无菌操作在微生物实验中的重要性。 3.了解四大类微生物的菌落特征。 二、实验原理 在我们周围的环境中存在着种类繁多的、数量庞大的微生物。土壤、江河湖海、尘埃、空气、各种物体的表面以及人和动物体的口腔、呼吸道、消化道等都存在着各种微生物。由于它们体积微小,人们用肉眼无法观察到它们个体的存在。但是只要稍加留意,我们就可以在发霉的面包、朽木上看到某些微生物群体。这些现象表明,自然界只要有微生物可以利用的物质和环境条件,微生物就可以在其上生长繁殖。据此,我们在实验室里就可以用培养基来培养微生物。 培养基是用人工配制的、适合微生物生长繁殖和产生代谢产物用的混合养料。其中含有微生物所需要的六大营养要素:碳源、氮源、无机盐、生长因子、气体和水分。此外,根据不同的微生物的要求,在配制培养基时还需用酸液或碱液调节至适宜的pH。配制好的培养基必须进行灭菌。所谓灭菌是指采用各类的物理或化学因素,使物体内外的所有微生物丧失其生长繁殖能力的措施。经过灭菌后的物体是无菌的。消毒是与灭菌完全不同的概念,它是指用较温和的物理因素杀死物体表面和内部病原微生物的一种常用的卫生措施。 灭菌的方法较多,广泛使用的是高温灭菌,其中最常用的是高压蒸汽灭菌法。此法是把待灭菌的物品放在一个可密闭的加压蒸汽灭菌锅中进行的。在1.05kg/cm2的蒸汽压力下,温度可达121℃。一般只要维持15~20min,就可杀死一切微生物的营养体和它们的各种孢子。 微生物的接种技术是生物科学研究中的一项最基本操作技术。为了确保纯种不被杂菌污染,在整个接种过程中,必须进行严格的无菌操作。在实验过程中必须牢固树立无菌概念,经常保持实验台及周围环境的清洁,严格无菌操作,避免杂菌的污染,这是保证实验成功的必要条件。

最新微生物对污染物的降解和转化

微生物对污染物的降解和转化 ?有机污染物生物净化(天然物质、人工合成物质) ?无机污染物生物净化 第一节有机污染物的生物净化机理 ?净化本质——微生物转化有机物为无机物 ?依靠——好氧分解与厌氧分解 一、好氧分解 ?细菌是其中的主力军 ?原理:好氧有机物呼吸 ? C → CO2 + 碳酸盐和重碳酸盐 ? H → H2O ? N → NH3→ HNO2→ HNO3 ? S → H2SO4 ? P → H3PO4 ?二、厌氧分解?厌氧细菌 ?原理:发酵、厌氧无机盐呼吸C → RCOOH(有机酸)→CH4 + CO2 ?N → RCHNH2COOH → NH3(臭味) + 有机酸(臭味) ?S → H2S(臭味) ?P → PO 3- 4 ?水体自净的天然过程中 厌氧分解(开始)→好氧分解(后续)第二节各类有机污染物的转化 一、碳源污染物的转化

?包括糖类、蛋白质、脂类、石油和人工合成的有机化合物等。 1.纤维素的转化 ?β葡萄糖高聚物,每个纤维素分子含1400~10000个葡萄糖基(β1-4糖苷键)。 ?来源:棉纺印染废水、造纸废水、人造纤维废水及城市垃圾等,其中均含有大量纤维素。 A.微生物分解途径 B.分解纤维素的微生物 ?好氧细菌——粘细菌、镰状纤维菌和纤维弧菌 ?厌氧细菌——产纤维二糖芽孢梭菌、无芽孢厌氧分解菌及嗜热纤维芽孢梭菌。?放线菌——链霉菌属。 ?真菌——青霉菌、曲霉、镰刀霉、木霉及毛霉。 ?需要时可以向有菌种库的研究机构购买或自行筛选。 2.半纤维素的转化 ?存在于植物细胞壁的杂多糖。造纸废水和人造纤维废水中含半纤维素。 ?分解过程 ?分解纤维素的微生物大多数能分解半纤维素。 ?许多芽孢杆菌、假单胞菌、节细菌及放线菌能分解半纤维素。霉菌有根霉、曲霉、小克银汉霉、青霉及镰刀霉。 3.木质素的转化自然界中哪些微生物能够进行木质素的降解呢??确证的只有真菌中的黄孢原毛平革菌,疑似的有软腐菌。 黄孢原平毛革菌(Phanerochaete chrysosprium)是白腐真菌的一种,隶属于担子菌纲、同担子菌亚纲、非褶菌目、丝核菌科。 白腐—树皮上木质素被该菌分解后漏出白色的纤维素部分。*木质素降解的意义何在呢?(二)油脂的转化

