艾默生CT变频器电流检测故障的处理方法

艾默生CT变频器电流检测故障的处理方法
艾默生CT变频器电流检测故障的处理方法

(1)控制板Q1(15050026)坏。

(2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2.5,2.5,5为正常,否则7840坏。

(3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为2.5,2.5,2.5,3.41.5,0,1.6。

如值不对,小板坏:此时可更换小板坏中的三个小IC(39030024LMV393),如还不好,更换小板。

显示POFF:

驱动板上电POFF,测CVD电压正常应为2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相变频器表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/494097787.html,。

艾默生变频器故障及处理方法

艾默生变频器故障及处理方法 艾默生变频器故障及处理方法故障代码故障类型故障代码故障类型 POFF输入欠压E008输入缺相 E001加速过流E009 输出缺相 E002减速过流E010模块保护 E003 恒速过流E011逆变过热 E004 加速过压E012整流过热 E005减速过压E016读写故障 E006恒速过压E018 接触器未吸合 E007 控制电源过压E019 电流检测电路故障 1、电流检测故障 (如报E019,E001): (1)控制板Q1(15050026)坏。

(2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2、5,2、5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840得5脚,红分别接小板得脚从左到右应为2、5,2、5,2、5,3、4 1、5,0,1、6. 如值不对,小板坏:此时可更换小板坏中得三个小 IC(39030024 LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2、6-2、7,如测得1、9,可能R51,R52,C36,C37,排线中得某一个坏, 其中得电解电容坏得最多。只在带电机运行时报POFF,驱动板变压器也有可能坏. 3、缓冲电阻坏: 缓冲电阻与滤波大电容就是成对得。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能就是继电器不吸合(继电器坏或控制板坏,或与二者相连得电路上元件坏)引起。单相输入(220V)得变频器, 特别要注意:如果无显示或炸机,很可能就是用户接入了三相电(380V)引起得(可察控制板得故障记录:母线电压就是

通用变频器的过电流保护功能

当变频器的输出侧发生短路或电动机堵转时,变频器将流过很大的电流,从而造成电力半导体的损坏。为了防止过电流,变频器中设置有过电流保护电路。当电流超过某一数值时,变频器或者通过关断电力半导体器件切断输出电流,或者调整电动机的运行状态减少变频器的输出电流。 例如,如果电动机的启动时间设置过短,或者转动惯量太大时,启动时常会发生过电流,这时可以重新设置启动时间。对于新一代变频器,在电流超过额定电流的一定范围内,允许变频器运行一段时间,变频器的输出频率保持不变,此时电动机的启动时间将比设定时间要长。如果启动时间设置太短,则切断变频器的输出。 变频器为了实现过电流保护,需要从变频器的硬件和软件两个方面采取措施。由于软件处理时受到采样时间以及微处理器的处理速度的限制,因此对于某些快速变化的过电流不能进行保护。这种情况下,通常采用硬件电路进行保护。例如,在主电路电力半导体器件驱动电路中包括过电流的检测和封锁驱动信号的保护电路,它不经过CPU的处理,可以实现对变频器的快速保护。当硬件保护电路动作时,它还会给CPU发出中断信号,CPU据此进行相应的处理。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/494097787.html,/

变频器常见故障分析及维修对策

变频器在我厂水泵上的应用 邓涛 唐山三友化工股份公司电仪车间 摘要本文从实际出发,结合在实际应用中遇到的问题,介绍和分析了变频器在水泵应用上常见的几种故障现象以及解决方法,并分析变频器在水泵上节能效果,对于电气技术人员及时判断、处理水泵变频器运行中出现的故障和水泵电机节能计算上有所帮助。 关键词水泵负载变频器故障跳车节能降耗 引言 水泵在我厂属于较普遍的负载,水泵负载的大小通常以所输送的液体流量为控制参数,通常以阀门控制和转速控制来调节水泵负载的大小。 1水泵的作用 水泵通常用来提升液体、输送液体或使液体增加压力 , 即把原动机的机械能变为液体能量从而达到抽送液体目的。 衡量水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。 2变频器水泵负载常见的故障及处理方法 电机的最大功率必须满足负载下的机械功率和转矩,对于不同的负载,最大值并非时时刻刻都发生,负载的变化是非线性的,而电机的输出功率却是恒定的,这就意味着在非最大负载时电机输出了相当一部分多余功率,电能也就白白浪费掉了。水泵类就是较典型的例子 水泵的负载性质是平方递减转矩型,有下列关系:水泵的流量Q与转速n成正比;扬程H与转速n的三次方成正比;电动机的转速n与电源频率F成正比.因此改变电动机电源频率,可改变电机即水泵的转速,从而达到调节给水流量和水泵的扬程的目的。

