二重积分与三重积分区别

二重积分与三重积分区别
二重积分与三重积分区别

都是递进关系,从一重积分开始,只说几何意义吧。

一重积分(定积分):只有一个自变量y = f(x)

当被积函数为1时,就是直线的长度(自由度较大)

∫(a→b) dx = L(直线长度)

被积函数不为1时,就是图形的面积(规则)

∫(a→b) f(x) dx = A(平面面积)

另外,定积分也可以求规则的旋转体体积,分别是

盘旋法(Disc Method):V = π∫(a→b) f2(x) dx

圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx

计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了

∫(α→β) (1/2)[A(θ)]2 dθ = A(极坐标下的平面面积)

二重积分:有两个自变量z = f(x,y)

当被积函数为1时,就是面积(自由度较大)

∫(a→b) ∫(c→d) dxdy = A(平面面积)

当被积函数不为1时,就是图形的体积(规则)、和旋转体体积

∫(a→b) ∫(c→d) dxdy = V(旋转体体积)

计算方法有直角坐标法、极坐标法、雅可比换元法等

极坐标变换:{ x = rcosθ

{ y = rsinθ

{ α≤θ≤β、最大范围:0 ≤θ≤ 2π

∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重积分:有三个自变量u = f(x,y,z)

被积函数为1时,就是体积、旋转体体积(自由度最大)

∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积)

当被积函数不为1时,就没有几何意义了,有物理意义等

计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ

{ y = rsinθ

{ z = z

{ h ≤ r ≤ k

{ α≤θ≤β、最大范围:0 ≤θ≤ 2π

∫(α→β) ∫(h→k) ∫(z?→z?) f(rcosθ,rsinθ,z) r dzdrdθ

极坐标变化(球坐标):{ x = rsinφcosθ

{ y = rsinφsinθ

{ z = rcosφ

{ h ≤ r ≤ k

{ a ≤φ≤ b、最大范围:0 ≤φ≤π

{ α≤θ≤β、最大范围:0 ≤θ≤ 2π

∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r2sin2φ drdφdθ

所以越上一级,能求得的空间范围也越自由,越广泛,但也越复杂,越棘手,而

且限制比上面两个都少,对空间想象力提高了。

重积分能化为几次定积分,每个定积分能控制不同的伸展方向。

又比如说,在a ≤ x ≤ b里由f(x)和g(x)围成的面积,其中f(x) > g(x)

用定积分求的面积公式是∫(a→b) [f(x) - g(x)] dx

但是升级的二重积分,面积公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被积函数变为1了

用不同积分层次计算由z = x2 + y2、z = a2围成的体积?

一重积分(定积分):向zox面投影,得z = x2、令z = a2 --> x = ± a、采用圆壳法

V = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x3 dx = 2π? (1/4)[ x? ] |(0→a) = πa?/2

二重积分:高为a、将z = x2 + y2向xoy面投影得x2 + y2 = a2

所以就是求∫∫(D) (x2 + y2) dxdy、其中D是x2 + y2 = a2

V = ∫∫(D) (x2 + y2) dxdy = ∫(0→2π) dθ∫(0→a) r3 dr、这步你会发觉步骤跟一重定积分一样的

= 2π? (1/4)[ r? ] |(0→a) = πa?/2

三重积分:旋转体体积,被积函数是1,直接求可以了

柱坐标切片法:Dz:x2 + y2 = z

V = ∫∫∫(Ω) dxdydz

= ∫(0→a2) dz ∫∫Dz dxdy

= ∫(0→a2) πz dz

= π? [ z2/2 ] |(0→a2)

= πa?/2

柱坐标投影法:Dxy:x2 + y2 = a2

V = ∫∫∫(Ω) dxdydz

= ∫(0→2π) dθ∫(0→a) r dr ∫(r2→a2) dz

= 2π?∫(0→a) r ? (a2 - r2) dr

= 2π? [ a2r2/2 - (1/4)r? ] |(0→a)

