抗震计算范本

抗震计算范本
抗震计算范本

耐震强度计算

1 已知条件:

轨距 L=1465 重心高 H=1460 总重 W=61980 kg

注:国家标准GB50260-96中烈度8度的水平加速度为0.2g 。 2 强度校核:

由于变压器本体(包括附件)为刚度很好的结构,和地震发生共振的机率较小,地震反应也小;同时,震害调查表明无本体直接震坏的实例。其震害一般是位移、倾倒引起震害。故本体的抗震性可按静态条件考虑。

2.1 抗倾覆性能:

倾覆力矩 M=0.2x61980x1.46=18098 kgf*m

抗倾覆力矩 M '=(1-0.1)x61980x(1.465/2)=40860 kgf*m 由于M '>M ,故无倾覆可能。

2.2 垂直运动

由于垂直加速度为0.1g ,即其垂直震动力为0.1W ,远小于变压器重量W ,故无垂直运动的可能。

2.3 水平运动

钢与钢之间的干性摩擦系数为μ=0.15,则水平移动力为: F=0.2x61980-0.15x(1-0.1)x61980=4029 kgf

箱底与钢轨之间联结螺栓均为40-M24,每个M24螺栓受剪力: F1=4029/40=100.7 kgf

M24螺栓截面积:S1=x 4

1πx20.7522=338.2 2mm

剪应力τ1=438.8/338.2=1.30 kgf/2mm 许用剪应力[τ]=0.5x22=11 kgf/2mm (0.5指螺栓剪应力许用值取拉伸应力的一半)。

安全系数Kf=11/1.3=8.46

3 结论

该产品具有足够的抗震强度。

砌体抗震计算实例

一.工程概况 1.建筑名称:北京体育大学6号学生公寓 2.结构类型:砌体结构 3.层数:4层,层高:2.8m 。 4.开间:3.6m ,进深:5.7m 。 5.建筑分类为二类,耐火等级为二级,抗震设防烈度为八度。设计地震分组为第一组。 6.天然地面下5~10m 无地下水,冰冻深度为地面以下2~4m 处,Ⅱ类场地。 7.外墙采用240厚页岩煤矸石多孔砖,内墙采用150厚陶粒空心砌块。 8.楼、地、屋面采用钢筋混凝土现浇板,条形基础,基础顶标高-1.000m 。 墙体采用页岩煤矸石多孔砖,内墙、厨、厕及阳台处隔墙为200厚,其余墙体厚度均为240。砖块强度采用MU15,±0.000以下采用M7.5混合砂浆。±0.000以上采用M5混合砂浆。构造柱设置见建筑图。 二.静力计算方案 本工程横墙最大间距S max =7.2m ,小于刚性方案横墙最大间距S max =32m ,静力计算方案属于刚性方案。 本工程横墙厚度为240mm >180mm ,所有横墙水平截面的开洞率均小于50%,横墙为刚性横墙。 本工程外墙水平截面开洞率小于2/3,层高2.8m ,4层总高度为11.2m ,屋面自重大于0.8kN/m 2,本地区基本风压为0.45kN /m 2,按规范4.2.6条,可不考虑风荷载影响。 三.墙身高厚比验算 1.允许高厚比[β] 本工程采用采用砂浆最低强度等级为M5.0,查书表3-4,墙身允许高厚比[β]=24。 2.由建筑图纸所示,外横墙取○22轴和○B 、○E 轴间墙体验算,内横墙取○16轴和○B 、○ E 轴间墙体验算。外纵墙取○C 轴和○16~○18轴间门厅处墙体验算,内纵墙取○E 轴和○ 16~○18轴间门厅处墙体验算。 1)外横墙:S=5.7+1.8=7.5m ,H=2.8+0.45+0.5=3.75m ,2H =7.5m ,2H ≥S >H , 查表3-3 H 0=0.4S+0.2H H 0=3.75m ,h=240mm , 2.11=μ,44.05 .79 .02.12.1=++= s b s 824.04 .012=-s b s =μ,63.1524.075.30==h H =β 73.2324824.02.1][21==??βμμ 73.23][63.1521==βμμβ<,满足要求。