由于水泵中液体流量是不停变化的,所以变频器故障多为一下几种。 2.1 电源故障 对于电源故障,包括电源接触器故障,输入、输出缺相,外部设备故障。维修时应检查外部控制回路及各个元器件以及变频器输入、输出配线,输入电压和电机电缆等。 2.2直流过电压 直流过电压多出现在变频器减速的过程中,当水泵负载惯性较大,变频器虽已“减速”,但水泵电机由于负载的较大惯性而继续运转,此时电机处于发电状态,它将向变频器回馈电能,并向电容器充电,造成变频器直流电压过高,变频器跳车。 解决方法:首先查看变频器的参数表,如果减速时间过短,则延长减速时间,看实际运行效果如何;如果在某一时间段还经常出现直流过电压现象,则考虑使用外部制动单元,进行能耗制动,效果明显,但需增加费用。 2.3运行过电流 变频器加减速过电流,恒速运行过电流。这种情况往往由于加减速设定的时间太短,变频器功率太小,电源电压低以及负载异常引起。处理时应检查具体参数设定及所拖动负载是否正常。 2.4模块保护 由于异常情况的发生可能引起变频器内部保护动作。包括:瞬间过流、输出侧短路或接地,由于风道堵塞或散热风机损坏,致使功率模块散热器过热、整流桥散热器过热等原因造成温度过高,插件松动,控制板异常等情况。可根据不同变频器的具体情况做出更换或修复等相应处理。 2.5 电机过载 过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

艾默生变频器常见故障及维修

艾默生CT变频器常见故障代码及维修方法 1、电流检测故障(如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2.5,2.5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为2.5,2.5,2.5,3.41.5,0,1.6。 如值不对,小板坏:此时可更换小板坏中的三个小IC(39030024LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻和滤波大电容是成对的。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能是继电器不吸合(继电器坏或控制板坏,或与二者相连的电路上元件坏)引起。单相输入(220V)的变频器,特别要注意:如果无显示或炸机,很可能是用户接入了三相电(380V)引起的(可察控制板的故障记录:母线电压是否由310变为了540)。此时不断IPM的整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”的响声(电容内的声音),应立即掉电,否则IPM的整流桥又会坏。发现一个大电容坏,最好都换新的。因电容是易坏易老化的器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现象一般是U1厚膜坏。报故障E015:通电指示灯亮,键盘不亮,拨了风扇就好--风扇短路。 5、不制动: 01180099,01180100,01180113,01180114的制动管不在IPM内部,变频器炸机和不显示很可能就是在变频器停机制动时引起的,所以更换IPM后,一定要检测制动电路的好坏:制动光耦,制动管(MOS管不好测,可测其串联的续流二极管,正常应为0.37左右),门极电阻(也就是MOS管的门极电阻,正常应为100欧姆)。修好上电后,TD900F093改为150,报E007,红接P(+),黑接PB,如电压在17-30跳动,制动正常。TD3200F133=150直流电压270-350V制动起作用。 6、炸整流桥:

