尺规作图3作已知角的平分线

尺规作图3作已知角的平分线

尺规作图3作已知角的平分线

新北师大版八年级下册数学 《角平分线(1)》教案

4.角平分线(一) 一、学生知识状况分析 本节在学习了直角三角形全等的判定定理、线段的垂直平分线的性质和判定定理的基础上,进一步学习角平分线的性质和判定定理及相关结论.学生已经经历了构造一个命题的逆命题的过程,因此比较容易用类比的方法构造角平分线性质定理的逆命题。 二、教学任务分析 学生已探索过角平分线的性质,而此处在学生回忆的基础上,尝试着证明它,并构造其命题,进一步讨论三角形三个内角平分线的性质.本节课的教学目标为: 1.会证明角平分线的性质定理及其逆定理. 2.进一步发展学生的推理证明意识和能力,培养学生将文字语言.转化为符号语言、图形语言的能力. 3.经历探索,猜想,证明使学生掌握研究解决问题的方法。 教学难点: 正确地表述角平分线性质定理的逆命题及其证明。 三、教学过程分析 本节课设计了六个教学环节:第一环节:情境引入;第二环节:探究新知;第三环节:巩固练习;第四环节:随堂练习;第五环节:课时小结;第六环节:课后作业 1:情境引入 我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下: 从折纸过程中,我们可以得出CD=CE, 即角平分线上的点到角两边的距离相等. 你能证明它吗? 2:探究新知 (1)引导学生证明性质定理 请同学们自己尝试着证明上述结论,然后在 全班进行交流. 已知:如图,OC是∠AOB的平分线,点P 2 1 E D C P O B A

在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E. 求证:PD=PE. 证明:∵∠1=∠2,OP=OP, ∠PDO=∠PEO=90°, ∴△PDO≌△PEO(AAS). ∴PD=PE(全等三角形的对应边相等). (教师在教学过程中对有困难的学生要给以指导) 我们用公理和已学过的定理证明了我们折纸过程中得出的结论.我们把它叫做角平分线的性质定理。(用多媒体演示)角平分线上的点到这个角的两边的距离相等.(2)你能写出这个定理的逆命题吗? 我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题. 引导学生分析结论后完整地叙述出角平分线性质定理的逆命题: 在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上. 它是真命题吗? 你能证明它吗? 没有加“在角的内部”时,是假命题. (由学生自己独立思考完成,在全班讨论交流,对困难学生可个别辅导) 证明如下: 已知:在么AOB内部有一点P,且PD上OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在么AOB的角平分线上. 证明:PD⊥OA,PE⊥OB, ∴∠PDO=∠ PEO=90°. 在Rt△ODP和Rt△OEP中 OP=OP,PD=PE,∴Rt△ODP ≌ Rt△OEP(HL定理). ∴∠1=∠2(全等三角形对应角相等). 逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理.我们就把它叫做角平分线的判定定理。 3.巩固练习 综合利用角平分线的性质和判定、直角三角形的相关性质解决问题。进一步发展

尺规作图角平分线

一、尺规作图 1. 作一个角等于已知角的方法 已知:∠AOB ,求作:∠A ′O ′B ′=∠AOB. 作法: 1.以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; 2.画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′; 3.以点C ′为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D ′; 4.过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 2. 先任意画出一个△ABC.再画一个△A ′B ′C ′,使 A ′ B ′=AB , B ′C ′=BC ,C ′A ′ =CA. O A B C D O′ A′ B′ C′ D′

作法: 画一个△A′B′C′,使A′B′=AB, A′C′=AC,B′C′=BC : (1)画B′C′=BC; (2)分别以点B′,C′为圆心,线段AB,AC长为半径 画弧,两弧相交于点A′; (3)连接线段A′B′,A′C′. 二、角的平分线 导入: 小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P 点建成两条管道,分别与暖气管道和天然气管道相连. 问题1:怎样修建管道最短? 问题2: 新修建的两条管道的长有什么关系,画来看一看. 角的平分线的画法 图12.3-1是一个平分角的仪器,其中AB= AD,BC=DC.将点A放在角的顶点,AB和AD 着角的两边放下,沿AC画一条射线AE,AE就是这个角的平分线,你能说明它的道理吗?