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

MIDAS pushover分析在桥梁双柱及排架墩抗震计算中的应用

MIDAS pushover分析在桥梁双柱及排架墩抗震计算中的应用 摘要:由于近几年地震的频发及地震作用给建筑结构所带来的严重破坏,使得科研及设计人员越加注重地震作用的分析。而桥梁结构作为重要的交通枢纽,对桥梁各个结构基于抗震性能的计算也日趋完善。在桥梁结构抗震分析中,能力保护构件的验算须满足规范要求。本文通过对双柱墩横向地震下的midas建模分析,阐述pushover分析在双柱墩或排架墩地震工况下的计算。通过pushover迭代分析得出墩底塑性屈服时的轴力和墩柱达到屈服状态时的横向位移。 关键词:桥梁;地震作用;抗震分析;midas pushover 分析;墩柱屈服时轴力和位移 桥梁作为交通生命线的枢纽,由于其用途的特殊性,一旦遭受地震破坏,将会导致巨大的经济及生命财产损失,且震后修复较为困难。故在桥梁结构设计中,对桥梁结构两阶段地震作用下的抗震分析和计算显得尤为重要。针对桥梁结构中能力保护构件桥墩在E2作用下的抗震验算应按照规范验算桥墩墩顶的位移,并验算桥墩在地震作用时的抗弯及抗剪强度。采用非线性时程进行地震反应分析的桥梁应验算其塑性转角。城市桥梁抗震设计规范7.3.7条规定,对双柱墩、排架墩顺桥向的容许位移按照规范公式计算即可,横桥向的

容许位移可在盖梁处施加水平力F,进行非线性分析(推倒分析),通过分析计算得出墩柱任一塑性铰达到其最大容许转角货塑性铰区控制截面达到最大容许曲率时,盖梁处的横向水平位移。 一、工程实例 滨海地质条件下,3x30m预制简支变连续等截面小箱梁;桥宽13.5m,横向设四片小箱梁,梁高为1.6m,采用通用图设计。预制小箱梁下部采用双柱接明盖梁,盖梁为普通钢筋混凝土结构,盖梁尺寸(高x宽)为1.6x1.8m,下接1.6x1.6m 矩形墩柱,标准柱间距为6.5m。其中墩断面图见图一。 图一:小箱梁中墩断面图二:midas模型建立 桥面铺装:10cm改性沥青和10cmC40防水混凝土;汽车荷载:公路―Ⅰ级;设计车速:V=80km/h;设计年限:100年;设计基准期:100年;环境类别:Ⅱ类。 二:模型建立 对桥梁上部结构计算时建立全桥midas模型进行空间动力分析,而针对小箱梁双柱墩的横向分析,本文同过midas 中的pushover分析模块进行建模计算。3x30m小箱梁在横向建模分析时将上部结构等效成集中质量加载与盖梁上,下部盖梁和墩柱承台采用梁单元进行模拟,承台底约束考虑桩土作用,施加集中刚度。模型建立见图二。 城市桥梁抗震规范中6.6节中指出,关于横向允许位移

桥梁工程抗震设计的主要内容和方法

桥梁工程抗震设计的主要内容和方法 通过本学期所学的《土木工程地质》,我们初步了解到了桥梁工程。桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。所以结合所学现代刚桥等知识及搜集的资料,本文将大致讲述桥梁工程抗震设计的主要内容和方法。 首先我们了解下地震带给桥梁的具体破坏影响,这样才可以采取相应措施来防止。桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种: 1)支承连接部件失败:固定支座强度不足、活动支座位移量不够、橡胶支座梁底与支座底发生滑动,在地震力作用下支座破坏,致使梁体发生位移导致落梁。 2)墩台支承宽度不满足防震要求,防落梁措施设计不合理,在地震力作用下,梁、墩台间出现较大相对位移,导致落梁现象的发生。 3)伸缩缝、挡块强度不足,在地震力作用下伸缩缝碰撞破坏挤压破坏、挡块剪切破坏,都起不到应有作用,导致落梁。 接下来将从两个方面讲述抗震设计。