变频器电压电流典型检测方法

变频器电压电流典型检测方法 1.前言 变频器最主要的特点是具有高效率的驱动性能及良好的控制特性。简单地说变频器是通过改变电机输入电压的频率来改变电机转速的。从电机的转速公式可以看出,调节电机输入电压的频率f,即可改变电机的转速n。目前几乎所有的低压变频器均采用图1所示主电路拓扑结构。 部分1为整流器,作用是把交流电变为直流电,部分2为无功缓冲直流环节,在此部分可以采用电容作为缓冲元件,也可用电感作为缓冲元件。部分3是逆变器部分,作用是把直流电变为频率可调整的三相交流电。中间环节采用电容器的这种变频器称之为交直交电压型变频器,这种方式是目前通用型变频器广泛应用的主回路拓扑。本文将重点讨论这种结构在电压、电流检测设计中应注意的一些问题。变频器在运行过程中为什么要对电压、电流进行检测呢这就需要从电机的结构和控制特性上说起: ①三相异步电动机的转矩是由电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。 ②变频器运行中,过载起动电流为额定电流的~倍;过流保护为额定电流的~3倍(根据不同性质的负载要求选择不同的过流保护点);另外还有电流闭环无跳闸、失速防止等功能都与变频器运行过程中的电流有关。 ③为了改善变频器的输出特性,需要对变频器进行死区补偿,几种常用的死区补偿方法均需检测输出电流。 ④电动机在运转中如果降低指令频率过快,则电动状态将变为发电状态运行,再生出来的能量贮积在变频器的直流电容器中,由于电容器的容量和耐压的关系,就需要对电压进行及时、准确地检测,给变频器提供准确、可靠的信息,使变频器在过压时进行及时、有效的保护处理。同时变频器上电过程、下电过程都需要判断当前直流母线电压的状态来判断程序下一步的动作。 鉴于电压、电流检测的重要性,在变频器设计中采用对电压、电流进行准确、有效检测的方法是十分必要的。 2.在线测量电压的几种方案设计 变频器的过电压或欠电压集中表现在直流母线的电压值上。正常情况下,变频器直流电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压。在过电压发生时,直流母线的储能电容将被充电,主电路内的逆变器件、整流器件以及滤波电容等都可能受到损害,当电压上升至约800V左右时,变频器过电压保护功能动作;另外变频器发生欠压时(350V左右)也不能正常工作。对变频器而言,有一个正常的工作电压范围,当电压超过或低于这个范围时均可能损坏变频器,因此,必须在线检测母线电压,常用的电压检测方案有三种。 1)变压器方案 图2中,P为直流母线电压正(+),N为直流母线电压负(-)。 变频器控制回路的电源电压一般采用开关电源的方式来获得,利用开关变压器的特点,在副边增加一组绕组N4(匝数根据实际电路参数决定)作为母线电压的采样输出,开关变压器的原边电压为母线电压,而副边输出电压随着原边输入电压的变化而线性地发生变化,这样既能起到强弱电隔离作用又能起到降压作用,把此采样信号经过处理可以送到DSP内进行A/D采样实现各种保护工作。 2)线性光耦方案

变频器常见故障

变频器的常见故障分析 1 引言 在现代工业中,采用变频器控制的电动机系统,有着节能效 果显著、调节控制方便、维护简单、可网络化集中、远程控制、可 与PLC组成自动控制系统等优点。变频器的这些特质使其在电力电 子系统、工业自动控制等领域的应用日益广泛。市场上不同型号规 格变频器的安装、接线、调试各有特点,但主要方法及注意事项基 本一致。本文阐述了变频器的常见故障,并对其进行分析。 2 变频器常见故障分析 2.1 维修的原则:先静后动 静是指不通电状态,动是指通电后的工作状态。检修开始时,要先静下来,不要盲目动手,应多问。例如: 问清是否违反操作规程、出现故障时的现象、是否更改过内部参数等,根据情况对故障 作客观的、大致的分析,再根据变频器显示的故障提示,判断故障 部位。检修时,应先仔细阅读变频器说明书,了解其检修注意事 项。 不要贸然通电,通过眼观、手摸、鼻嗅等先做必要的安全检查,以 免引发新的故障。 (1)检查快熔FU是否烧断; (2)检查线路板上元件引线间有无碰锡、碰线或细金属落在二线 间; (3)检查电容器、整流桥、逆变桥、集成电路等元件有无明显烧坏 的痕迹; (4)检查线路板上是否有水滴(尤其在潮湿环境中使用的变频 器); (5)检查线路板上是否有灰尘。 通过以上检查,可发现变频器是否有短路故障点及元件的炭化熏黑 部位。 2.2 参数设定不当时易碰到的问题 (1)变频器在电机空载时工作正常,但不能带负载启动 这种问题常常出现在恒转矩负载。遇到此类问题时应重点检 查加、减速时间设定或提升转矩设定值。 (2)变频器开始运行,但电机还未启动就过载跳停 如冶金厂一台725kW-6电机,投入运行时,跳停频繁。经检查,偏置频率原设定为3Hz,变频器在到运行指令但未给出调频信 号之前,电机将一直接收3Hz的低频运行指令而无法启动。经测定 该电机的堵转电流达到50A,约为电机额定电流的3倍;变频器过

