PKPM版画结构平面图楼板配筋计算详解

PKPM版画结构平面图楼板配筋计算详解
PKPM版画结构平面图楼板配筋计算详解

PKPM版画结构平面图楼板配筋计算详解PKPM2010版画结构平面图楼板配筋计算详解

付成

在PKPM结构平面中,楼板计算即有弹性计算、还有塑性计算,弹性计算中还有查静力手册计算、有限元计算,边界元计算的不同方式,考虑一些特殊情况,用户还可以选择按照考虑活荷载不利布置计算或者按照连续板块的计算方式。面对诸多选择,广大用户可能不能很好的选择适合的方式,本文结合2010版针对新规范的修改,深入剖析不同算法的应用技巧和技术条件,使用户在计算时做到心中有数。

一:自动计算方法的选择

程序在计算时根据楼板的形状可分为矩形板和非矩形板两大类。

自动计算时程序会对各块板逐块做内力计算,对非矩形的凸形不规则板块,程序用边界元法计算该块板,对非矩形的凹形不规则板块,程序则采用有限元法计算该块板,程序自动识别板的形状类型并选相应的计算方法。对于矩形板块,计算方法采用用户指定的计算方法(如弹性或塑性)计算。当房间内有次梁时,程序对房间按被次梁分割产生的多个板块分别计算。如图1所示。

楼板计算

满足近似矩形计算条件矩形楼板非矩形楼板

非单一边界

单向板计算双向板凹多边形凸多边形

弹性查表法塑性计算有限元法边界元法

图1

从上图可以看出,非矩形板计算也可以采取静力手册查表的方法计算,对于矩形楼板,即使用户选择了按照塑性计算,但很多情况并没有按照塑性计算,塑性计算必须同时满足以下一个条件:

1:选择了按照塑性计算。

2:按形状是矩形楼板或者近似矩形楼板。

3:四边的任意一边边界条件必须相同。

以下分别就矩形和非矩形楼板计算方式做简要说明

二:矩形钢筋混凝土楼板计算

《砼规》(GB 50010,2010)9.1.1条规定

混凝土板应按下列原则进行计算:

1. 两对边支承的板应按单向板计算,

2. 四边支承的板应按下列规定计算:

1)当长边与短边长度之比小于或等于2.0时~应按双向板计算,

2)当长边与短边长度之比大于2.0~但小于3.0时~宜按双向板计算,当按沿短

边方向受力的单向板计算时~应沿长边方向布置足够数量的构造钢筋,

3)当长边与短边长度之比大于或等于3.0时~可按沿短边方向受力的单向板计

算。

因此,PM程序对单向板与双向板的判断参照该条(第 9.1.1条)的第2项第3

小款,即当长边与短边长度之比大于或等于3.0时,按沿短边方向受力的单向板计算。单向板的内力计算按以下情况考虑:

12两端铰支时,, Mg,1中8

9122M,g1M,g1中支8128,。一固一铰时,

1122M,g1M,g1中支2412两端固定时,,。

单向板的计算公式是弹性计算公式。

双向板(长边/短边<3):按《建筑结构静力计算手册》(中国建筑工业出版社,1974)中弹性理论计算所得弯矩,未考虑板的塑性影响。

对于规则的钢筋混凝土板,由于在静力计算手册中有较为准确的解,因此程序对于此种类型的板,直接采用静力手册中提供的弯矩系数和挠度系数,以简化计算过程。

,对于板四边边界不含自由边的板,表中仅列出了泊松比=0的弯矩系数与挠度

系数。当,值不等于零时,其挠度及支座中点的弯矩仍可按这些表求得。根据《砼规》第4.1.5条之

,规定,钢筋混凝土结构的泊松比=0.2,因此当计算板的跨中弯矩时,可按下

式求得:

(,)M,M,,M xxy

(,)M,M,,M yyx

,其中混凝土泊松比=0.2。

三:非矩形板的计算

对于非矩形板,当为凸形不规则板块时,程序用边界元法计算该块板,采用该算法的优点是快速、高效,但该算法的适应性较为有限,仅适用于凸形不规则板块;当为凹形不规则板块,程序采用有限元法计算该块板,该算法的优点是适应性强。

为说明程序对非矩形板采用两种算法的可靠性,采用通用有限元SAP2000程序计算L型不规则房间与之做比较。

房间在右上角内收20%、50%,分别计算后,其SAP2000计算结果的最大弯矩分布图如图2所示。平面楼板计算结果与SAP2000计算结果的比较见表1。其中内收表示内凹边长与最大边长的比值,边界编号左侧为第1边界,按逆时针排序。