作已知角的平分线的方法. 已知:∠AOB. 求作:∠AOB 的平分线. 作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N. (2)分别以点M ,N 为圆心,大于 MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C. (3)画射线OC.射线OC 即为所求(如图). 理论根据:作角平分线的理论根据是三角形全等的判定方法:“SSS ”. 拓展:根据角平分线的作法还可以作已知角的四等分线. 注意: “大于 MN 的长为半径画弧”是因为若以小或等于 MN 的长为半径画弧时,画出的两弧不能相交. 如图所示,已知∠AOB ,求作:∠AOM = ∠AOB. 1 2 12 12 14

解读高斯正十七边形的作法(下)

解读高斯正十七边形的作法 正十七边形的尺规作法: 步骤1:在平面直角坐标系xOy 中作单位圆O 步骤2:在x 轴负半轴上取点N ,使|ON|= 41,易知|NB|=417,以N 为圆心,NB 为半径作弧,交x 轴于F 、F’,易知|OF|= 2a ,|OF’|=2b 步骤3:此时|FB|=122+?? ? ??a =242+a ,以F 为圆心,|FB|为半径作弧,交x 轴正半轴于G ,此时|OG|=2 422++a a =c 步骤4:.类似地,|F’B|=122 +?? ? ??b =242+b ,以F’为圆心,|F’B|为半径作弧,交x 轴正半轴于点G’,此时|OG’|=2422++b b =e 步骤5:以|CG’|为直径作圆,交y 轴正半轴于点H ,易知OH 2=1·e

步骤6:以H 为圆心, 21|OG|为半径作弧,交x 轴正半轴于点K ,则有|OK|=222OH OG -??? ??=222e c -?? ? ??=242e c -步骤7:以K 为圆心,|KH|=2 1|OG|为半径作弧,交x 轴正半轴于点L ,则|OL|=2 42e c c -+步骤8:取OL 的中点M ,则|OM|=4 42e c c -+=cos 172π步骤9:过点M 作y 轴的并行线交单位圆O 于两点A 2和A 17,则Α为正十七边形的第一个顶点,A 2为第二个顶点,A 17为第十七个顶点,从而作出正十七边形。 正十七边形边长的表达式 在上面得到的一系列等式: a =2171+-, b =2171--, c =242++a a ,e =2 42++b b ,cos 172π=4 42e c c -+中,依次求出c =4 17234171-++-,

八年级数学上 角平分线的作法

一. 教学内容: 1. 角平分线的作法. 2. 角平分线的性质及判定. 3. 角平分线的性质及判定的应用. 二. 知识要点: 1. 角平分线的作法(尺规作图) ①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点; ②分别以C 、D 为圆心,大于1 2 CD 长为半径画弧,两弧交于点P ; ③过点P 作射线OP ,射线OP 即为所求. O A B ① ② ③ 2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. ①推导 已知:OC 平分∠MON ,P 是OC 上任意一点,PA ⊥OM ,PB ⊥ON , 垂足分别为点A 、点B . 求证:PA =PB . O P A B M N 12 C 证明:∵PA ⊥OM ,PB ⊥ON ∴∠PAO =∠PBO =90° ∵OC 平分∠MON ∴∠1=∠2 在△PAO 和△PBO 中,???? ?∠PAO =∠PBO ∠1=∠2 OP=OP ∴△PAO ≌△PBO ∴PA =PB ②几何表达:(角的平分线上的点到角的两边的距离相等)

