红外谱图解析基本知识

红外谱图解析基本知识
红外谱图解析基本知识

红外谱图解析基本知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

红外谱图解析基本知识

基团频率区

中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1(1300 cm-1)~600 cm-1区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域

(1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种:

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1附近,但强度很弱。

不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。

苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。

不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。

叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1)附近。

(2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、 -CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。

对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型:

R-CoCH的伸缩振动出现在2100~2140 cm-1附近;

R¢-C oC-R出现在2190~2260 cm-1附近;

R-C oC-R分子是对称,则为非红外活性。

-C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到

2220~2230 cm-1附近。若分子中含有C、H、N原子, -C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN 基越近, -C oN基的吸收越弱,甚至观察不到。

(3) 1900~1200 cm-1为双键伸缩振动区

该区域重要包括三种伸缩振动:

C=O伸缩振动出现在1900~1650 cm-1,是红外光谱中特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰

苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上有一定的作用。

指纹区

(1) 1800(1300) cm-1 ~ 900 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。

其中:1375 cm-1的谱带为甲基的d C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1,是该区域最强的峰,也较易识别。

(2) 900 ~ 650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。

利用上区域中苯环的C-H面外变形振动吸收峰和2000~ 1667cm-1区域苯的倍频或组合频吸收峰,可以共同配合确定苯环的取代类型。

红外光谱

红外光区划分:通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。

区域波长范围(m)波数范围(cm-1)频率(Hz)

近红外

中红外4000-2001012

远红外50-1000200-101011

常用4000-6701013

当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光

谱。

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。

通过比较大量已知化合物的红外光谱,发现:组成分子的各种基团,如O-H、N-H、C-H、C=C、C=O和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

分子吸收红外辐射后,由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰。因为(振动量子数的差值)△=1时,L=,所以基频峰的位置(L)等于分子的振动频率。

在红外吸收光谱上除基频峰外,还有振动能级由基态(=0)跃迁至第二激发态(=2)、第三激发态(=3),所产生的吸收峰称为倍频峰。

由 = 0跃迁至 = 2时,△ = 2,则L = 2,即吸收的红外线谱线(L )是分子振动频率的二倍,产生的吸收峰称为二倍频峰。

下图是双原子分子的能级示意图,图中E A和E B表示不同能量的电子能级,在每个电子能级中因振动能量不同而分为若干个 = 0、1、2、3……的振动能级,在同一电子能级和同一振动能级中,还因转动能量不同而分为若干个J = 0、1、2、3……的转动能级。

由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:

基频峰(0→1) cm-1最强

二倍频峰(0→2 ) cm-1较弱

三倍频峰(0→3 ) cm-1很弱

四倍频峰(0→4 ) cm-1极弱

五倍频峰(0→5 ) cm-1极弱

除此之外,还有合频峰(1+2,21+2,),差频峰(1-2,21-2,)等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。

红外光谱特点

1)红外吸收只有振-转跃迁,能量低;

2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;

3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构;

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

红外谱图解析基本知识

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。 叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、-CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型: R-CoCH的伸缩振动出现在2100~2140 cm-1附近; R¢-C oC-R出现在2190~2260 cm-1附近; R-C oC-R分子是对称,则为非红外活性。 -C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN基越近,-C oN基的吸收越弱,甚至观察不到。

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

红外谱图的解析经验

红外知识顺口溜 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。 顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰宽, 仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。 硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。 氨基酸,成内盐,3100~2100峰形宽。1600、1400酸根展,1630、1510碳氢弯。盐酸盐,羧基显,钠盐蛋白三千三。矿物组成杂而乱,振动光谱远红端。 钝盐类,较简单,吸收峰,少而宽。注意羟基水和铵,先记几种普通盐。 1100是硫酸根,1380硝酸盐,1450碳酸根,一千左右看磷酸。 硅酸盐,一峰宽,1000真壮观。勤学苦练多实践,红外识谱不算难。 红外谱图的解析经验 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中:

红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。

由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。 每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。与基质沥青比较,SBS改性沥青的红外光谱在698cm-1和

红外图谱解析

红外图谱解析 首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), F、T、O分别是英文4,3,1的首字母。 举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H 伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1 烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)