抗震设计的主要内容 目前桥梁工程的设计主要配合静力设计进行,但贯穿整个桥梁设计的全过程。与静力设计一样,桥梁工程的抗震设计也是一项综合性的工作。桥梁抗震设计的任务,是选择合理的结构方式,并为结构提供较强的抗震能力。具体来说,有以下三个部分: 1 正确选择能够有效抵抗地震作用的结构形式; 2 合理的分配结构的刚度,质量和阻尼等动力参数,以便最大限度的利用构件和材料的承载和变形能力; 3 正确估计地震可能对结构造成的破坏,以便通过结构丶构造和其他抗震措施,使损失控制在限定的范围内。 一丶抗震设计流程 桥梁工程的设计一般都要包括五个部分,抗震设防标准选定,抗震概念设计,地震反应分析,抗震性能验算和抗震构造设计。 其中地震反应分析和抗震性能验算工作量最多,且最为复杂。如果采用三级设防的抗震设计思想,上面的两个部分就要做三个循环,即对于每一个设防标准,进行一次地震反应分析,并进行相应的抗震性能验算,直到结构的抗震性能满足要求。 二丶抗震概念设计 抗震概念设计是从概念上,特别是从结构总体上考虑抗震的工程决策;概念设计是指根据地震灾害和工程经验等获得的基本设计和设计思想,正确地解决结构总体方案丶材料使用和细部构造,以达到合理抗震设计的目的。 合理的抗震概念设计,要求设计出来的结构,在强度丶刚度和延性等指标上

抗震与设计计算题目解析

高层建筑结构抗震与设计(练习题1) 1. 某单跨单层厂房如图1所示,集中于屋盖的重力荷载代表值为G =2800kN ,柱抗侧移刚 度系数k1=k2=2.0×104kN/m,结构阻尼比ζ=0.03,Ⅱ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.15g 。分别求厂房在多遇地震和罕遇地震时水平地震作用。 图1 单层厂房 计算简图 2 k 1k k G G 2. 图2为两层房屋计算简图,楼层集中质量分别为m1=120t,m2=80t,楼板刚度无穷大,楼 层剪切刚度系数分别为k1= 5×104kN/m , k2= 3×104kN/m 。求体系自振频率和振型,并验算振型的正交性。 图2 两层房屋计算简图 1 m 2 m 1 k 2 k 3. 钢筋混凝土3层框架计算简图如图3所示。分别按能量法和顶点位移法计算结构的基本 自振周期(取填充墙影响折减系数为0.6)。

图3 3层框架计算简图 kg m 3310180?=kg m 3 210270?=kg m 3 110270?=m kN k /98003=m kN k /1950002=m kN k /2450001= 4. 钢筋混凝土3层框架经质量集中后计算简图如图4所示。各层高均为5米,各楼层集中 质量代表值分别为:G1=G2=750kN ,G3=500kN ;经分析得结构振动频率和振型如图4所示。结构阻尼比ζ=0.05,Ⅰ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.10g 。试按振型分解反应谱法确定结构在多遇地震时的地震作用效应,绘出层间地震剪力图。 s rad /22.101=ωs rad /94.272=ωs rad /37.383=ω1 2 图4 计算简图 5. 已知条件和要求同上题,试按底部剪力法计算。 1、表1为某建筑场地的钻孔资料,试确定该场地的类别。 表1

建筑结构抗震计算题实例

抗震习题汇总 一、 计算题 五层钢框架的层串模型及五阶振型简图如下,结构的自振周期分别是0.7104s 、0.2459s 、0.1591s 、0.1272s 、0.1145s 。已知该建筑位于II 类场地,设计地震第三组,设防烈度7度(08.0max =α)。重力加速度2/8.9s m g =。试用底部剪力法、振型分解法计算框架结构的地震作用、层间剪力和层位移。 解:IV 类场地,设计地震第一组,s T g 45.0= 7度,基本地震加速度为0.1g ,08.0max =α 04.0=ξ(五层钢结构) 9185.063.005.09.0=+-+ =ξ ξ γ 0219.032405.002.01=+-+ =ξ ξ η 069.16.108.005.012=+-+ =ξ ξ η 63.04.17104.01=>=g T s T ,05625.0max 21=??? ? ? ?=αηαγ T T g s 1.0),,(5432>>T T T T g T ,085556.0max 25432=====αηαααα 1268.007.008.01=+=T n δ

kN G G i i eq 3915181.9)41000700(85.085.05 1 =??+?==∑= kN G F eq EK 2.22023915105625.01=?=?=α )1,,1( )1(-=-= ∑n i F H G H G F n EK i i i i i δ EK n n EK i i n n n F F H G H G F δδ+-= ∑)1( 振型ji X 振型参与系数2ji i ji i i X G X G ∑∑= γ

日本桥梁抗震设计规范

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。 关键词:桥梁基础抗震设计日本规范 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 loma prieta地震(m7.0)、1994年美国northridge地震(m6.7)、1995年日本阪神地震(m7.2)、1999年土耳其伊比米特地震(m7.4)、1999年台湾集集地震(m7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 中国现行《公路工程抗震设计规范》(jtj004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的aashto规范、cal-tans规范、atc32美国应用技术协会建议规范,新西兰规范nz,欧洲规范ec8,日本规范japan)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