PM计算结果与SAP2000计算结果的比较表1

PM计算结果相对误差(%) SAP2000

计算结果

内垂直于第 1边界 -0.4943 -0.49 -0.87 收垂直于第 2边界 -0.4328 -0.42 -3.0 20%

时垂直于第 3边界 -0.2261 -0.21 -7.12

垂直于第 4边界 -0.2261 -0.22 -2.70

垂直于第 5边界 -0.4328 -0.43 -0.65

垂直于第 6边界 -0.4943 -0.49 -0.87

板中最大弯矩 0.2140 0.21 -1.87

板中最小弯矩 0.1859 0.19 2.20

内垂直于第 1边界 -0.2261 -0.23 1.72 收垂直于第 2边界 -0.1406 -0.14 -0.43 50%

时垂直于第 3边界 -0.2290 -0.22 -3.93

垂直于第 4边界 -0.2290 -0.22 -3.93

垂直于第 5边界 -0.1406 -0.14 -0.43

垂直于第 6边界 -0.2261 -0.23 1.72

板中最大弯矩 0.1151 0.10 -13.12

板中最小弯矩 0. 0704 0.06 -14.77

图2 SAP2000最大弯矩分布

通过以上典型板的计算比较,PM中的异形房间计算结果和实际受力是十分接近的。

四:连续板串计算

楼板采用自动计算时,各板块是分别计算其内力,不考虑相邻板块的影响,因此对于中间支座两侧,其弯矩值有可能存在不平衡的问题,对于跨度相差较大的情况,这种不平衡弯矩会更为明显。为了在一定程度上考虑相邻板块的影响,特别是对于连续单向板的情况,当各块板的跨度不一致时,其内力计算就可在跨度方向上按连续梁的方式计算,以满足中间支座弯矩平衡的条件,同时也可以考虑相邻板块的影响。对应这种情况下的计算方法,可采用“连板计算”。

生成连板计算数据时,程序沿指定的板串方向,生成1米的板带,这样的板带与传统的连续梁很类似,每跨的截面高度取相应板的厚度。墙和主梁位置程序认为是板串的支座,各支座均无竖向位移,不考虑支座梁或墙杆件的刚度等影响。连板

的计算过程和连续梁的计算过程完全相同,可用平面连续梁的计算来简化指定方向上板串的计算。

连板计算所得的内力结果将替代板沿板串方向原有位置的内力结果,同一方向执行多次连板计算时,以最后一次的计算结果为准。执行连板计算后,再次执行自动计算时,所有的连板计算结果将不会保留。

连板计算弥补了自动计算时中间支座上内力不连续的不足,同时考虑了相邻板跨之间的影响。其计算结果与按连续梁方式的对比如图2-23所示。

图3 连续板串计算与连续梁计算对比

1、连续板串计算的主要功能如下:

1) 连续板的两端支座可以在铰支、固定选择;

2) 两端也可以悬挑,悬挑部分的荷载可以与邻板不同;

3) 最大计算跨度为20,每根杆件中间取13个截面计算包络;

4) 支座钢筋和板底钢筋可以有放大系数;

5) 板底弯矩也可以按高规的要求,按不小于简支弯矩的一半考虑;

6) 也可以考虑支座负弯矩调幅;

7) 房间中有次梁时,可以选择是否考虑次梁为边板支座;

8) 荷载也可按跨中挠度相等的原则,根据板的边界条件,将荷载向两个方向

分配,但异形房间,由于不好判断连续板的位置与整个房间的关系,故不分配。

9) 当考虑次梁时,房间的最大正弯矩取本房间内几个次房间正弯矩中的最大

值;

10) 除弯矩外,连续板的剪力,裂缝等也相应改变。

2、连续板串计算时双向板的荷载分配

连续板串计算时,在计算参数中有一个选项“荷载考虑双向板作用”,如图4所示。设置此参数是为了在形成连续板串时,确定每一跨上作用的荷载时,是否考虑该跨是一块双向板,作用在板串方向上的荷载全部取板面荷载,还是考虑板上荷载沿两个方向传递,仅取其部分板面荷载。