中达VFD变频器电流检测电路

中达VFD-B型22kW变频器电流检测与保护电路 ——故障报警代码解密之一 本例机型的电流检测与保护电路,其电路结构与信号处理方式分为: 1)前级电流检测信号处理电路,用电流互感器取得输出电流信号; 2)电流检测电路的模拟信号处理电路,将前级电流检测信号进行模拟放大后,输入MCU 引脚; 3)接地故障信号处理电路,用比较器电路取得开关量故障报警信号; 4)过流故障信号处理电路,用比较器电路取得开关量故障报警信号。 为了检修上的方便,电流检测信号的输入端、输出端和运算放大器的输入、输出脚,标注了静态电压值,读者也可由标注电压值的不同,比较处于线性放大器区的模拟信号处理电路,和处于非线性放大区的电压比较器电路,两者的特点和不同。由之“推测”出变频器运行中对动态信号的处理过程,和故障时开关量输出信号的变化趋势。 注意:MCU主板电路中,部分小体积贴片电阻,没有阻值标注,只能标出在线测量值。如同属1kΩ电阻,以下电路图中标注102(有标注电阻)的,是实际值;标注为1kΩ(无标注电阻)的,是在线测量值,请读者予以注意。 1、前级电流检测信号处理电路 电流互感器CS1~CS3分别取出U、V、W运行电流信号,由集成运算放大器DU1内部3组放大器和外围元件构成的同相比例放大器,将信号电压放大约1.5倍后,送入后级电流检测电路。 注意,因电流互感器CS1~CS3焊装于一块小线路板上,经J1*/DJ2端子输入至DU1进行放大,再经DJP1/J1端子排引入MCU主板电路,检修过程中,为了测量方便,当J1*与DJ2的端子排脱离时,因3级同相放大器的同相输入端“悬空”,会使输出端电压由0V变为-13.6V (三组放大器的供电为+15V、-15V),则后级电路因输入异常的“过电流信号”,形成故障停机报警信号。 若J1*与DJ2的端子排脱离后,再为控制板上电,则报出“GFF”故障代码,意为输出端“接地故障”;若在上电后使之脱离,则报出“OC”故障代码,意为“过电流故障”。可见,当电流检测电路的“源头”产生异常时,后级各个检测电路同时有了异常信号输出时,MCU 先行判断并报出比较严重的故障,如接地故障等,以起到警示作用。操作显示面板显示OC或GFF故障代码时,可以操作面板STOP/RESET按键进行故障复位。 屏蔽该故障的方法,是解决DU1同相输入端子悬空的问题,可暂时将DU1的5、10、12脚短接后,再接供电电源地。

西门子440变频器常见故障

一般来说,当你拿到一台有故障的变频器,再上电之前首先要用万用表检查一下整流桥和IGBT模块有没有烧,线路板上有没有明显烧损的痕迹。 具体方法是:用万用表(最好是用模拟表)的电阻1K档,黑表棒接变频器的直流端(-)极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过来将红表棒接变频器的直流端(+)极,黑表棒分别测量变频器三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。 如果以上测量结果表明模块基本没问题,可以上电观察。 1)上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。 2)上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常(整流二极管击穿或开路,可以用万用表测量开关电源的几路整流二极管,很容易发现问题。 换一个相应的整流二极管问题就解决了。这种问题一般是二极管的耐压偏低,电源脉动冲击造成的。 3)有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。 4)上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,我分析与主控板散热不好也有一定的关系。 但也有个别问题出在电源板上。 例如:重庆某水泥厂回转窑驱动用的一台MM440-200kW变频器,由于负载惯量较大,启动转距大,设备启动时频率只能上升到5Hz左右就再也上不去,并且报警[F0001]。客户要求到现场服务,我当时考虑认为:作为变频器本身是没有问题的,问题是客户参数设置不当,用矢量控制方式,再正确设定电机的参数/模型就可以解决问题。又过了两天客户来电告诉我变频器已经坏了,故障现象是上电显示[-----]。经现场检查分析,这种故障是因为主控板出问题造成的,因为用户在安装的过程中没有严格遵循EMC规范,强弱电没有分开布线、接地不良并且没有使用屏蔽线,致使主控板的I/O口被烧毁。后来,我申请了维修服务,SFAE 的工程师去现场维修,更换了一块主控板问题解决了。 5)上电后显示正常,一运行即显示过流。[F0001](MM4)[F002](MM3)即使空载也一样,一般这种现象说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。 还有一些特殊故障(不常见但有一些普遍意义,可以举一反三,希望达到抛砖引玉的效果),例如:

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

艾默生EV2000变频器故障代码

艾默生EV2000变频器故障E006 E004 故障代码故障类型故障代码故障类型 POFF 输入欠压E008输入缺相 E001 加速过流E009 输出缺相 E002 减速过流E010 模块保护 E003 恒速过流E011逆变过热 E004 加速过压E012整流过热 E005 减速过压E016读写故障 E006恒速过压E018 接触器未吸合 E007控制电源过压E019 电流检测电路故障 1、电流检测故障(如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2、5,2、5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840得5脚,红分别接小板得脚从左到右应为2、5,2、5,2、5,3、4 1、5,0,1、6。 如值不对,小板坏:此时可更换小板坏中得三个小IC(39030024LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2、6-2、7,如测得1、9,可能R51,R52,C36,C37,排线中得某一个坏, 其中得电解电容坏得最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻与滤波大电容就是成对得。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能就是继电器不吸合(继电器坏或控制板坏,或与二者相连得电路上元件坏)引起。单相输入(220V)得变频器, 特别要注意:如果无显示或炸机,很可能就是用户接入了三相电(380V)引起得(可察控制板得故障记录:母线电压就是否由310变为了540)。此时不断IPM得整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”得响声(电容内得声音),应立即掉电,否则IPM得整流桥又会坏。发现一个大电容坏,最好都换新得。因电容就是易坏易老化得器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现象一般就是U1厚膜坏。报故障E015:通电指示灯亮,键盘不亮,拨了风扇就好--风扇短路

艾默生变频器驱动

变频器维修之驱动电路常用IC原理和维修分析 时间:2013-11-15 11:14:08 | 浏览:1880 变频器维修之驱动电路常用IC原理和维修分析 变频器驱动电路中常用IC,共有为数不多的几种。可以设想一下,变频器电路的通用电路,必定是主电路(包括三相整流电路和三相逆变电路)和驱动电路,即便是型号的功率级别不同的变频器,驱动电路却往往采用了同一型号的驱动IC,甚至于驱动电路的结构和布局,是非常类似的和接近的。 早期的和小功率的变频器机种,经常采用TLP250、A3120(HCPL3120)驱动IC,内部电路简单,不含IGBT保护电路;以后被大量广泛采用的是PC923、PC929的组合驱动电路,往往上三臂IGBT采用PC923驱动,而下三臂IGBT则采用PC929驱动。PC929内含IGBT 检测保护电路等;智能化程度比较高的专用驱动芯片A316J,也在大量机型中被采用。 通过熟悉驱动IC的引脚功能和掌握相关的检测方法,达到对驱动电路进行故障判断与检测的能力,以及能对不同型号的驱动IC应急进行代换与修复。 一、TLP250和HCPL3120驱动IC TLP250:输入IF电流阀值5mA,电源电压10∽35V,输出电流±0.5A,隔离电压2500V,开通/关断时间(tPLH/ tPHL)0.5μs。可直接驱动50A1200V的IGBT模块,在小功率变频器驱动电路中,和早期变频器产品中被普遍采用。 HCNW3120(A3120):与HCPL3120、HCPLJ312内部电路结构相同,只是因选材和工艺的不同,后者的电隔离能力低于前者。输入IF电流阀值2.5mA,电源电压15∽30V,输出电流±2A,隔离电压1414V,可直接驱动150A/1200V的IGBT模块。 三种驱动IC的引脚功能基本一致,小功率机型中可用TLP250直接代换另两种HCNW3120和HCPL3120,大多数情况下TLP350、HCNW3120可以互换,虽然它们的个别参数和内部电路有所差异,如TPL250的电流输出能力较低,但在变频器中功率机型中,驱动IC往往有后置放大器,对驱动IC的电流输出能力就不是太挑剔了。 驱动IC实质上都为光耦合器件,具有优良的电气隔离特性。输入侧内部电路为一只发光二极管,有明显的正、反向电阻特性。用指针式万用表×1k档测量,2、3脚正向电阻约为100kΩ左右,反向电阻无穷大;用×10k档测量,正向电阻约为25kΩ左右,反向电阻也为无穷大。当然2、3脚与输出侧各引脚电阻,都是无穷大的。5、6脚和5、8脚之间,均有鲜明的正、反向电阻,当5脚搭红表笔时,有10kΩ/30 kΩ的电阻值,5脚接黑表笔时,电阻值接近于无穷大。因选材、工艺和封装型式的不同和测量仪表的选型不同,得出的测量数值会有一定的差异。TLP250的输出电路采用互补式电压跟随器输出电路,V1、V2均为双极型器件三极