桥梁抗震计算实例分析

桥梁抗震计算实例分析 发表时间:2019-10-24T16:10:19.713Z 来源:《科学与技术》2019年第11期作者:俞文翔[导读] 对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。(苏州同尚工程设计咨询有限公司, 江苏苏州215000)摘要:桥梁是交通生命线工程中重要组成部分,地震作为我国主要的自然灾害类型,一旦发生就可能造成极大的破坏,道路桥梁是抗震救 灾的重要通道,必须具备较强的抗震性能。我国地震时常发生,震害强烈,破坏力大。因此,对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。我国安全防灾等相关部门要不断加强公路桥梁质量规范和设计,增进抗震措施的理论发展和实践技术,来保障人民财产在地震灾害中不受较大的损失。关键词:桥梁抗震加强防震措施Anti-seismic calculation and strategy of bridges Yu Wenxiang Abstract:Bridges are an important part of traffic lifeline engineering. Earthquakes, as the main type of natural disasters in China, may cause great damage once they occur. Road and bridge are important passages for earthquake relief and must have strong seismic performance. Earthquakes often occur in China, with strong damage and great destructive force. Therefore, for highway and bridge construction in China, it is necessary to strengthen seismic measures to reduce the losses caused by earthquakes. The relevant departments of safety and disaster prevention in China should constantly strengthen the quality specification and design of highway and bridge, enhance the theoretical development and practical technology of anti-seismic measures, so as to protect people's property from greater losses in earthquake disasters. Keywords: Bridge seismic resistance Strengthen measures of seismic resistance 0 引言 自2008年汶川大地震以来,我国政府高度重视各领域各建筑的抗震防震措施。以在桥梁设计方面,苏州地区抗震设防烈度也由原来的VI度区变成VII度区,所以相应的桥梁的细部抗震设计构造也相应的加强。 1 工程概况 太仓市太浏快速路(陆新路~G346)新建工程路线全长约5.72km。路线西起现状江南路与陆新路交叉口西侧约500m处,向东经陆新路、太仓火车站站前大道、沪通铁路、M1线、新浏线、浏河西部工业区规四路、规划苏张泾路、规三路,终点与G346相接。拟建的石头塘桥跨径为3×16m,上部结构采用钢筋混凝土现浇板、预应力混凝土空心板梁,下部结构采用桩柱式桥台、桩柱式桥墩,基础均采用钻孔灌注桩基础。 2 技术标准 道路等级:一级公路兼顾城市快速路功能。桥梁宽度:同道路。 荷载等级: 公路-I级。 通航要求:无。 抗震设防标准:地震基本烈度为VII度,场地地震动动峰值加速度0.1g,抗震设防类别为B类。结构安全等级:一级。 环境类型:除桩基采用II类其余均采用Ⅰ类。桥梁设计基准期:100年,桥梁结构设计使用年限,大中桥:100年,小桥:50年。 3 桥梁中的抗震设计原理 3.1、静力法 静力法把地震加速度看作是桥梁结构破坏的唯一因素,忽略了结构本身动力特性对结构反应的影响应用存在较大的局限性。事实上只有绝对刚性的物体才能认为在振动过程中各个部分与地震运动具有相同的振动所以只对刚度很大的结构例如重力桥墩、桥台等结构应用静力法近似计算。 3.2、反应谱法 目前我国的公路及铁路桥梁均主要采用反应谱法。反应谱法的思路是对桥梁结构进行动力特性分析(固对各主振动应用谱曲线作某强震记录的最大频率,主振型)地震反应计算最后一般通过统计理论对各主振型最大反应值进行组合,近似求得结构的整体最大反应值。 3.3、动态时程分析法 相比上述2种理论方法而言,动态时程分析法形成较早,通过计算机程序来精准地求解结构反应时程。动态时程分析法具有较强的技术性与复杂性,以构建模型的方式呈现出较高的精准性。综上所述:石头塘桥属于中桥采用B类抗震设计方法,所以由【5】中的6.1.3条桥梁抗震分析方法采用反应谱法。 4 抗震计算实例 4.1、地震动参数汇总如下: 地震动峰值加速度0.15g,IV类场地,特征周期0.65s。桥梁抗震设防分类为乙类,桥梁抗震设计方法为B类,E1地震作用重要性系数为0.35。 4.2、计算模型 石头塘桥立面图如下图所示:

化工设备的计算

一般化工和设备的设计及其计算 编辑: 二00四年+月+八日

目录 1、目录-----------------------------------------------2 2、筒体和封头设计的参数选择---------------------------3 (一)、设计压力 P---------------------------------3 (二)、设计温度 T---------------------------------3 (三)、许用应力[σ]和安全系数 n-------------------4 (四)、焊接接头系数 ----------------------------6 (五)、壁厚附加量 C ------------------------------7 (六)、直径系列与钢板厚度-------------------------7 (七)、最小壁厚-----------------------------------8 3、筒体与封头的设计及计算-----------------------------9 (一)、受内压薄壁园筒的计算公式-------------------9 (二)、半球形封头的计算公式(凹面受压)----------11 (三)、椭圆形封头的壁厚计算----------------------11 (四)、锥形封头的壁厚计算------------------------13 (五)、平板封头的壁厚计算------------------------13 4、化工计算公式及举例--------------------------------16 (一)、热位移和热--------------------------------16 (二)、热应力产生的轴向推力----------------------16 (三)、流体管径的计算----------------------------17 (四)、流体管子壁厚计算--------------------------18 (五)、泵的功率和效率计算------------------------19 5、传热学的有关公式及举例----------------------------21 (一)、热量衡算----------------------------------21 (二)、传热方程式--------------------------------26 (三)、传热温度差--------------------------------27 (四)、导热方程式和导热系数----------------------30 (五)、给热方程式和给热系数----------------------34 (六)、传热系数----------------------------------40 (七)、污垢热阻----------------------------------48 (八)、管路与设备的热损失和热绝缘----------------50 (九)、加热、冷却和冷凝--------------------------54 (+)、蒸发--------------------------------------64 6、有关参数------------------------------------------75

砌体抗震计算实例

一.工程概况 1.建筑名称:体育大学6号学生公寓 2.结构类型:砌体结构 3.层数:4层,层高:2.8m。 4.开间:3.6m,进深:5.7m。 5.建筑分类为二类,耐火等级为二级,抗震设防烈度为八度。设计地震分组为第一组。6.天然地面下5~10m无地下水,冰冻深度为地面以下2~4m处,Ⅱ类场地。 7.外墙采用240厚页岩煤矸石多孔砖,墙采用150厚粒空心砌块。 8.楼、地、屋面采用钢筋混凝土现浇板,条形基础,基础顶标高-1.000m。 墙体采用页岩煤矸石多孔砖,墙、厨、厕及阳台处隔墙为200厚,其余墙体厚度均为240。砖块强度采用MU15,±0.000以下采用M7.5混合砂浆。±0.000以上采用M5混合砂浆。构造柱设置见建筑图。 二.静力计算方案 本工程横墙最大间距S max=7.2m,小于刚性方案横墙最大间距S max=32m,静力计算方案属于刚性方案。 本工程横墙厚度为240mm>180mm,所有横墙水平截面的开洞率均小于50%,横墙为刚性横墙。 本工程外墙水平截面开洞率小于2/3,层高2.8m,4层总高度为11.2m,屋面自重大于0.8kN/m2,本地区基本风压为0.45kN /m2,按规4.2.6条,可不考虑风荷载影响。三.墙身高厚比验算 1.允许高厚比[β] 本工程采用采用砂浆最低强度等级为M5.0,查书表3-4,墙身允许高厚比[β]=24。

2.由建筑图纸所示,外横墙取○22轴和○B 、○E 轴间墙体验算,横墙取○16轴和○B 、○E 轴间墙体验算。外纵墙取○C 轴和○16~○18轴间门厅处墙体验算,纵墙取○E 轴和○16~○ 18轴间门厅处墙体验算。 1)外横墙:S=5.7+1.8=7.5m ,H=2.8+0.45+0.5=3.75m ,2H =7.5m ,2H ≥S >H , 查表3-3 H 0=0.4S+0.2H H 0=3.75m ,h=240mm , 2.11=μ,44.05 .79 .02.12.1=++= s b s 824.04 .012=-s b s =μ,63.1524.075.30==h H =β 73.2324824.02.1][21==??βμμ 73.23][63.1521==βμμβ<,满足要求。 2)横墙:S=5.7m ,H=3.75m ,2H =7.5m ,2H ≥S >H ,查表3-3 H 0=0.4S+0.2H H 0=3.03m ,h=200mm , 38.11=μ,47.07 .52 .15.1s b s =+= 811.04 .012=-s b s =μ,15.1520.003.3h H 0==β= 86.2624811.038.1][21==??βμμ 86.26][15.1521==βμμ<β,满足要求。 3)外纵墙:S=7.2m ,H=3.75m ,2H ≥S >H ,查表3-3 H 0=0.4S+0.2H H 0=3.63m ,h=240mm , 2.11=μ,42.02 .70 .3== s b s 83.04 .012=-s b s =μ,13.1524.063.30==h H =β 242483.02.1][21==??βμμ 24][13.1521==βμμβ<,满足要求。 4)纵墙:S=7.2m ,H=3.75m ,2H ≥S >H ,查表3-3 H 0=0.4S+0.2H