O P A B M N 12 如图所示,∵OP 平分∠MON (∠1=∠2),PA ⊥OM ,PB ⊥ON , ∴PA =PB . (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. ①推导 已知:点P 是∠MON 内一点,PA ⊥OM 于A ,PB ⊥ON 于B ,且PA =PB . 求证:点P 在∠MON 的平分线上. O A B M N P 证明:连结OP 在R t △PAO 和R t △PBO 中,? ????PA =PB OP =OP ∴R t △PAO ≌R t △PBO (HL ) ∴∠1=∠2 ∴OP 平分∠MON 即点P 在∠MON 的平分线上. ②几何表达:(到角的两边的距离相等的点在角的平分线上.) O P A B M N 1 2 C 如图所示,∵PA ⊥OM ,PB ⊥ON ,PA =PB ∴∠1=∠2(OP 平分∠MON ) 3. 角平分线性质及判定的应用 ①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用.

最新人教版初中八年级上册数学《角的平分线的判定》精品教案

第2课时角的平分线的判定 【知识与技能】 1.掌握角的平分线的判定. 2.会利用三角形角平分线的性质. 【过程与方法】 通过学习角的平分线的判定,发展学生的推理能力,培养学生分析、归纳问题的能力. 【情感态度】 锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值. 【教学重点】 角平分线的判定. 【教学难点】 三角形的内角平分线的应用. 一、情境导入,初步认识 问题1我们知道,角的平分线上的点到角的两边的距离相等.到角的两边的距离相等的点是否在角的平分线上呢? 【教学说明】如图所示,已知PD⊥OA于D,PE⊥OB于E,PD=PE,那么能否得到点P在∠AOB的角平分线上呢?事实上,在Rt△OPD和Rt△OPE中,我们利用HL可得到Rt△OPD≌Rt△OPE.所以∠AOP=∠BOP,即点P在∠AOB的角平分线上. 二、思考探究,获取新知 三角形内角平分线是角平分线的延伸,那如何利用它来解题呢? 例1 如图O是△ABC内的一点,且O到三边AB、BC、CA 的距离OF=OD=OE.若∠A=70°,求∠BOC的度数. 【分析】由OD=OE=OF,且OD⊥BC、OE⊥AC、OF⊥AB知,O是△ABC的三角平分线的交点,所以∠1=∠2、∠3=∠4.要求∠BOC的度数,只要求出∠1+∠3的度数,即只要求出2(∠1+∠3)=∠ABC+∠ACB 的度数即可,在△ABC中,运用三角形的内角和定理,即可得出∠BOC的度数.

解:∵OF⊥AB,OD⊥BC,且OF=OD, ∴BO平分∠ABC,即∠1=∠2,同理可得∠3=∠4. ∴∠BOC=180°-(∠1+∠3)=180°-1 2 (∠ABC+∠ACB)=180°- 1 2 (180°-∠ A)=90°+1 2 ∠A=125°. 【教学说明】求三角形中角的度数,要善于运用角平分线的性质. 例2如图①,D、E、F是△ABC的三条边上的点,且CE=BF,S △DCE =S △DBF ,求证: AD平分∠BAC. 【分析】由已知条件可知△DCE和△DBF的两底CE=BF,且它们的面积相等,所以这两底上的高应该相等.因此过点D作DM⊥ AB,DN⊥AC,垂足分别为M和N,则DM=DN.由角平分线的判定定理可知,AD平分∠BAC. 【证明】如图②,过点D作DM⊥AB于点M,作DN⊥AC于点N. ∵S △DCE =S △DBF ,即 1 2 CE·DN= 1 2 BF·DM. 又∵CE=BF,∴DN=DM,∴点D在∠BAC的平分线上,即AD 平分∠BAC. 例3 如图所示,在△ABC中,AC=BC,∠ACB=90°,D是 AC上一点,且AE⊥BD并交BD的延长线于点E,又AE=1 2 BD.求证:BD是∠ABC 的平分线. 【分析】要证明BD是∠ABC的平分线,即证明∠1=∠2,可构造全等三角形,延长AE、BC交于F,根据条件证明△ABE≌△FBE即可. 【证明】延长AE、BC交于点F. ∵AE⊥BD,∠ACB=90°, ∴∠2+∠F=∠FAC+∠F=90°, 即∠2=∠FAC. 在△BDC与△AFC中,