变频器常见故障代码及处理实例

一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。 3.1 举例 (1) 一台CT 18.5kW变频器上电跳“Uu”。 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触

变频器的过流故障与排除

变频器的过流故障及排除 1引言 变频器中过流保护的对象主要指带有突变性质的、电流的峰值超过了过流检测值(约额定电流的180%—200%,不同变频器的保护值不一样),变频器显示过流,由于逆变器 件的过载能力较差,所以变频器的过流保护是至关重要的一环。 过流故障可分为加速、减速、恒速过流等,其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均、输出短路等原因引起的。 本文将主要探讨变频器过流形成的原因及其处理办法。 2变频器过流故障的原因 根据变频器过流故障显示,从以下几方面寻找原因。 (1)工作中过流,即电机拖动系统在工作过程中出现过流。 其原因大致有以下几方面: ●一是电动机遇到冲击负载或传动机构出现“卡住”现象,引起电动机电流的突然增加; ●二是变频器输出侧发生短路(如图1所示),如输出端到电动机之间的连接线发生相互 短路,或电动机内部发生短路等、接地(电机烧毁、绝缘劣化、电缆破损而引起的接触、 接地等); ●三是变频器自身工作不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作 过程中出现异常。如环境温度过高,或逆变器元器件本身老化等原因,使逆变器的参数 发生变化,导致在交替导通过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”(如图2所示),使直流电压的正、负

极间处于短路状态。 (2)升速、降速时过流: 当负载的惯性较大,而升速时间或降速时间又设定得太短时,也会引起过流。在升速过程中,变频器工作频率上升太快,电动机的同步转速迅速上升,而电动机转子的转 速因负载惯性较大而跟不上去,结果是升速电流太大;在降速过程中,降速时间太短, 同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以 使转子绕组切割磁力线的速度太大而产生过流。 (3)变频器上电或一运行就过流。 这种保护大部分是因变频器内部故障引起的,若负载正常,变频器仍出现过流保护,一般是检测电路所引起,类似于短路故障的排除,如电流传感器、取样电阻或检测电路等。该处传感器波形如图3所示,其包络类似于正弦波,若波形不对或无波形,即为传 感器损坏,应更换之。 过流保护用的检测电路是模拟运放电路,如图4所示。在静态下,测a点的工作电压应为2.4v,若电压不对即为该电路有问题,应查找原因予以排除。r4为取样电阻,若 有问题也应更换之。 3过流故障处理对策 通常有以下集中处理对策: (1)负载侧检查 负载侧的原因是引起变频器过流的最主要因素,因此一旦发生过流故障,首先要检查: ●工作机械有没有卡住,以避免电机负载突变,引起的冲击过大造成过流;

艾默生变频器参数调试

艾默生变频器参数调试: 0.00:密码1000保存参数;1233恢复出厂值;1253更改变频器控制模式; 0.01:最低速度0 0.02:最高速度1850rpm 0.03:加速斜率0.3cm/s2 0.04:减速斜率0.3cm/s2 0.05:给定模式选择Pr数字量 0.06:电流限200% 0.12:参数选择0 (0号菜单选择) 0.13:电机额定转速1850rpm 0.14:电梯额定速度1000mm/s 0.15:V1 50mm/s 检修半速 0.16:V2 0.17:V3 30mm/s 爬行速度 0.18:V4 150mm/s 检修速度 0.19:V5 480mm/s 单层速度 0.20:V6 550mm/s 双层速度 0.21:V7 550mm/s 多层速度 0.22:停车减速斜率200mm/s2 0.23:启动S曲线200mm/s3 0.24:运行S曲线700mm/s3