沉降法检测空气中微生物数量

环境科学与工程学院 生物工程10(1)班 叶智源 3110007848 实验二 沉降法检测空气中微生物数量 (一) 实验目的 1.学习并掌握用沉降法检测空气中的微生物 2.了解空气中微生物的分布状况 (二)实验原理 在我们周围的环境中存在着种类繁多、数量庞大的微生物。空气中也不例外。虽然空气不是微生物栖息的良好环境。但由于气流、灰尘和水沫的流动,人和动物的活动等原因,仍有相当数量的微生物存在。当空气中个体微小的微生物落到适合于它们生长繁殖的固体培养基的表面时,在适温下培养一段时间后,每一个分散的菌体或孢子就会形成一个个肉眼可见的细胞群体即菌落。观察大小、形态各异的菌落,就可大致鉴别空气个存在的微生物的种类。(三)实验器材 1. 试剂 牛肉蛋白胨培养基配方: 牛肉膏 5.0g, 蛋白胨 10.0g ,NaCl 5g, 水1000ml ,pH 7.2~7.4 马铃薯培养基配方: 马铃薯 200g, 蔗糖 20g, 水1000ml , pH 7.2 高氏一号培养基配方: 淀粉 20g, 硝酸钾 1.0g, 磷酸氢二钾 0.5g, 硫酸镁0.5g, 氯化钠0.5g, 硫酸亚铁0.01g, 水1000ml, pH 7.2~7.4 2. 仪器及其他用品 高压灭菌锅,操作工作台,三角瓶,培养皿,酒精灯,培养箱等 (四)实验方法 1.倒平板:按常法配置上述培养基,分装于三角瓶中,高压灭菌备用。临用前将培养基熔化,冷却至50℃左右,各倒16个平板备用。 2.暴露取样 在指定的地点草地,一层楼,三层楼,七层楼各放4皿,将平板皿盖打开,在空气中暴露5min 和10min,时间一到,立即合上皿盖。 3. 培养观察: 细菌置于37℃培养,放线菌培养基平板和真菌培养基平板置于28℃培养。细菌培养48h ,真菌和放线菌培养4-6天。计数平板上的菌落,观察各种菌落的形态、大小、颜色等特征。 4.计算1m 3 空气中微生物的数目 奥梅染斯基(Омелянский)曾建议:如面积为100㎝2 的平板培养基,暴露在空气中5分钟,置于37℃培养24小时后所生长的菌落数,相当于10L 空气中的细菌数。 X= X :每m 3 空气中的细菌数 N ×100×100 πr2