图4 边续板串参数设置

当所计算的板串多数是双向板,仅考虑在连续板方向承担全部荷载,显然过于安全。

双向板在两个方向都起承重作用,即双向工作,若在承受均布荷载的双向板跨中截出q

两个互相垂直的宽度均为1m的板带,若不计相邻板带的影响,则由跨度中心点处挠度相等

在两个方向的分配值。的条件可求得荷载q

五、活荷载不利布置计算

多跨连续双向板内力及变形计算较为复杂,为了简化计算,在实用计算中,可以将多跨等区格连续板化为单跨板,从而按单跨板求出跨中最大弯矩和各支座的最大弯矩。

当求支座最大弯矩时,为了简化起见,可按全部区格上都满布均布荷载,并假定各个跨度的板都固结于中间支座上,因而连续板即可化为四边固定的单跨双向板计算其支座弯矩,至于边区格,外边界条件按实际情况考虑;内支座按固定边界条件,计算其支座弯矩。

当求某区格跨中最大弯矩时,活荷载的最不利布置如图5所示,即在该区格布置活荷载,

pg然后在其左右、前后每隔一区格布置活荷载。在这种荷载作用下,可将活荷载与恒荷载分为与两部分,分别作用于相应区格。 g,p/2,p/2

图5 活载不利布置图

当全部各区格均作用有时,可近似地将内部区格看作四边固定的单跨双向板,g,p/2

求其跨中弯矩。

当所求区格作用有,相邻区格作用有,其余区格均间隔布置时,其内区格

p/2,p/2

可近似看作四边简支单跨双向板,求其跨中弯矩。

至于这两种情况下的边区格,其外边界条件按实际情况考虑。

最后,将所求区格在两部分荷载作用下的跨中弯矩叠加,即可视为该区格跨中最大弯矩。

执行自动计算时,在对每块板做计算时不考虑相邻板块的影响,但会判别该板块是否是独立的板块,以考虑是否选用“矩形连续板跨中弯矩算法”(即结构静力计算手册活荷载不利算法)。如是连续板块(至少一边连续)则可考虑活荷不利算法,否则仅按独立板块计算。

选用活荷载不利布置时,最理想的条件是板跨相等或接近,板的四周均有现浇板与之相邻,且各板块上的荷载也相等或接近。在这种条件下,板块之间考虑活荷载的不利布置问题,就可以简化为单块板的边界条件与荷载的组合问题。

活荷载的不利布置仅对规则的矩形板起作用,对于程序判别为非独立的规则板,在做内力计算时,按以下步骤进行。

1、周边边界条件取实际的边界条件,荷载按仅考虑一半的活载和全部的恒载;

2、周边边界条件全部为假定为简支,荷载按仅考虑一半的活载;

3、前两项所计算的内力结果叠加,做为最终的内力结果。

六:裂缝和挠度的计算

《砼规》(GB 50010,2010)7.1.1规定,计算裂缝宽度时,普通钢筋混凝土(非

预应力)钢筋应力使用准永久组合,而不再使用标准组合。

《砼规》(GB 50010,2010) 3.4.3,计算挠度时,普通钢筋混凝土不再采用标准内力组合,只采用准永久组合设计内力

新版软件对此做了更新,计算裂缝和挠度采用准永久组合,其中准永久组合系数可以由用户在计算参数中输入。

《砼规》(GB 50010,2010)7.2.1规定受弯构件考虑荷载长期作用影响的刚度B 采用荷载准永久组合时采用: B=Bs / θ (混凝土规范式 7.2.2) 而不再采用B=Mk/(Mq(θ-1)+Mk)*Bs 计算。

《砼规》(GB 50010,2010)7.1.2规定中钢筋混凝土构件受弯偏心受压时构件受力特征系数取1.9(旧规范取2.1,如图6所示)。

图6

经测试,新规范算法,裂缝计算比旧版规范计算减少10-20%,挠度计算减少

5-15%。

结语

本文对PKPM普通混凝土楼板配筋的各种不同计算做了比较详细的介绍分析,设计人员应结合工程实际情况准确把握不同计算方式结果的真实性和合理性,从而做到心中有数,同时设计结果也更加经济合理。

电厂分散控制系统故障分析与处理

作者:

单位:

摘要:归纳、分析了电厂DCS系统出现的故障原因,对故障处理的过程及注意事项进行了说明。为提高分散控制系统可靠性,从管理角度提出了一些预防措施建议,供参考。

关键词:DCS 故障统计分析预防措施

随着机组增多、容量增加和老机组自动化化改造的完成,分散控制系统以其系统和网络结构的先进性、控制软件功能的灵活性、人机接口系统的直观性、工程设计和维护的方便性以及通讯系统的开放性等特点,在电力生产过程中得到了广泛应用,其功能在DAS、MCS、BMS、SCS、DEH系统成功应用的基础上,正逐步向MEH、BPC、ETS和ECS方向扩展。但与此同时,分散控制系统对机组安全经济运行的影响也在逐渐增加;因此如何提高分散控制系统的可靠性和故障后迅速判断原因的能力,对机组的安全经济运行至关重要。本文通过对浙江电网机组分散控制系统运行中发生的几个比较典型故障案例的分析处理,归纳出提高分散系统的可靠性的几点建议,供同行参考。

1 考核故障统计

浙江省电力行业所属机组,目前在线运行的分散控制系统,有TELEPERM-ME、MOD300,INFI-90,NETWORK-6000, MACS?和MACS-?,XDPS-400,A/I。DEH有TOSAMAP-GS/C800, DEH-IIIA等系统。笔者根据各电厂安全简报记载,将近几年因分散控制系统异常而引起的机组故障次数及定性统计于表1

表1 热工考核故障定性统计

2 热工考核故障原因分析与处理

根据表1统计,结合笔者参加现场事故原因分析查找过程了解到的情况,下面将分散控制系统异常(浙江省电力行业范围内)而引起上述机组设备二类及以上故障中的典型案例分类浅析如下:

2.1 测量模件故障典型案例分析

测量模件“异常”引起的机组跳炉、跳机故障占故障比例较高,但相对来讲故障原因的分析查找和处理比较容易,根据故障现象、故障首出信号和SOE记录,通过分析判断和试验,通常能较快的查出“异常”模件。这种“异常”模件有硬性故障和软性故障二种,硬性故障只能通过更换有问题模件,才能恢复该系统正常运行;而软性故障通过对模件复位或初始化,系统一般能恢复正常。比较典型的案例有三种:

(1)未冗余配置的输入/输出信号模件异常引起机组故障。如有台130MW机组正常运行中突然跳机,故障首出信号为“轴向位移大?”,经现场检查,跳机前后有关参数均无异常,轴向位移实际运行中未达到报警值保护动作值,本特利装置也未发讯,但LPC模件却有报警且发出了跳机指令。因此分析判断跳机原因为DEH主保护中的LPC模件故障引起,更换LPC模件后没有再发生类似故障。另一台600MW机组,运行中汽机备用盘上“汽机轴承振动高”、“汽机跳闸”报警,同时汽机高、中压主汽门和调门关闭,发电机逆功率保护动作跳闸;随即高低压旁路快开,磨煤机B跳闸,锅炉因“汽包水位低低”MFT。经查原因系,1高压调门因阀位变送器和控制模件异常,使调门出现大幅度晃动直至故障全关,过程中引起,1轴承振动高

高保护动作跳机。更换,1高压调门阀位控制卡和阀位变送器后,机组启动并网,

恢复正常运行。

(2)冗余输入信号未分模件配置,当模件故障时引起机组跳闸:如有一台600MW

机组运行中汽机跳闸,随即高低压旁路快开,磨煤机B和D相继跳闸,锅炉因“炉膛压力低低”MFT。当时因系统负荷紧张,根据SOE及DEH内部故障记录,初步判断的跳闸原因而强制汽机应力保护后恢复机组运行。二日后机组再次跳闸,全面查找分析后,确认2次机组跳闸原因均系DEH系统三路“安全油压力低”信号共用一模件,当该模件异常时导致汽轮机跳闸,更换故障模件后机组并网恢复运行。另一台200MW机组运行中,汽包水位高?值,?值相继报警后MFT保护动作停炉。查看