高斯与正十七边形

高斯与正十七边形 数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。被誉为“数学王子”的伟大数学家高斯就是其中之一。 高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。小学毕业后,高斯考了文科学校。由于他古典文学成绩突出,入学后直接上了二年级。两年以后高斯又升入了高中哲学班。 15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。语言学和数学是他最喜爱的两门课程。 18岁时,高斯进入了哥廷根大学深造。这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。 后来,一次数学研究上的突破改变了两个引力场的均衡。高斯终于下定决心,飞向了数学之星。 事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问 题。到高斯的时代,人们已经解决了边数是n 23?、n 24?、n 25?、n 253??(=n 0,1, 2,3……)的正多边形的尺规作图问题。但是,还没有人能作出正7边形、正11边形、正17边形等等。很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。 高斯一直对正多边形尺规作图问题非常着迷。经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。他证明 了一切边数形如122+t (=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。 正17边形作图问题不仅震撼了数学界,也震撼了高斯自己的心灵。他再也无法控制自己,在数学美的巨大引力的作用下,飞向了自己理想的星球-他选择了数学。 从此,高斯的数学成就象喷泉一样涌了出来。他在几乎所有的数学学科中留下了自己的光辉成就,成为伟大的数学家。 高斯直到晚年还十分欣赏使自己走上数学之路的正17边形,对数学美的赞叹与追求伴高斯渡过了他的一生。高斯逝世后,人们按照他的遗嘱,在他的雕像下面建立了一座正17边枎的底座,用他非常欣赏的《李尔王》中的诗句赞美道:“你,自然,我的女神,我要为你的规律而献身”。

人教版数学八年级上册12.3角的平分线的性质 教学设计

第十二章全等三角形 12.3角的平分线的性质教学设计 教材分析 本节内容是全等三角形知识的运用延伸,用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种典型方法——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质反映了角的平分线的基本特征,常用来证明两条线段相等,角的平分线的性质的研究过程还可为后期学习线段垂直平分线的性质提供思路。 教学目标 1.会使用尺规作一个已知角的平分线; 2.掌握角的平分线的性质和判定; 3.能运用角的平分线的性质定理解决简单的几何问题. 教学重点及难点 重点:角平分线的尺规作图,角的平分线的性质和判定及其应用. 难点:1.理解对角平分线性质定理中“点到角两边的距离” 2.角的平分线的性质及判定定理的运用. 教学用具 直尺、刻度尺、量角器、角平分仪、多媒体、课件 教学过程 (一)导入新课 问题1:给出一个纸片做的角,能不能找出这个角的角平分线呢? 师生活动:可用量角器,若不利用工具,也可用折纸的方法,教师课件演示. 问题2:哪一种方法用起来更方便?在生活中,这些方法是否都可行呢? 师生活动:用量角器比较方便,但有误差,用折叠的方法比较简捷,但若换成木板、钢板等无法对折的材料,此方法就不行了,那还有别的方法适合吗?引出课题.[设计意图]设计“激趣设疑、联旧带新”环节,既能激发学生的学习兴趣,培养学生运用数学知识解决实际问题的意识,同时为更高层次的知识建构提供了理想途径.(二)探索新知

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

数学人教版八年级上册角平分线性质

E 12.3 《角的平分线的性质》(第1课时) 一、教学目标 1、知识与技能: (1)掌握用尺规作已知角的平分线的方法。 (2)理解角的平分线的性质并能初步运用。 2、过程与方法: 通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。 3、情感与态度: 充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。 二、、教学重点、难点 教学重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。 教学难点:1、对角平分线性质定理中点到角两边的距离的正确理解; 2、对于性质定理的运用。 三、教学方法 引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习 四、教学过程 一、创设情景 生活中的数学问题: 小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么关系,画来看一看。 探索体验 探索1:如图是一个平分角的仪器,其中AB=AD,BC=CD .将点A 放在角的顶点,AB,CD 沿着角的两边入放下,沿AC 画一条射线AE,AE 就是角平分线.你能说明它的道理吗 ?