微生物的培养与应用综合测试-人教版高中生物选修1检测练习

专题综合测试(二) 时间:90分钟满分:100分 一、选择题(每小题2分,共40分) 1.关于培养基的配制说法不正确的是() A.在配制培养乳酸杆菌的培养基时,需加入维生素 B.微生物的适应性强,配制培养基时可以不考虑pH C.虽然各种培养基的具体配方不同,但一般都含有碳源、氮源、水和无机盐 D.配制培养基时要注意各种养分的浓度和比例 答案 B 解析乳酸杆菌自身不能合成维生素,而维生素又是维持其生命活动不可缺少的,故需在培养基中添加,A正确;pH影响微生物的生长和代谢,配制培养基时pH一定要适宜,B错误;微生物也是由C、H、O、N、P、S等元素组成,这些元素最终来自外界环境中的各种无机化合物和有机化合物,可归纳为碳源、氮源、生长因子、水、无机盐等,但配制时要注意各种养分的浓度和比例,C、D正确。 2.下列关于培养基的叙述中,正确的是() A.微生物在液体培养基表面生长可以形成肉眼可见的菌落 B.培养霉菌与细菌时培养基的pH基本一致 C.一般培养基都需加入碳源、氮源、无机盐和水 D.蛋白胨只能为微生物提供碳源和维生素 答案 C 解析微生物在固体培养基表面生长可以形成肉眼可见的菌落,A错误;培养霉菌时需将培养基的pH调至酸性,培养细菌时需将pH调至中性或微碱性,B错误;培养基一般都含有水、碳源、氮源和无机盐等成分,C正确;蛋白胨可为微生物提供氮源、碳源和维生素,D错误。 3.下列关于细菌的叙述,错误的是() A.硝化细菌能以NH3作为氮源和能源物质 B.某些细菌可以利用光能固定CO2合成有机物

C.生长因子是某些细菌生长过程中需要额外补充的营养物质 D.含伊红美蓝试剂的培养基不能用来鉴别牛奶中的大肠杆菌 答案 D 解析硝化细菌可以利用氧化氨释放的能量来合成有机物,氨含有氮元素可以提供氮源,A正确;光合细菌可以利用光能进行光合作用,固定CO2合成有机物,B正确;某些微生物不能合成一些生长所必需的物质,必须从外界摄取这些营养物质,C正确;含伊红美蓝试剂的培养基可以用来鉴别牛奶中的大肠杆菌,如果菌落呈黑色,并带有金属光泽,说明牛奶中含有大肠杆菌,D错误。 4.下表表示在不同培养基中某细菌的生长繁殖情况(A、B、C、H、I、J、K、M为培养基的成分,“+”表示生长,“-”表示不生长),请分析下列哪种物质细菌不能合成() 答案 C 解析比较不同培养基的添加物,凡添加了物质K的培养基,细菌都能生长,反之则不能生长,说明物质K是细菌不能合成的,C正确。 5.下列与微生物培养有关的说法,不正确的是() A.高压蒸汽灭菌的原理是高温破坏了细胞内的蛋白质,影响其生命活动B.培养基在50 ℃时搁置斜面以及将平板倒置放入培养箱中培养都与消毒灭菌无关 C.在微生物培养过程中,除考虑营养条件外,还要考虑pH、温度和渗透压等条件 D.每个菌落由大量的各种细菌组成,菌落的特征可以作为菌种鉴定的重要依据 答案 D 解析菌落内部为同种细菌,菌落的特征可以作为菌种鉴定的重要依据,D 错误;高压蒸汽灭菌的原理是高温破坏微生物体内蛋白质的空间结构,从而影响

微生物检测手段及注意事项

微生物检测手段及注意事项

微生物检测手段及注意事项 微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文对生长量测定法、微生物计数法、生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常用的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其他生物的生长,微生物的个体生长在科研上有一定困难,通常情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长通常指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和他们的生长抑制紧密相关。所以有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,所以测定的方法也都直接或间接的以次为根据,而

测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,可以从其重量,体积,密度,浓度,做指标来进行衡量。 1. 微生物计量法 1.1 体积测量法 又称测菌丝浓度法,通过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10 mL)放在有刻度的离心管中,设定一定的离心时间(如5 min)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法 可用离心或过滤法测定。一般干重为湿重的10~20%。在离心法中,将一定体积待测培养液倒入离心管中,设定一定的离心时间和转速,进行离心,并用清水离心洗涤1~5次,进行干燥。干燥可用烘箱在105 ℃或100 ℃下烘干,或采用红外线烘干,也可在80 ℃或40 ℃下真空干燥,干燥后称重。如用过滤法,丝状真菌可用滤纸过滤,细菌可用醋酸纤维膜等滤膜过滤,过滤后用少量水洗涤,在40 ℃下进行真空干燥。称干重发法较为烦琐,通常获取的微生物产品为菌体时,常采用这种方法,如活性干酵母(Activity Dry Yeast, ADY),一些以微生物菌体为活性物质的饲料和肥料。