CRT上汽包水位,2点显示300MM,另1点与电接点水位计显示都正常。进一步检查显示300MM 的2点汽包水位信号共用的模件故障,更换模件后系统恢复正常。针对此类故障,事后热工所采取的主要反事故措施,是在检修中有针对性地对冗余的输入信号的布置进行检查,尽可能地进行分模件处理。 (3)一块I/O模件损坏,引起其它I/O模件及对应的主模件故障:如有台机组“CCS控制模件故障"及“一次风压高低”报警的同时, CRT上所有磨煤机出口温度、电流、给煤机煤量反馈显示和总煤量百分比、氧量反馈,燃料主控BTU输出消失,F磨跳闸(首出信号为“一次风量低”)。4分钟后 CRT上磨煤机其它相关参数也失去且状态变白色,运行人员手动MFT(当时负荷410MW)。经检查电子室制粉系统过程控制站(PCU01柜MOD4)的电源电压及处理模件底板正常,二块MFP模件死机且相关的一块CSI模件((模位1-5-3,有关F磨CCS参数)故障报警,拔出检查发现其5VDC逻辑电源输入回路、第4输出通道、连接MFP的I/O扩展总线电路有元件烧坏(由于输出通道至BCS(24VDC),因此不存在外电串入损坏元件的可能)。经复位二块死机的MFP模件,更换故障的CSI模件后系统恢复正常。根据软报警记录和检查分析,故障原因是CSI模件先故障,在该模件故障过程中引起电压波动或I/O扩展总线故障,导致其它I/O模件无法与主模件MFP03通讯而故障,信号保持原值,最终导致主模件MFP03故障(所带A-F磨煤机CCS参数),CRT上相关的监视参数全部失去且呈白色。 2.2 主控制器故障案例分析

由于重要系统的主控制器冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。主控制器“异常”多数为软故障,通过复位或初始化能恢复其正常工作,但也有少数引起机组跳闸,多发生在双机切换不成功时,如: (1)有台机组运行人员发现电接点水位计显示下降,调整给泵转速无效,而CRT上汽包水位保持不变。当电接点水位计分别下降至甲-300mm,乙-250mm,并继续下降且汽包水位低信号未发,MFT未动作情况下,值长令手动停炉停机,此时CRT上调节给水调整门无

效,就地关闭调整门;停运给泵无效,汽包水位急剧上升,开启事故放水门,甲、丙给泵开关室就地分闸,油泵不能投运。故障原因是给水操作站运行DPU死机,备用DPU不能自启动引起。事后热工对给泵、引风、送风进行了分站控制,并增设故障软手操。

(2)有台机组运行中空预器甲、乙挡板突然关闭,炉膛压力高MFT动作停炉;经查原因是风烟系统I/O站DPU发生异常,工作机向备份机自动切换不成功引起。事后电厂人员将空预器烟气挡板甲1、乙1和甲2、乙2两组控制指令分离,分别接至不同的控制站进行控制,防止类似故障再次发生。

2.3 DAS系统异常案例分析

DAS系统是构成自动和保护系统的基础,但由于受到自身及接地系统的可靠

性、现场磁场干扰和安装调试质量的影响,DAS信号值瞬间较大幅度变化而导致保护系统误动,甚至机组误跳闸故障在我省也有多次发生,比较典型的这类故障有:

(1)模拟量信号漂移:为了消除DCS系统抗无线电干扰能力差的缺陷,有的DCS

厂家对所有的模拟量输入通道加装了隔离器,但由此带来部分热电偶和热电阻通道易电荷积累,引起信号无规律的漂移,当漂移越限时则导致保护系统误动作。我省曾有三台机组发生此类情况(二次引起送风机一侧马达线圈温度信号向上漂移跳闸送风机,联跳引风机对应侧),但往往只要松一下端子板接线(或拆下接线与地碰一下)再重新接上,信号就恢复了正常。开始热工人员认为是端子柜接地不好或者

I/O屏蔽接线不好引起,但处理后问题依旧。厂家多次派专家到现场处理也未能解决问题。后在机组检修期间对系统的接地进行了彻底改造,拆除原来连接到电缆桥架的AC、DC接地电缆;柜内的所有备用电缆全部通过导线接地;UPS至DCS电源间

增加1台20kVA的隔离变压器,专门用于系统供电,且隔离变压器的输出端N线与接地线相连,接地线直接连接机柜作为系统的接地。同时紧固每个端子的接线;更换部份模件并将模件的软件版本升级等。使漂移现象基本消除。

(2)DCS故障诊断功能设置不全或未设置。信号线接触不良、断线、受干扰,使信号值瞬间变化超过设定值或超量程的情况,现场难以避免,通过DCS模拟量信号变化速率保护功能的正确设置,可以避免或减少这类故障引起的保护系统误动。但实际应用中往往由于此功能未设置或设置不全,使此类故障屡次发生。如一次风机B跳闸引起机组RB动作,首出信号为轴承温度高。经查原因是由于测温热电阻引