从上面的探究中可以得到作已知角的平分线的方法。 观察领悟作法,探索思考证明方法 画法: 以O为圆心,适当长为半径作弧,交OA于M,交OB于N . 分别以M,N为圆心.大于 1/2 MN的长为半径作弧.两弧在∠AOB的内部交于C. 作射线OC. 射线OC即为所求. 教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性。 想一想:为什么OC 是角平分线呢? 利用三角形全等证明角平分线,进一步 明确命题的题设与结论,熟悉几何证明 过程。 已知:OM=ON ,MC=NC 。 求证:OC 平分∠AOB 。 证明:在△OMC 和△ONC 中, OM=ON , MC=NC , OC=OC , ∴ △OMC ≌ △ONC (SSS ) ∴∠MOC=∠NOC 即:OC 平分∠AOB 探索2: 让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一

正十七边形做法及证明.

步骤一: 给一圆O,作两垂直的直径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a(cos3a+cos5a+cos6a+cos7a =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a 经计算知xy=-1 又有 x=(-1+根号17/4,y=(-1-根号17/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17/4 y1+y2=(-1-根号17/4 最后,由cosa+cos4a=x1,cosacos4a=(y1/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

数学人教版八年级上册《角的平分线》的画法

角的平分线的画法 数学课上,探讨角平分线的作法时,黎老师用直尺和圆规作角平分线,方法如下: 小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下: 步骤: ①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON. ②分别过M、N作OM、ON的垂线,交于点P. ③作射线OP.则OP为∠AOB的平分线. 小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题: (1)黎老师用尺规作角平分线时,用到的三角形全等的判定方法是_______.

(2)小聪的作法正确吗?请说明理由. (3)请你帮小颖设计用刻度尺作角平分线的方法. (要求:作出图形,写出作图步骤,不予证明) 试题分析: (1)根据三角形全等的判定方法“SSS”解答. (2)利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,根据全等三角形对应边相等解答. (3)利用刻度尺作出PM=PN,再利用“SSS”证明两三角形全等,即可得解: 在△MOP和△NOP中,,∴△MOP≌△NOP(SSS).∴∠MOP=∠NOP.∴OP 是∠AOB的平分线. 试题解析: (1)黎老师用到的三角形全等的方法是“SSS”. (2)小聪的作法正确。理由如下: 在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL). ∴∠MOP=∠NOP.∴OP是∠AOB的平分线. (3)如图: ①利用刻度尺上的刻度,在OA和OB上分别画点M、N,使OM=ON; ②用两个刻度尺作出MP=NP,交于点P;

③作射线OP,则OP就是∠AOB的平分线. 考点:1. 全等三角形的应用;2.作图(基本作图).

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

作已知角的平分线教案(教学设计)