微生物转化

微生物转化在植物类中药研究中的应用 班级:科研一班 学号:2013110039 姓名:杜风丽

微生物转化在植物类中药研究中的应用 摘要:对微生物转化在植物药成分研究中的应用取得的进展进行了综述,利用微生物对植物药成分进行转化是中药高效利用的一条新思路,可显著推动我国的植物药资源的高效开发与利用,有利于在短时间内研制出具有自主知识产权的新药。 关键词:微生物;植物药;生物转化 中药是我国民族医药的瑰宝,长期以来人们一直从现有药材中寻找有效成分。尤其植物药,从现有资源中发现新的具有生理活性作用的化合物越来越难。另外,原有植物药成分存在着的体内代谢途径不清楚、药效不强、毒副作用大、稳定性差等缺点,影响了它们的应用。要解决这些问题,一方面要对现有的植物药成分进行化学结构改造,获得新的化合物,开发新的药理活性;另一方面,要选择合适的手段,对植物药成分的体内药代动力学进行研究,更好地阐明植物药成分的药效,发挥中药在世界医药中的作用。生物转化是近五十年来发展起来的一门科学,微生物转化是生物转化的一部分,而真菌种类繁多、营养要求相对较低、易于培养,是一种有效的生物转化载体。使用真菌作为生物转化体系,以植物药成分研究为出发点,进行植物药成分的转化和体内药物代谢的研究已经初步取得了一些成果。 1.紫杉醇 紫杉醇是从红豆杉属植物的树皮中分离提取到的一种二萜类化合物,亦是继阿霉素和顺铂后备受青睐的抗癌药,但其来源一直缺乏[1]。美国施贵宝公司Patel等利用微生物转化方法进行紫杉醇的半合成,他们分别从白色类诺卡菌、藤黄类诺卡菌、莫拉菌的发酵液中分离得到c-13紫杉醇酶、C-7木糖苷酶和c-10去乙酰酶,分别将红豆杉中的几种紫杉烷如巴卡亭Ⅲ、紫杉醇C、cephalomannie、10一去乙酰基紫杉醇等的7,10,13位进行水解,得到较多而单一的10 去乙酰一巴卡亭3,该产物为紫杉醇合成的重要前体化合物,再利用化学反应,连接上13位的侧链,即可得到紫杉醇[2-3] 。这提示了生物转化技术有利于紫杉醇前体物质的得到,从而为紫杉醇的来源提供了一个新的有效途径。 2.喜树碱 喜树碱是Wall和Wani等从珙桐科乔木、我国特有的植物喜树的树叶和树皮中分离得到的具有较强的抗肿瘤和抗病毒活性的生物碱。微生物转化喜树碱可以获得10,羟基喜树

空气、食品接触面微生物检验方法、检验标准

空气、食品接触面微生物检验方法、检验标准 1、目的: 检测生产车间空气、操作人员手部、与食品有直接接触面的机械设备的微生物指标,生产区域环境当中病原微生物的监控,达到规定标准,以控制食品成品的质量。 2、参照标准: 中华人民共和国国家标准《一次性使用卫生用品卫生标准》GB15979-1995、《HACCP原理与实施》、中华人民共和国国家标准《公共场所空气微生物检验方法细菌总数测定》GB/T 18204.1-2000、中华人民共和国进出口商品检验行业标准SN 0169-92/SN 0172-92/ SN 0170-92、出入境检验检疫局二000四年《出入食品微生物检验培训教材》中《出入食品生产厂卫生细菌检验方法》、日本东京冷冻食品检验方法。 3、采样与检测方法: 3.1空气的采样与测试方法 3.1.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行采样,以便了解车间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行采样。 c)产品检验结果超内控标准时,应及时对车间进行采样,如有检验不合格点,整改后再进行采样检验。 d)实验性新产品,按客户规定频率采样检验。 e)正常生产状态的采样,每周一次。 (2)采样方法 在动态下进行,室内面积不超过30 m2,在对角线上设里、中、外三点,里、外点位置距墙1 m;室内面积超过30 m2,设东、西、南、北、中五点,周围4点距墙1 m。采样时,将含平板计数琼脂培养基的平板(直