红外图谱记忆口诀

红外谱图解析分析步骤 应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=1+n4+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H原子),举个例子:比如苯:C6H6,不饱和度=1+6+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm-1区域C-H伸缩振动吸收以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm-1烯1680~1640 cm-1芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不详细说了。红外谱图分析确实是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1) 烯烃C-H面外弯曲振动(1000~675cm-1)。 3.炔烃:伸缩振动(2250~2100cm-1) 炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:3100~3000cm-1芳环上C-H伸缩振动1600~1450cm-1C=C 骨架振动880~680cm-1C-H面外弯曲振动芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不

红外谱图的解析

红外谱图的解析经验 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 (2) 分析3300-2800区域C-H伸缩振动吸收;以3000 为界:高于3000为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000有吸收,则应在 2250-1450频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200-2100,烯 1680-1640,芳环 1600,1580,1500,1450,若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650的频区 ,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O,O-H,C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700的三个峰,说明醛基的存在。 1、烷烃:C-H伸缩振动(3000-2850) C-H弯曲振动(1465-1340),一般饱和烃C-H伸缩均在3000以下,接近3000的频率吸收。 2、烯烃:烯烃C-H伸缩(3100-3010) C=C伸缩(1675-1640) 烯烃C-H面外弯曲振动(1000-675)。 3、炔烃:伸缩振动(2250-2100) 炔烃C-H伸缩振动(3300附近)。 4、芳烃:3100-3000, 芳环上C-H伸缩振动 1600-1450, C=C 骨架振动 880-680C-H。 芳香化合物重要特征:一般在1600,1580,1500和1450,可能出现强度不等的4个峰。 880-680,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5、醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650-3600,为尖锐的吸收峰, 分子间

红外谱图分析方法总结

红外谱图分析方法总结 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2其中: F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300-2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250-1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200-2100cm-1、烯1680-1640cm-1、芳环1600,1580,1500,1450cm-1。若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700cm-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100-3010cm-1)C=C伸缩(1675-1640cm-1)烯烃C-H面外弯曲振动(1000-675cm1)。 3.炔烃:伸缩振动(2250-2100cm-1)炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:3100-3000cm-1芳环上C-H伸缩振动、1600-1450cm-1C=C骨架振动、880-680cm-1C-H面外弯曲振动、芳香化合物重要特征:一般在1600、1580、1500和1450cm-1可能出现强度不等的4个峰。 880-680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,O-H自由羟基O-H的伸缩振动:3650-3600cm-1,为尖锐的吸收峰,分子间氢键O-H伸缩振动:3500-3200cm-1,为宽的吸收峰;C-O伸缩振动:1300-1000cm-1O-H面外弯曲:769-659cm-1 6.醚:特征吸收:1300-1000cm-1的伸缩振动,脂肪醚:1150-1060cm-1一个强的吸收峰;芳香醚:两个C-O伸缩振动吸收:1270-1230cm-1(为Ar-O伸缩) 1050-1000cm-1(为R-O伸缩) 7.醛和酮:醛的主要特征吸收:1750-1700cm-1(C=O伸缩)2820,2720cm-1(醛基C-H伸缩);脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低 8.羧酸:羧酸二聚体:3300-2500cm-1宽,强的O-H伸缩吸收1720-1706cm-1,C=O 吸收1320-1210cm-1C-O伸缩,920cm-1成键的O-H键的面外弯曲振动。 9.酯:饱和脂肪族酯(除甲酸酯外)的C=O吸收谱带:1750-1735cm-1区域饱和酯C-C(=O)-O谱带:1210-1163cm-1区域,为强吸收 10.胺:3500-3100cm-1,N-H伸缩振动吸收,1350-1000cm-1,C-N伸缩振动吸收。

苯甲酸红外光谱测定及谱图解析1小组

苯甲酸红外光谱测定及谱图解析 一.实验目的 1.掌握红外光谱分析时固体样品的压片法样品制备技术; 2.了解傅里叶红外光谱仪的工作原理、构造和使用方法,并熟悉基本操作; 3.了解如何根据红外光谱图识别官能团,了解苯甲酸的红外光谱图。 二.实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到教高的振动能级),从而产生红外吸收光谱。 如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 三.仪器与试剂 仪器:IRAffinity-1傅里叶红外光谱仪、压片机、膜具和干燥器、玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末 四.内容与步骤 1.将所有的膜具擦拭干净,在红外灯下烘烤; 2.在红外灯下研钵中加入KBr进行研磨,至少十分钟; 3.将KBr装入膜具,在压片机上压片,压力上升至35Mpa左右,稳定5分钟; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5.取一定量的样品(样品:KBr=1:4蠟筆)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。 五.结果与分析