作已知角的平分线 一、教材分析 1、教材所处的地位和前后联系: “作已知角的平分线”是华东师大版数学八年级上册第十三章《全等三角形》中第四节尺规作图的内容。七年级时学生已经学习过尺规作图的前两种基本作图:“作一条线段等于已知线段”和“作一个角等于已知角”,本节的第一课时和第二课时带领学生做了回顾,所以严格地说这节课是本学期尺规作图部分真正的新课——第三种基本作图,位于全等三角形之后学习,给本节课提供了充分的理论依据,同时它也是下节课“经过一已知点作已知直线的垂线”的基础。 2、教学目标: 根据大纲要求和教材的特点,结合八年级学生的实际水平,本节课我确定了如下教学目标: (1)知识与技能目标:通过真正的实践操作,掌握作已知角的平分线的方法及步骤, 了解作图的语言,能说明作图的道理。 (2)过程与方法目标:经历动手操作和推理论证活动,发展学生的逻辑思维能力,积 累数学活动的经验,在动手实践中学会与人合作、彼此交流。 (3)情感与态度目标:培养学生的作图能力及动手能力,获得动手的乐趣和成就感, 体会数学作图语言和图形的和谐统一。 3、教学重点: 规范使用尺规,掌握作已知角的平分线的方法及步骤。 4、教学难点: 能用恰当的数学语言表述作图过程。 二、教法分析 本节课主要采用教师直观演示,学生实验操作的教学方法,让学生亲身经历知识的形成过程,有利于学生更好地理解与应用数学,更能获得动手的乐趣和成就感,增强学习数学的兴趣和信心。因此在教法上,尽可能地组织学生自主动手、参与实践的数学活动,并且自己进行推理论证操作的正确性,培养学生的逻辑思维能力。教学中充分发挥学生“爱动”的年龄特点,调动学习数学的积极性,促使学生进入最佳的学习状态。 教学准备:白板,投影仪,尺规。 三、学法指导 根据初二学生的认知特点,以学生原有知识经验为基础,从直观动手出发,以观察、操作、感受、推理论证的学习方法为主,动手实践与合作交流是学生本节课的主要学习方

人教版八年级数学上册《角的平分线的性质》

角的平分线的性质 教学目标 知识与技能: 1、掌握用尺规作已知角的平分线的方法; 2、理解角的平分线的性质并能初步运用。 过程与方法: 通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。 情感态度与价值观: 培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。 教学重点: 掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。 教学难点: 1、对角平分线性质定理中点到角两边的距离的正确理解; 2、对于性质定理的运用。 教学过程: 一、创设情景 生活中有很多数学问题: 小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么关系,画来看一看。 二、探究体验 要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。出示仪器模型,介绍仪器特点(有两对边相等),将A 点放在角的顶点处,AB 和AD 沿角的两边放下,过AC 画一条射线

A F C B E AE ,AE 即为∠BAD 的平分线。 学生口述,用三角形全等的方法证明AE 是∠BAD 的平分线。 多媒体展示实验过程。 把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC =DC ,从几何作图角度怎么画? 让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。 问题1:第一次的折痕和角有什么关系?为什么? 问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系? 如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等) 结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用. 三、合作交流 判断正误,并说明理由: (1)如图1,P 在射线OC 上,PE ⊥OA ,PF ⊥OB ,则PE =PF . (2)如图2,P 是∠AOB 的平分线OC 上的一点,E 、F 分别在OA 、OB 上,则 PE =PF . (3)如图3,在∠AOB 的平分线OC 上任取一点P ,若P 到OA 的距离为3cm ,则P 到OB 的距离边为3cm . 让学生运用本节课所学的知识回答课前引例中的问题: 问题:引例中两条管道的长度有什么关系?理由是什么? 四、例题讲解 例1 如图,在△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .求证:EB =FC . E O B A O B P E F 图2 图3 A O B P E A O B P E F 图1

17边形画法

步骤一: 给一圆O,作两垂直的半径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA, 作AO延长线上E点使得∠DCE=45度。 步骤二: 作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点, 再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。 连接P4P6,以1/2弧P4P6为半径,在圆上不断截取,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明: 设正17边形中心角为a,则17a=360度,即16a=360度-a

故sin16a=-sina,而 sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a)=-1 注意到cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a) =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a) 经计算知xy=-1 又有 x=(-1+根号17)/4,y=(-1-根号17)/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17)/4 y1+y2=(-1-根号17)/4 最后,由cosa+cos4a=x1,cosacos4a=(y1)/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

《作已知角的平分线》word版 公开课一等奖教案

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 学生自主学习学案

一.回顾: 如图,已知AC平分∠PAQ,则∠PAC ,∠CAQ和∠PAQ之间有怎样的关系? 二、自主学习 自学内容: 阅读课本87页,13.4.3作已知角的平分线 亲自动手完成作图: 已知:如图,∠AOB 求作:∠AOB的平分线 作法: 1、在射线OA和OB上,分别截取OD、OE,使OD=OE。 2、分别以D、E为圆心,适当长(大于线段DE的长的一半)为半径作弧,在∠AOB内,两弧交于点C。 3、作射线OC。 射线OC就是所求的射线.