砌体抗震验算处理

1.3.7 多层砌体房屋结构抗震抗剪强度验算时,当某层或某些墙段不能满足截面强度要求时,未采取有效措施加强。 改进措施:多层砌体房屋中的部分墙段抗震抗剪强度不能满足要求时,一般可以有五种办法来加强: (1)增加墙厚。抗震抗剪强度与截面大小有关,增加墙厚可以提高抗剪能力,同时,外墙可以提高保温隔热效果,有利于节能。不利的是增加墙厚会增大结构自重,加大了地震作用,同时材料上当然也会增加。所以不是一种最好的办法,只在某些情况下能适用。 (2)提高砌体强度。砖和砂浆强度的提高,直接会增大截面抗震抗剪能力。但是,目前砌体规范中对砂浆强度只给出M10砂浆时的抗剪强度设计值,而且明确大于M10的砂浆强度也只取到M10砂浆时的强度。在目前一些砖或混凝土砌块的强度有明显提高的情况下,完全有条件采用与之配套的高标号砂浆,提高砌体的抗震抗剪强度,满足截面的强度验算要求。但目前因无这方面的数据,规范又无规定,所以只有进行相关的试验来求得数据,用于强度验算。 (3)配置水平钢筋。这也是《抗震规范》GB 50011第7.2.9条提出的一项措施。 在砌体水平灰缝中配置一定数量的钢筋,可以提高砌体墙段的抗剪能力,这是在大量试验研究基础上提出的办法。 规范规定,灰缝中的配筋率应不小于0.07%且不大于0.17%。试验证明,当水平配筋的数量小于截面配筋率的 0.07%时,此时虽有水平筋,但对提高抗剪能力并不明显,因此不能考虑其作用。同时,试验也证明,当在水平灰缝中配置的钢筋过多(过密或过粗),其间的水平钢筋也不能完全发挥提高抗剪能力的作用。因此由试验确定的配筋率上限值为0.17%。 《抗震规范》第7.2.9条的说明还指出,采用水平配筋措施时,抗震能力的大小与墙体的高宽比有关,这也是使水平钢筋能够发挥作用大小的重要因素。 (4)增加设置构造柱或芯柱。在墙段两端设置构造柱是一种抗御地震时突然倒塌的有效措施。一般的构造柱都设置在墙段的边端或墙体和墙体的交接处,它与为了提高抗震抗剪能力而在墙段中部设构造柱的要求和目的不同。 《抗震规范》第7.2.8条第2款就是为了解决在验算截面抗震受剪能力时不能满足承载力要求,作为一项新措施而提出的。 《抗震规范》公式7.2.8-2中:V≤1/γ RE [η c f VE (A-A c )+ζf 1 A c +0.08f y A s 第一项为砌体截面本身能够承担的受剪承载力;第二项为构造柱的混凝土部分承担的受剪承载力;第三项为构造柱内的钢筋所能承担的受剪承载力。 这是一个主要以试验数据为主得到的经验公式。试验证明,在一个墙段中,构造柱包括钢筋和混凝土所能承担的受剪能力应有所限制。 规范对墙段中部设置的构造柱在纵横墙截面中所占的比例作出了限制,同时对中部构造柱中的钢筋也作了限制,主要是为了既保持多层砌体墙的特性,同时又解决墙段受剪承载力的不足。 (5)采用配筋混凝土小型空心砌体。只能用于混凝土小型空心砌块建筑中,不能在砖砌体房屋中出现局部的配筋混凝土小型空心砌块墙段。 当在多层混凝土小型空心砌块建筑中出现整层或某些墙段的受剪承载能力不足时,首先应采取增加构造柱和芯柱数量等措施,在不足以解决其承载力时,可采用在混凝土小型空心砌块墙段中,按配筋砌块的要求增加竖向和水平配筋等措施,来提高整层或某些墙段的受剪承载能力。