线是细的多股线,而信号电缆是较粗的

单股线,两线采用绞接方式,在震动或外力影响下连接处松动引起轴承温度中有点信号从正常值突变至无穷大引起(事后对连接处进行锡焊处理)。类似的故障有:民工打扫现场时造成送风机轴承温度热电阻接线松动引起送风机跳闸;轴承温度热电阻本身损坏引起一次风机跳闸;因现场干扰造成推力瓦温瞬间从99?突升至117?,1秒钟左右回到99?,由于相邻第八点已达85?,满足推力瓦温度任一点105?同时相邻点达85?跳机条件而导致机组跳闸等等。预防此类故障的办法,除机组检修时紧固电缆和电缆接线,并采用手松拉接线方式确认无接线松动外,是完善DCS 的故障诊断功能,对参与保护连锁的模拟量信号,增加信号变化速率保护功能尤显重要(一当信号变化速率超过设定值,自动将该信号退出相应保护并报警。当信号低于设定值时,自动或手动恢复该信号的保护连锁功能)。

(3)DCS故障诊断功能设置错误:我省有台机组因为电气直流接地,保安1A段工作进线开关因跳闸,引起挂在该段上的汽泵A的工作油泵A连跳,油泵B连锁启动过程中由于油压下降而跳汽泵A,汽泵B升速的同时电泵连锁启动成功。但由于运行操作速度过度,电泵出口流量超过量程,超量程保护连锁开再循环门,使得电泵实际出水小,B泵转速上升到5760转时突然下降1000转左右(事后查明是抽汽逆

止阀问题),最终导致汽包水位低低保护动作停炉。此次故障是信号超量程保护设置不合理引起。一般来说,DAS的模拟量信号超量程、变化速率大等保护动作后,应自动撤出相应保护,待信号正常后再自动或手动恢复保护投运。

2.4 软件故障案例分析

分散控制系统软件原因引起的故障,多数发生在投运不久的新软件上,运行的老系统发生的概率相对较少,但一当发生,此类故障原因的查找比较困难,需要对控制系统软件有较全面的了解和掌握,才能通过分析、试验,判断可能的故障原因,因此通常都需要厂家人员到现场一起进行。这类故障的典型案例有三种: (1)软件不成熟引起系统故障:此类故障多发生在新系统软件上,如有台机组80%额定负荷时,除DEH画面外所有DCS的CRT画面均死机(包括两台服务器),参数显示为零,无法操作,但投入的自动系统运行正常。当时采取的措施是:运行人员就地监视水位,保持负荷稳定运行,热工人员赶到现场进行系统重启等紧急处理,经过30分钟的处理系统恢复正常运行。故障原因经与厂家人员一起分析后,确认为DCS 上层网络崩溃导致死机,其过程是服务器向操作员站发送数据时网络阻塞,引起服务器与各操作员站的连接中断,造成操作员站读不到数据而不停地超时等待,导致操作员站图形切换的速度十分缓慢(网络任务未死)。针对管理网络数据阻塞情况,厂家修改程序考机测试后进行了更换。另一台机组曾同时出现4台主控单元“白灯”现象,现场检查其中2台是因为A机备份网停止发送,1台是A机备份网不能接收,1台是A机备份网收、发数据变慢(比正常的站慢几倍)。这类故障的原因是主控工作机的网络发送出现中断丢失,导致工作机发往备份机的数据全部丢失,而双机的诊断是由工作机向备份机发诊断申请,由备份机响应诊断请求,工作机获得备份机的工作状态,上报给服务器。由于工作机的发送数据丢失,所以工作机发不出申请,也就收不到备份机的响应数据,认为备份机故障。临时的解决方法是当长时间没有正确发送数据后,重新初始化硬件和软件,使硬件和软件从一个初始的状态开始运行,最终通过更新现场控制站网络诊断程序予以解决。

(2)通信阻塞引发故障:使用TELEPERM-ME系统的有台机组,负荷300MW时,运行人员发现煤量突减,汽机调门速关且CRT上所有火检、油枪、燃油系统均无信号

显示。热工人员检查发现机组EHF系统一柜内的I/O BUS接口模件ZT报警灯红闪,操作员站与EHF系统失去偶合,当试着从工作站耦合机进入OS250PC软件包调用EHF系统时,提示不能访问该系统。通过查阅DCS手册以及与SIEMENS专家间的电话分析讨论,判断故障原因最大的可能是在三层CPU切换时,系统处理信息过多造成中央CPU与近程总线之间的通信阻塞引起。根据商量的处理方案于当晚11点多在线处理,分别按三层中央柜的同步模件的SYNC键,对三层CPU进行软件复位:先按CPU1的SYNC键,相应的红灯亮后再按CPU2的SYNC键。第二层的同步红灯亮后再按CPU3的同步模件的SYNC键,按3秒后所有的SYNC的同步红灯都熄灭,系统恢复正常。