4.作出图中三角形三个角的平分线。(不写画法,保留作图痕迹) 5. 已知:如图,∠AOC和∠ COB互为邻补角 (1)用尺规分别作∠AOC和∠ COB的平分线OE和OF; (2) OE和OF有怎样的位置关系?并说明理由。 当堂检测: 导学方案114页:自主测评1.2难点探究 本节课学习了什么内容?你有哪些收获? 本课教学反思 本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个第4题 B A C

尺规作图:作线段的垂直平分线

13.1.2《尺规作图:作线段的垂直平分线》课型:新授课时: 1 主备人:张艳峰修订人:授课时间: 教学目标 知识与技能 1.掌握线段的垂直平分线的性质和判定. 2.能够用尺规作图作出线段的垂直平分线,提高动手能力 过程与方法通过经历作图,理解作图原理,通过类比角的平分线学习本节内容,体会类比学习方法情感、态度、 价值观 通过作图和折叠,提高孩子学习数学的兴趣。 重 点 线段的垂直平分线尺规作图 难 点 尺规作图后的证明理解类比的学习方法。 环 节主备备注 复习巩固(1)什么叫线段的垂直平分线?(2)你会画出它吗? 自主学习阅读课本62页。并思考:有时候我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确的作出对称图形的对称轴么? 精讲点拨1.如果找到了一组对应点,如何做它们的对称轴呢? 2.前面学了角平分线的画法,是到角的两个边的距离相等的点的集合,那么,线段的垂直平分什么特征呢? 3.根据这个特征,我们可以如何画图? 4.两个交点可以在线段的一侧,也可以在两侧,引导学生发现交点在两侧的时候方便作图,所以选用两侧。 5.交点能不能在线上呢?引导学生得到“找线段中点的办法” 合作探究如何证明以上作法得到的就是改线段的垂直平分线呢? 学生思考使用三角形全等,教师可以用“两个点确定一条直线”和“线段垂直平分线的判定定理”来证明。

课堂练习 1.课本64页练习1 2.如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题, 计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规 确定学校的位置.(保留作图痕迹,写出画法) 3.如图,电信部门要在S 区修建一座电视信号发射塔。 按照设计要求,发射塔到两个城镇A ,B 的距离必须相等, 到两条高速公路m 和n 的距离也必须相等。发射塔应该修 建在什么位置?在图上标出它的位置。 课堂小结 本节课学到了什么知识? 还有什么困惑? 学到了什么数学思想? 作业部置 课本66页第10题 板书设计 教后反思 Q P B A

八年级数学:角的平分线(教学设计)

初中数学新课程标准教材 数学教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 数学教案 / 初中数学 / 八年级数学教案 编订:XX文讯教育机构

角的平分线(教学设计) 教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 知识结构 重点与难点分析: 本节内容的重点是角平分线的性质定理,逆定理及它们的应用。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。 本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。 教法建议: 整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与

学融为一体。具体说明如下: (1)做好铺垫 新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。 (2)主动获取 利用上面的图形,观察这两个距离的关系,并证明自己的结论。对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不是很准确,此时教师要做指导。这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。 (3)激荡思维 在上面定理的基础上,让学找出此定理的条件与结论,并交换条件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。此时顺理成章地引出教材中的定理2。最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。这一环节完全是由学生给出定理的文字表述及证明过程。

相关文档
最新文档