最新抗震计算实例

抗震计算实例

PKPM结构设计软件在应用中的问题解析(2005.7) 第一章砖混底框的设计 (一)“按经验考虑墙梁上部作用的荷载折减” ⑴由于墙梁的反拱作用,使得一部分荷载直接传给了竖向构件,从而使墙梁的荷载降低。 ⑵若选择此项,则程序对所有的托墙梁均折减,而不判断该梁是否为墙梁。 (二)“按规范墙梁方法确定托梁上部荷载” ⑴若选择此项,则则程序自动判断托墙梁是否为墙梁,若是墙梁则自动按照规范要求计算梁上的荷载,若不是墙梁则按均布荷载方式加到梁上。 ⑵若同时选择“按经验考虑墙梁上部作用的荷载折减”和“按规范墙梁方法确定托梁上部荷载”两项,则程序对于墙梁则执行“按规范墙梁方法确定托梁上部荷载”,对于非墙梁则执行“按经验考虑墙梁上部作用的荷载折减”。 (三)“底框结构剪力墙侧移刚度是否应该考虑边框柱的作用” 若选择此项,则程序在计算侧移刚度比时,与边框柱相连的剪力墙将作为组合截面考虑。否则程序分别计算墙、柱侧移刚度。 一般而言,对混凝土抗震墙可选择考虑边框柱的作用,对砖抗震墙可选择不考虑边框柱的作用。 (四)混凝土墙与砖墙弹性模量比的输入 ⑴适用范围:混凝土墙与砖墙弹性模量比只有在该结构在某一层既输入了混凝土墙,又输入了砖墙时才起作用。 ⑵物理意义:混凝土墙与砖墙的弹性模量比。 ⑶参数大小:该值缺省时为3,大小在3~6之间。 ⑷如何填写:一般而言,混凝土墙的弹性模量是砖墙的10倍以上。如果是同等墙厚,则混凝土墙的刚度就是砖墙的10倍以上。但实际上,在结构设计时,一方面混凝土墙的厚度小于砖墙,从而使混凝土墙的刚度有所降低;另一方面,在实际地震力作用下混凝土墙所受的地震力是否就是砖墙的10倍以上还是未知数,因此我们不能将该值填得过高。 (五)砖混底框结构风荷载的计算

化工设备设计计算

华东理工大学 第一届化工设备计算机辅助概念设计 比赛说明书 设计者: 高一聪(过程012) 杜鼎(机设015) 孙英策(机设011) 2003年11月6日

目录 一.设计要求 (3) 二.设计思路概述 (3) 三.设计尺寸 (4) 四.设计建模过程 (4) 塔体 (4) 裙座 (4) 接管 (6) 法兰 (6) 人孔 (6) 吊柱 (7) 操作平台 (7) 梯子 (8) 五.椭圆形封头钣金展开 (9) 六.心得体会 (13) 七.参考书目 (14)

一.设计要求 1 塔设备三维造型 2设计平台、扶梯、并与塔组装。 a除了图中已注尺寸,其余部分形状大小由设计而定。 b塔筒体内零件忽略不作,只作塔设备外形。 c接管、人孔、支座等方位由设计而定。 d平台与扶手形状、大小自行设计。 e 支座数量为4个。 f 支座与法兰大小应由有关系列标准而定。 3 画出塔设备椭圆封头的展开图。展开方法合理,所用材料最省。 二.设计思路概述 塔设备是化工,炼油生产中最重要的设备之一。它主要分为板式塔和填料塔两大类。我们设计的塔设备就是以板式塔为模板的。我们通过查看实物图片,查阅相关塔设备资料和设计标准手册研究除了一套较合理的方案。我们的设计主要分为以下几部分: 1、塔体:塔设备的外壳。它由等直径、等厚度的圆筒和作为头盖和低盖的椭圆形 封头组成。 2、塔体支座:塔体安放在基础上的连接部分。它用以确定塔体的位置。本题中塔 设备采用的是最常用的支座形式——裙座。 3、除沫器:用于捕集夹带在气流中的液滴。对于回收物料,减少污染非常重要。 4、接管:用以连接工艺管道,把塔设备与其他设备连成系统。安用途可分为进液 管、除液管、进气管、出气管等。 5、人孔:为安装、检修、检查的需要而设置的。