0.25:停车S曲线700mm/s3 0.29:1024 编码器脉冲数(相当与3.34) 0.42:4POLE (相当与5.11) 0.43:0.88 (相当与5.10) 0.44:340V (相当与5.09) 0.45:1850RPM (相当与5.08) 0.46:56A (相当与5.07) 0.47:64HZ (相当与5.06) 0.48:CL UECT闭环 2.02:斜坡使能ON(1) 2.03:斜坡保持OFF(0) 2.04:斜坡方式选择FAST(1) 2.10:加速斜率选择器2 2.11:加速斜率0.3cm/s2(等同于0.03) 2.20:减速斜率选择器2 2.21:减速斜率0.3cm/s2(等同于0.04) 3.24:0(闭环) 3.34:1024(编码器脉冲数) 3.36:5V(编码器电压) 3.38;AB(编码器类型:差分AB相) 3.42:4(编码器滤波“如果现场编码器干扰很大可以设定最大不要大于8”)

变频器显示电流与电源电流表显示存在差别的说明

关于电流表上的电流显示与变频器面板上的电流显示 存在差别的说明 1、柜面上的电流表,测量的是变频器输入端的电流,是采用普通交流电流互 感器进行测量的; 2、变频器面板上显示的电流是变频器内部霍尔电流传感器测量所得的电流, 霍尔电流传感器测量的是变频器的输出电流; 3、普通交流电流互感器不能用来测量变频器输出端的电流,因为变频器的输 出电压、电流波形为PWM脉宽调制波形,采用普通的电流互感器或钳形 表难以测量变频器的输出电流,因此为了能够观察电机的运行电流,通常只能在变频器的输入端加装电流互感器; 4、变频器输入端电流互感器所测的电流与变频器面板上显示的电流存在差 别主要是因为: 输入电流的电压是380V的。变频器的输出是调频调压的信号,低频段时是降压输出的,而其输入功率约等于输出功率,所以负载电流会变 大。 即功率不变的情况下,输出电压降低了,输出电流增大了。 具体到变频器内部原理,因为变频器一般都是交直交变频器,内部有大容量电容储能。调压采用PWM脉宽调制技术。 5、通常情况都是以变频器显示的为准,因为AC/AC变频器是通过整流单 元(通常称电源模块)将3相交流(比如380V)整流(3相全波桥整)成直 流(540V),再通过控制单元,按照控制方式,比如矢量,V/F等及给定值,通过控制大功率开关管(通常称电机模块)的通断及其频率转换成高频交流信号接至变频电机。因此,普通的钳流表(其实也是一个电流互感器)所测电流不是很准确,需要专用高频信号测量的电流互感器,而在变 频器内部的输出回路的铜排上就是串了这样的设备,因此只要此元件不坏,肯定比普通钳流表准。?另外,关于输入侧的电流,正如以上说言,由于是 工频交流信号只要普通电流互感器,但电流和输出测不一定对应,但可以按照功率来大概推算,比如:输出电流240A,如果电压150V,则输出侧有效功率两者相乘约等于36KW,考虑到损耗则输入侧应该稍大于 36KW,比如按照38KW计算,则输入侧电流恰好=38KW/380V=100A。 (以上公式均为近似值)。 安装一台变频器,在五十赫兹运行时,输入电流十安,输出电流七十安,变频器七十五千瓦,电机七十五千瓦,另有一台,五十五千瓦,五十赫兹运行时,输入三十安,输出五十安, 一、输入,输出电流为什么相差这么大, 二、七十五千瓦变频器输入电流为什么这么小, 刘志斌17楼回复时间:2008-8-16 10:06:30

变频器常见故障分析和预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.变频器常见故障分析和预防措施正式版

变频器常见故障分析和预防措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 一、变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。 1、外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停

机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较长,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 2、安装环境

变频器故障诊断与维修_变频器常见故障维修_变频器故障处理方法

变频器故障诊断与维修_变频器常见故障维修_变频器故障处理方法变频器常见故障维修_变频器故障处理方法一、参数设置类故障常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1、参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: (1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 (2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 (3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 (4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 2、参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 二、过压类故障变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器

相关文档
最新文档