(3)软件安装或操作不当引起:有两台30万机组均使用Conductor NT 5.0作为其操作员站,每套机组配置3个SERVER和3个CLIENT,三个CLIENT分别配置为大屏、值长站和操作员站,机组投运后大屏和操作员站多次死机。经对全部操作员站的SERVER和CLIENT进行全面诊断和多次分析后,发现死机的原因是:1)一台SERVER因趋势数据文件错误引起它和挂在它上的CLIENT在当调用趋势画面时画面响应特别缓慢(俗称死机)。在删除该趋势数据文件后恢复正常。2)一台SERVER因文件类型打印设备出错引起该SERVER的内存全部耗尽,引起它和挂在它上的CLIENT的任何操作均特别缓慢,这可通过任务管理器看到DEV.EXE进程消耗掉大量内存。该问题通过删除文件类型打印设备和重新组态后恢复正常。3)两台大屏和工程师室的CLIENT因声音程序没有正确安装,当有报警时会引起进程CHANGE.EXE 调用后不能自动退出,大量的CHANGE.EXE堆积消耗直至耗尽内存,当内存耗尽后,其操作极其缓慢(俗称死机)。重新安装声音程序后恢复正常。此外操作员站在运行中出现的死机现象还有二种:一种是鼠标能正常工作,但控制指令发不出,全部或部分控制画面不会刷新或无法切换到另外的控制画面。这种现象往往是由于CRT上控制画面打开过多,操作过于频繁引起,处理方法为用鼠标打开VMS系统下

拉式菜单,RESET应用程序,10分钟后系统一般就能恢复正常。另一种是全部控制画面都不会刷新,键盘和鼠标均不能正常工作。这种现象往往是由操作员站的VMS 操作系统故障引起。此时关掉OIS电源,检查各部分连接情况后再重新上电。如果不能正常启动,则需要重装VMS操作系统;如果故障诊断为硬件故障,则需更换相应的硬件。

(4)总线通讯故障:有台机组的DEH系统在准备做安全通道试验时,发现通道选择按钮无法进入,且系统自动从“高级”切到“基本级”运行,热控人员检查发现GSE柜内的所有输入/输出卡(CSEA/CSEL)的故障灯亮, 经复归GSE柜的REG卡后,CSEA/CSEL的故障灯灭,但系统在重启“高级” 时,维护屏不能进入到正常的操作画面呈死机状态。根据报警信息分析,故障原因是系统存在总线通讯故障及节点故障引起。由于阿尔斯通DEH系统无冗余

配置,当时无法处理,后在机组调停时,通过对基本级上的REG卡复位,系统恢复了正常。

(5)软件组态错误引起:有台机组进行#1中压调门试验时,强制关闭中间变量

IV1RCO信号,引起#1-#4中压调门关闭,负荷从198MW降到34MW,再热器压力从2.04MP升到4.0Mpa,再热器安全门动作。故障原因是厂家的DEH组态,未按运行方式进行,流量变量本应分别赋给IV1RCO-IV4RCO,实际组态是先赋给IV1RCO,再通过IV1RCO分别赋给IV2RCO-IV4RCO。因此当强制IV1RCO=0时,所有调门都关闭,修改组态文件后故障消除。

2.5 电源系统故障案例分析

DCS的电源系统,通常采用1:1冗余方式(一路由机组的大UPS供电,另一路由电厂的保安电源供电),任何一路电源的故障不会影响相应过程控制单元内模件及现场I/O模件的正常工作。但在实际运行中,子系统及过程控制单元柜内电源系统出现的故障仍为数不少,其典型主要有:

(1)电源模件故障:电源模件有电源监视模件、系统电源模件和现场电源模件3种。现场电源模件通常在端子板上配有熔丝作为保护,因此故障率较低。而前二种模件的故障情况相对较多:1)系统电源模件主要提供各不同等级的直流系统电压和I/O模件电压。该模件因现场信号瞬间接地导致电源过流而引起损坏的因素较大。因此故障主要检查和处理相应现场I/O信号的接地问题,更换损坏模件。如有台机组负荷520MW正常运行时MFT,首出原因“汽机跳闸"。CRT画面显示二台循泵跳闸,备用盘上循泵出口阀,86?信号报警。5分钟后运行巡检人员就地告知循泵A、B 实际在运行,开关室循泵电流指示大幅晃动且A大于B。进一步检查机组PLC诊断画面,发现控制循泵A、B的二路冗余通讯均显示“出错”。43分钟后巡检人员发现出口阀开度小就地紧急停运循泵A、B。事后查明A、B两路冗余通讯中断失去的原因,是为通讯卡提供电源支持的电源模件故障而使该系统失电,中断了与PLC主机的通讯,导致运行循泵A、B状态失去,凝汽器保护动作,机组MFT。更换电源模件后通讯恢复正常。事故后热工制定的主要反事故措施,是将两台循泵的电流信号由PLC改至DCS的CRT显示,消除通信失去时循泵运行状态无法判断的缺陷;增加运行泵跳闸关其出口阀硬逻辑(一台泵运行,一台泵跳闸且其出口阀开度,30度,延时15秒跳运行泵硬逻辑;一台泵运行,一台泵跳闸且其出口阀开度,0度,逆转速动作延时30秒跳运行泵硬逻辑);修改凝汽器保护实现方式。2)电源监视模件故障引起:电源监视模件插在冗余电源的中间,用于监视整个控制站电源系统的各种状态,当系统供电电压低于规定值时,它具有切断电源的功能,以免损坏模件。另外它还提供报警输出触点,用于接入硬报警系统。在实际使用中,电源监视模件因监视机箱温度的2个热敏电阻可靠性差和模件与机架之间接触不良等原因而故障率较高。此外其低电压切断电源的功能也会导致机组误跳闸,如有台机组满负荷运行,BTG盘出现“CCS控制模件故障”报警,运行人员发现部分CCS操作框显示白色,部分参数失去,且对应过程控制站的所有模件显示白

色,6s后机组MFT,首出原因为“引风机跳闸”。约2分钟后CRT画面显示恢复正常。当时检查系统未发现任何异常(模件无任何故障痕迹,过程控制站的通讯卡切换试验正常)。机组重新启动并网运行也未发现任何问题。事后与厂家技术人员一起专题分析讨论,并利用其它机组小修机会对控制系统模拟试验验证后,认为事件原因是由于该过程控制站的系统供电电压瞬间低于规定值时,其电源监视模件设置的低电压保护功能作用切断了电源,引起控制站的系统电源和24VDC、5VDC或

15VDC的瞬间失去,导致该控制站的所有模件停止工作(现象与曾发生过的24VDC 接地造成机组停机事件相似),使送、引风机调节机构的控制信号为0,送风机动叶关闭(气动执行机构),引风机的电动执行机构开度保持不变(保位功能),导致炉膛压力低,机组MFT。

(2)电源系统连接处接触不良:此类故障比较典型的有:1)电源系统底板上5VDC 电压通常测量值在5.10,5.20VDC之间,但运行中测量各柜内进模件的电压很多在5V以下,少数跌至4.76VDC左右,引起部分I/O卡不能正常工作。经查原因是电源底板至电源母线间连接电缆的多芯铜线与线鼻子之间,表面上接触比较紧,实际上因铜线表面氧化接触电阻增加,引起电缆温度升高,压降增加。在机组检修中通过对所有5VDC电缆铜线与线鼻子之间的焊锡处理,问题得到解决。2)MACS-?DCS 运行中曾在两个月的运行中发生2M801工作状态显示故障而更换了13台主控单元,但其中的多数离线上电测试时却能正常启动到工作状态,经查原因是原主控

5V电源,因线损和插头耗损而导致电压偏低;通过更换主控间的冗余电缆为预制电缆;现场主控单元更换为2M801E-D01,提升主控工作电源单元电压至5.25V后基本恢复正常。3)有台机组负荷135MW时,给水调门和给水旁路门关小,汽包水位急速下降引发MFT。事后查明原因是给水调门、给水旁路门的端子板件电源插件因接触不良,指令回路的24V电源时断时续,导致给水调门及给水旁路门在短时内关下,汽包水位急速下降导致MFT。4)有台机组停炉前,运行将汽机控制从滑压切至定压

相关主题
相关文档
最新文档