= 2π? [ a?/2 - (1/4)a? ]

= πa?/2

三重积分求体积时能用的方法较多,就是所说的高自由度。

既然都说了这麼多,再说一点吧:

如果再学下去的话,你会发现求(平面)面积、体积比求(曲面)面积的公式容易

学完求体积的公式,就会有求曲面的公式

就是「曲线积分」和「曲面积分」,又分「第一类」和「第二类」

当被积函数为1时,第一类曲线积分就是求弧线的长度,对比定积分只能求直线长度

∫(C) ds = L(曲线长度)

被积函数不为1时,就是求以弧线为底线的曲面的面积

∫(C) f(x,y) ds = A(曲面面积)

当被积函数为1时,第一类曲面积分就是求曲面的面积,对比二重积分只能求平面面积

∫∫(Σ) dS = A(曲面面积)、自由度比第一类曲线积分大

∫∫(Σ) f(x,y,z) dS,物理应用、例如曲面的质量、重心、转动惯量、流速场流过曲面的流量等

而第二类曲线积分/第二类曲面积分以物理应用为主要,而且是有"方向性"的,涉及向量范围了。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

二重积分及三重积分的计算

第一部分 定积分的计算 一、定积分的计算 例1 用定积分定义求极限. )0(21lim 1>++++∞→a n n a a a a n . 解 原式=?∑=??? ? ??=∞→1011lim a a n i n x n n i dx = a a x a += ++11 11 1. 例2 求极限 ? +∞→10 2 1lim x x n n dx . 解法1 由10≤≤x ,知n n x x x ≤+≤ 2 10,于是? +≤1 2 10x x n ?≤1 n x dx dx . 而?1 0n x ()∞→→+=+= +n n n x dx n 01111 01,由夹逼准则得?+∞→1021lim x x n n dx =0. 解法2 利用广义积分中值定理 ()()x g x f b a ? ()()?=b a x g f dx ξdx (其中()x g 在区间[]b a ,上不变号) , ().101111 2 1 02 ≤≤+= +? ? n n n n dx x dx x x ξξ 由于11102≤+≤ n ξ ,即 211n ξ +有界, ()∞→→+=?n n dx x n 0111 0,故?+∞→1021lim x x n n dx =0. 注 (1)当被积函数为( )22,x a x R +或() 22,a x x R -型可作相应变换. 如对积分() ?++3 1 2 2 112x x dx ,可设t x tan =; 对积分 ()0220 2>-? a dx x ax x a ,由于 () 2 222a x a x ax --=-,可设 t a a x s i n =-. 对积分dx e x ? --2 ln 0 21,可设.sin t e x =- (2)()0,cos sin cos sin 2 ≠++=?d c dt t d t c t b t a I π 的积分一般方法如下:

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

三重积分及其计算和多重积分72254

第四节 三重积分及其计算和多重积分 在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去. 类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例 设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W WQ d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设 },...,,m ax {21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小 区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ?,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即 ()i i i i n i V z y x f M ?≈∑=,,1 . 当0→λ时,这个和式的极限存在,就是物体的质量.即 ()i i i i n i V z y x f M ?=∑=→,,lim 1 λ. 从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义 设()z y x f ,,是空间3 R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割 为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=?o o j i V V (空, j i ≠), 其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21.设 },...,,m ax {21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和 ()i i i i n i V z y x f ?∑=,,1 (称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