桥梁抗震规范

桥梁抗震规范 当前主要国家桥梁抗展设计规范的基本思想和设计准则是:设计地展作用基本地震工程与工程振动上分为两个等级,都可归纳为功能设计地震和安全设计地震。虽然各规范使用的名词不同,但其思想是基本一致的。 功能设计地震具有较大的发生概率,安全设计地震具有很小的发生概率。在功能设计地震作用下,桥梁结构只允许发生十分轻微的破坏,不影响正常的交通,不经修复也可以继续使用;在安全设计地震的作用下,允许桥梁结构发生较大的破坏,但不允许发生整体破坏,如倒塌、落梁等欧洲规范对此规定得最为清楚、具体。比较起来,我国公路工程抗震设计规范仍在使用烈度概念,而几关于抗震设计的指导思想对于桥梁来说过于笼统。各国桥梁抗震设计规范中虽然设定了两个水准,但在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足。这种情况可能发生变化,TC一32和日本即将出版的新的桥梁抗震设计规范都建议对两个设计地震动水准进行直接设计。这代表了桥梁结构抗震设计具体程序上的一个变动方向。 除了我国现行区划图外,其它主要地震国家均采用了地震动参数区划。采用烈度进行桥梁结构抗震设计无论是在概念上,还是在数值方面都存在很多问题闭,因此我国正在编制的第四代区划图已经使用了地震动参数区划。日本规范确定设计地震动的方法比较独特,设计地震动

的概率特征十分不明显。第一级设计地震虽有统计意义,但仍是确定性成分较多;第二级设计地震以确定性方法规定。第一类主要参考了1923年关东地震(大陆边缘地震)第二类主要参考了1995年阪神地震(都市直下型地震)I,这与日本地域狭小和地震类型相对比较清楚有关。我国城市桥梁抗震设计规范的建议 〔1)l抗震设防标准。这是桥梁结构抗震设计的最基本问题。过去的几十年的时间里,研究者和工程2期范立础等:桥梁抗震设计规范的现状与发展趋势师都提出分级抗震设防的原则:即小震不坏,中震发生有限的结构或非结构构件的破坏,大震发生严重的结构和非结构构件的破坏但不产生严重的人员伤亡。而在可能袭击工程场地最严重的地震作用下,结构不倒塌。这些基本的结构性能目标今天被大多数的设计规程所采用。但传统的作法是,只针对单一的地震作用水平进行结构的抗展设计。现在的问题是针对每一个目标都给出相应的具体设计程序,这样一来,就需要对目前实际上还是单一水准强度抗震设计原则进行修订,采用多水准、多设防目标和多阶段的抗震设计原则。(2)延性和位移设计。传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。在这方面,各种非弹性反应谱的研究和应用工作一直在进行。一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和

化工设备设计计算书

化工设备设计计算书 编辑: 二00四年+月+八日

目录 1、目录-----------------------------------------------2 2、筒体和封头设计的参数选择---------------------------3 (一)、设计压力 P---------------------------------3 (二)、设计温度 T---------------------------------3 (三)、许用应力[σ]和安全系数 n-------------------4 (四)、焊接接头系数 ----------------------------6 (五)、壁厚附加量 C ------------------------------7 (六)、直径系列与钢板厚度-------------------------7 (七)、最小壁厚-----------------------------------8 3、筒体与封头的设计及计算-----------------------------9 (一)、受内压薄壁园筒的计算公式-------------------9 (二)、半球形封头的计算公式(凹面受压)----------11 (三)、椭圆形封头的壁厚计算----------------------11 (四)、锥形封头的壁厚计算------------------------13 (五)、平板封头的壁厚计算------------------------13 4、化工计算公式及举例--------------------------------16 (一)、热位移和热--------------------------------16 (二)、热应力产生的轴向推力----------------------16 (三)、流体管径的计算----------------------------17 (四)、流体管子壁厚计算--------------------------18 (五)、泵的功率和效率计算------------------------19 5、传热学的有关公式及举例----------------------------21 (一)、热量衡算----------------------------------21 (二)、传热方程式--------------------------------26 (三)、传热温度差--------------------------------27 (四)、导热方程式和导热系数----------------------30 (五)、给热方程式和给热系数----------------------34 (六)、传热系数----------------------------------40 (七)、污垢热阻----------------------------------48 (八)、管路与设备的热损失和热绝缘----------------50 (九)、加热、冷却和冷凝--------------------------54 (+)、蒸发--------------------------------------64 6、有关参数------------------------------------------75

相关文档
最新文档