径9 cm)置采样点(约桌面高度),并避开空调、门窗等空气流通处,打开平皿盖,使平板在空气中暴露5 min。采样后必须尽快对样品进行相应指标的检测,送检时间不得超过6h,若样品保存于0~4℃条件时,送检时间不得超过24h。 3.1.2菌落培养: (1)在采样前将准备好的平板计数琼脂培养基平板置37℃±1℃培养24 h,取出检查有无污染,将污染培养基剔除。 (2)将已采集样品的培养基在6 h内送实验室,细菌总数于37℃±1℃培养48h观察结果,计数平板上细菌菌落数。 (3)菌落计算: a) 记录平均菌落数,用“个/皿”来报告结果。用肉眼直接计数,标记或 在菌落计数器上点计,然后用5~10倍放大镜检查,不可遗漏。 b) 若培养皿上有2个或2个以上的菌落重叠,可分辨时仍以2 个或2个 以上菌落计数。 3.2工作台(机械器具)表面与工人手表面采样与测试方法: 3.2.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行擦拭检验,以便了解车 间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行全面擦拭检验。 c)产品检验结果超内控标准时,应及时对车间可疑处进行擦拭,如有检验 不合格点,整改后再进行擦拭检验。 d)实验新产品,按客户规定擦拭频率擦拭检验。 e)对工作表面消毒产生怀疑时,进行擦拭检验。 f)正常生产状态的擦拭,每周一次。 (2)采样方法: a) 工作台(机械器具):用浸有灭菌生理盐水的棉签在被检物体表面(取 与食品直接接触或有一定影响的表面)取25cm2的面积,在其内涂抹10次,然后剪去手接触部分棉棒,将棉签放入含10mL灭菌生理盐水的

食品微生物检测方法

食品微生物检测方法 范围 本标准规定了食品微生物检测方法 1 菌落总数 1.1 培养基和试剂 ⑴、营养琼脂培养基:按GB/T4789.28-2003中4.7规定 成分: 蛋白胨10克、牛肉膏3克、氯化钠5克、琼脂15~20克、蒸馏水1000ml 制法:将除琼脂以外的各成分溶解于蒸馏水中,加入15%氢氧化钠溶液2ml校正PH至7.2-7.4.加入琼脂,加热煮沸,使用权琼脂溶化.分装烧讧,121℃高压灭菌15分钟. 注:此培养基可供一般细菌培养之用,注平板或制成斜面.如用于菌落计数,琼脂量为 1.5%;如作成平板或斜面,则应为2%. ⑵磷酸盐缓冲液:按GB/T4789.28-2003中3.22规定. 成分:磷酸二氢钾34克、1mol/l氢氧化钠溶液175ml、蒸馏水825ml 、PH7.2 制法: 先将磷酸盐溶解于500ml蒸馏水中,用1mol/l氢氧化钠溶液校正PH后,再用蒸馏水稀释至1000 ml. 稀释液: 取储存液1.25 ml ,用蒸馏水稀释至1000 ml,或每管10ml,121℃高压灭菌15分钟. ⑶明胶磷酸盐缓冲液 成分:明胶2克、磷酸氢二钠4克、蒸馏水1000ml、PH6.2 制法:加热溶解,校正PH,121℃高压灭菌15分钟. ⑷0.85%灭菌生理盐水 ⑸75%乙醇 1.2 设备和材料 ⑴冰箱:0~4℃ ⑵恒温培养箱36℃±1℃ ⑶恒温水浴锅46±1℃ ⑷均质器或灭菌乳钵 ⑸架盘药物天平:0~500克,精确至0.5克. ⑹菌落计数器. ⑺大镜4× ⑻灭菌吸管:1ml(具0.01ml刻度)、10ml(具0.1ml刻度)