红外谱图解析基本知识

红外谱图解析基本知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1(1300 cm-1)~600 cm-1区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1附近,但强度很弱。

红外光谱图解析方法

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。

红外谱图如何解析

红外谱图如何解析 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), F、T、O分别是英文4,3,1的首字母,这样我记起来就不会忘了。 比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不 饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸 缩振动吸收特征峰,其中:炔 2200~2100 cm-1 烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以 确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1) 烯烃C-H面外弯曲振动(1000~675cm1)。 3.炔烃:伸缩振动(2250~2100cm-1)炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:芳环上C-H伸缩振动(3100~3000cm-1) C=C 骨架振动(1600~1450cm-1) C-H面外弯曲振动( 880~680cm-1) 芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。 880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在 芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650~3600cm-1 cm-1,为尖锐的吸收峰,分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰;

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区对 于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S, S═O,P═O等双键的伸缩振动吸收。

红外谱图解析口诀

红外谱图解析口诀 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。 三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、

红外光谱分析

可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键 加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm- 1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔 2200~2100 cm-1 烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即 1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判 定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明 醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1) 烯烃C-H面外弯曲振动(1000~675cm-1)。 3.炔烃:伸缩振动(2250~2100cm-1) 炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:3100~3000cm-1 芳环上C-H伸缩振动 1600~1450cm-1 C=C 骨架振动 880~680cm-1 C-H面外弯曲振动 芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。 880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的 吸收判别异构体。 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰,

红外光谱解析实例

2、某化合物的分子式为C 3H 6O ,根据其红外光谱图推测结构 3080 2929 2876 2861 1642 1379 1459 1467 993 910 Liquid film Liquid film 3281 3012 2861 1645 1423 1113 1028 993 918

4、某化合物的分子式为C 8H 8O ,根据其红外光谱图推测结构 KBr 3291 3369 2930 2959 2876 1607 1465 1388 1072 904 763 Liquid film

习题答案: 1.解: U= 6 + 1 – 12/2 = 1 ①3080 cm-1υ=CH ②2962 cm-1, 2929 cm-1, 2876 cm-1, 2861 cm-1υCH3as, υCH2as, υCH3s, υCH2s ③1642 cm-1υC=C ④1459 cm-1, 1379 cm-1δ CH3as, δCH2, δCH3s,1379 cm-1吸收峰没有裂分说明无偕二甲 基和叔丁基 ⑤993 cm-1, 910 cm-1γ=CH, 说明烯键单取代,为端基烯键。 ①,③和⑤说明化合物中含CH2=CH-基团 ②和④说明化合物含烷烃链 根据上述解析,可以推测化合物可能是CH2=CH-(CH2)3-CH3 验证:化合物的不饱度和计算的不饱和度吻合,可查阅标准谱图和该谱图比对,确认化合物。 2.解: U= 3 + 1 – 6/2 = 1 ①3281 cm-1υOH ②3012 cm-1 υ=CH ③2861 cm-1υCH2 ④1645 cm-1υC=C ⑤1423 cm-1δ CH2 ⑥1113 cm-1, 1028 cm-1υC-O和υC-C ⑦993 cm-1, 910 cm-1γ=CH, 说明烯键单取代,为端基烯键。 ①和⑥说明化合物含- OH ②、④和⑦说明化合物中含CH2=CH-基团 ③和⑤说明化合物含-CH2- 根据上述解析,可以推测化合物可能是CH2=CHCH2OH 验证:化合物的不饱度和计算的不饱和度吻合,可查阅标准谱图和该谱图比对,确认化合物。 3.解: U= 3 + 1 – (9-1)/2 = 0 ①3369 cm-1, 3291 cm-1υNH2, 由于出现双峰,应为伯胺 ②2959 cm-1,2930 cm-1,2876 cm-1υCH3as, υCH2as, υCH3s, υCH2s ③1607 cm-1δNH2 ④1465 cm-1, 1388 cm-1δ CH3as, δCH3s,1388 cm-1吸收峰没有裂分说明结构中没有偕 二甲基

相关文档
最新文档