⑼灭菌锥形瓶:500ml ⑽灭菌玻璃珠:直径约5mm ⑾灭菌培养皿直径约90mm ⑿灭菌试管16mm×160mm ⒀灭菌刀、剪子、镊子等。 1.3 检验程序(菌落总数的检验程序见图1) 1.4 操作步骤 ⑴检样稀释及培养 a. 以无菌操作将检样25克(ml)剪碎放于含有225ml灭菌生理盐水或其他稀释液灭菌玻璃瓶内(瓶内预置适当数量的玻璃珠)或灭菌乳钵内,经充分振摇或研磨做成1:10的均匀稀释液。 固体检样在加入稀释液后,最好置均质器中以8000r/min~10000r/min的速度处理1min,做成1:10的均匀稀释液。 b. 用1ml的灭菌吸管吸取1:10的稀释液1ml,沿管壁徐徐注入含有9ml灭菌生理盐水或其他稀释液的试管内(注意吸管不要触及管内稀释液),振摇试管,混合均匀,做成1:100的稀释液。

实验室空气微生物检测

实验室环境微生物的检测 班级:生物工程123 姓名:赵家熙学号:2012013409 摘要:空气是人类赖以生存的必须环境,也是微生物借以扩散的媒介。空气中存在着细菌、真菌、病毒、放线菌等多种微生物粒子,这些微生物粒子是空气污染物的重要组成部分。而实验室中的环境是更为重要的,对微生物的要求更加的高,一个好的实验室环境可以让实验结果更加的精确。本实验通过对实验室空气的采集,对微生物的培养及染色观察来证明证明实验室环境存在微生物,也证明无菌操作的重要性。 关键词:实验室环境,空气,微生物检测,革兰氏染色,形态观察 正文: 前言 实验室空气微生物含量多少可以反映该实验室的空气质量,需要测定空气中的微生物数量和空气污染微生物。实验室的空气中微生物越少,代表在该实验室做微生物实验的时候误差会小,成功率会高。本实验以牛肉膏蛋白胨琼脂培养基培养实验室中的微生物,利用革兰氏染色法及显微镜观察实验室中空气中的微生物种类及形态。 1.材料方法 1.1 实验材料 1.1.1样品来源 实验室空气 1.1.2药品 氢氧化钠(固体),牛肉膏,蛋白胨,琼脂粉,Nacl。 1.1.3耗材 培养基(牛肉膏蛋白胨琼脂培养基)无菌水,石棉网,电炉,酒精灯,培养皿,三角瓶,500ml烧杯,玻璃棒,超净工作台,Ph试纸。 1.2方法 1.2.1取样

采集实验室空气样本 1.2.2制作培养基 在500ml烧杯内加水200毫升,放入牛肉膏1.0g、蛋白胨2.0g和氯化钠1.0g,做记号,放在火上加热,待烧杯内各组分溶解后,加入琼脂 4.0g,不断搅拌以免粘底。停止加热后冷却,加入配置的NaOH溶液调节PH值至7.2-7.5后倒入三角瓶。 1.2.3高压灭菌 将培养皿和三角瓶用报纸及绳包装后,利用高压灭菌锅将培养皿和装有培养液的三角瓶高压灭菌,121度维持20分钟. 1.2.4分装培养液及加入样本 在超净工作台上将三角瓶中的培养液分装到6个培养皿当中,等培养皿中培养液冷却凝固,将其中三个加入实验室中的空气样本,二个加入超净工作台空气,一个作为对照组。对照组A,实验组B贴标签做记号,倒置放入培养箱中培养。1.2.5革兰氏染色,观察其种类,形态 将培养好的带有微生物菌落的培养基拿出,取干净的载玻片于实验台上,在载玻片中央滴一滴无菌蒸馏水,将接种环在火焰上烧红,待冷却后从斜面挑取少量菌种与玻片上的水滴混匀后,在载玻片上涂布成一均匀的薄层,涂布面不宜过大。利用高温,手持载玻片的一端,标本向上,在酒精灯火焰外层尽快的来回通过2~3次,共约2~3秒钟,放置待冷后,进行染色。初染:用结晶紫染色1min后水洗,吸干。媒染:加碘液1min后水洗,吸干。脱色:用脱色液(95%乙醇)脱色30s,水洗,吸干。复染:用番红复染3min,水洗,吸干。待标本片干后置显微镜下,用低倍镜观察,发现目标物后用油镜观察,注意细菌细胞的颜色。 2.结果与分析 2.1实验结果 图1 图2

微生物快速检测方法及应用进展

微生物快速检测方法及应用进展 随着人们生活水平不断提高,各种安全问题越来越受到人们的重视,微生物的污染问题也相应地备受关注。在食品和环境等各个方面都有微生物污染的可能,一旦污染,微生物将大量繁殖而导致食源性疾病或环境污染甚至医院内感染。特别是近年来随着环境污染的加剧和生态平衡的不断破坏,导致感染的致病菌的种类越来越多,病原微生物对人类的威胁越来越大。传统的检验方法,主要包括形态检查和生化方法,其准确性、灵敏性均较高,但涉及的实验较多、操作烦琐、需要时间较长、准备和收尾工作繁重,而且要有大量人员参与[1,2]。所以,迫切需要准确、省时、省力和省成本的快速检验方法。本文对微生物快速检测方法的进展情况及实际应用进行综述,以利于预防食源性疾病及公共卫生突发事件的发生。 1 即用型纸片法 3M公司的perrifilmTMPlate系列微生物测试片,可分别检测菌落总数、大肠菌群计数、霉菌和酵母计数[3]。由RCP Scientific Inc 公司开发上市的Regdigel系列,除上述项目外还有检测乳杆菌、沙门氏菌、葡萄球菌的产品[4],这两个系列的产品与传统检测方法之间的相关性非常好。如用大肠菌群快检纸片检测餐具的表面,操作简便、快速、省料,特异性和敏感性与发酵法符合率高,已经被列为国标方法。使用时应正确掌握操作技术和判断标准,从而达到理想的检测效果[5]。美国3M公司生产的PF(Petrifilm)试纸还加入了染色剂、显色剂,增强了菌落的目视效果,而且避免了热琼脂法不适宜受损细菌恢复的缺陷。霉菌快速检验纸片,应用于食品检验中的霉菌具有操作简便,仅需36℃培养,不需要低温设备;快速,仅需2 d就可观察结果,比现在的国家标准检验方法缩短3~5 d,大大提高了工作效率。纸片法与国标法在霉菌检出率上差异无统计学意义,且菌落典型,易判定。纸片荧光法利用细菌产生某些代谢酶或代谢产物的特点而建立的一种酶—底物反应法。只需检测食品中大肠菌群、大肠杆菌的有关酶的活性,将荧光产物在365 nm紫外光下观察即可。同时纸片可高压灭菌处理,4℃保存,简化了实验准备、操作和判断[6]。但由于它们价格昂贵,限制了在基层单位的实际应用。 2 生物化学技术 2.1 PCR技术PCR技术采用体外酶促反应合成特异性DNA片段,再通过扩增产物来识别细菌。由于PCR灵敏度高,理论上可以检出一个细菌的拷贝基因,因此在细菌的检测中只需短时间增菌甚至不增菌,即可通过PCR进行筛选,节约了大量时间,但PCR技术也存在一些缺点:食物成分、增菌培养基成分和其他微生物DNA对Taq酶具有抑制作用,可能导致检验结果假阴性;操作过程要求严格,微量的外源性DNA进入PCR后可以引起无限放大产生假阳性结果,扩增过程中有一定的装配误差,会对结果产生影响。由于以上原因,PCR技术对操作者的自身素质要求很高,对于基层单位而言难以做到。短时间内也不会有经济效益和社会效益,因此影响了这项技术在基层的应用。 2.2 基因探针技术基因探针技术利用具有同源性序列的核酸单链在适当条件下互补形成稳 定的或链的原理,采用高度特异性基因片段制备基因探针来识别细菌。基 因探针的优点是减少了基因片段长度多态性所需要分析的条带数。如法国生物一梅里埃公司的 基因探针检测系统,对于分离到的单个菌落,30 min完成微生物的确证试验[7], 基因探针的缺点是不能鉴定目标菌以外的其他菌。 3 选择、鉴定用培养基法

相关文档
最新文档