二重积分与三重积分区别

都是递进关系,从一重积分开始,只说几何意义吧。 一重积分(定积分):只有一个自变量y = f(x) 当被积函数为1时,就是直线的长度(自由度较大) ∫(a→b) dx = L(直线长度) 被积函数不为1时,就是图形的面积(规则) ∫(a→b) f(x) dx = A(平面面积) 另外,定积分也可以求规则的旋转体体积,分别是 盘旋法(Disc Method):V = π∫(a→b) f2(x) dx 圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx 计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了 ∫(α→β) (1/2)[A(θ)]2 dθ = A(极坐标下的平面面积) 二重积分:有两个自变量z = f(x,y) 当被积函数为1时,就是面积(自由度较大) ∫(a→b) ∫(c→d) dxdy = A(平面面积) 当被积函数不为1时,就是图形的体积(规则)、和旋转体体积 ∫(a→b) ∫(c→d) dxdy = V(旋转体体积) 计算方法有直角坐标法、极坐标法、雅可比换元法等 极坐标变换:{ x = rcosθ { y = rsinθ { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ 三重积分:有三个自变量u = f(x,y,z) 被积函数为1时,就是体积、旋转体体积(自由度最大) ∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积) 当被积函数不为1时,就没有几何意义了,有物理意义等 计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ { y = rsinθ { z = z { h ≤ r ≤ k { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) ∫(z?→z?) f(rcosθ,rsinθ,z) r dzdrdθ 极坐标变化(球坐标):{ x = rsinφcosθ { y = rsinφsinθ { z = rcosφ

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

高中数学常见题型解法归纳 求定积分的方法

高中数学常见题型解法归纳 求定积分的方法 【知识要点】 一、曲边梯形的定义 我们把由直线,,0x a x b y ===和曲线()y f x =所围成的图形称为曲边梯形. 二、曲边梯形的面积的求法 分割→近似代替(以直代曲)→求和→取极限 三、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:1 1 ()()n n n i i i i b a S f x x f n ξ==-= ?=∑∑ 如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数 ()f x 在区间[,]a b 上的定积分.记为:()b a S f x dx =?, 其中 ? 是积分号,b 是积分上限,a 是积分下限,()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx 是被积式. 说明:(1)定积分 ()b a f x dx ? 是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋 近的常数S (n →+∞时)记为 ()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③ 求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 四、定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1()()()b b a a kf x dx k f x dx k =??为常数(定积分的线性性质); 性质2 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ??(定积分的线性性质);

三重积分的计算方法小结与例题

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定 积分(一重积分)和一个二重积分。从顺序看: Z 2 如果先做定积分f (x, y, z)dz,再做二重积分 F (x, y)d;「,就是“投 Z i D 影法”也即“先一后二”。步骤为:找0及在xoy面投影域D。多D 上一点(x,y) “穿线”确定z的积分限,完成了“先一”这一步(定 积分);进而按二重积分的计算步骤计算投影域D上的二重积分,完 Z 2 成“后二”这一步。III f (x, y, z)dv 二[f (x, y, z)dz]dc Q D z i C2 如果先做一重积分11 f (x, y, z)d;二再做定积分F (z)dz,就是“截面 D z q 法”也即“先二后一”。步骤为:确定。位于平面z = °与z=c2之间, 即z ? [C1,C2],过z作平行于xoy面的平面截门,截面D z。区域D z的边界曲面都是z的函数。计算区域D z上的二重积分i if(x, y,z)d二,完成 D z C 2 了“先二”这一步(二重积分);进而计算定积分.F(z)dz,完成“后 C i C2 一”这一步。H I f(x,y,z)dv = [ f (x, y,z)d;「]dz Q C i D z 当被积函数f (z)仅为z的函数(与x,y无关),且D z的面积二⑵ 容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。 可以按以下几点考虑:将积分区域「投影到xoy面,得投影区域D(平

面) (1) D是X型或丫型,可选择直角坐标系计算(当门的边界曲 面中有较多的平面时,常用直角坐标系计算) (2)D是圆域(或其部分),且被积函数形如f(x2?y2),fd)时, x 可选择柱面坐标系计算(当「为圆柱体或圆锥体时,常用 柱面坐标计算) (3)门是球体或球顶锥体, 且被积函数形如f(x2? y2z2)时,可选择球面坐标系计算 以上是一般常见的三重积分的计算方法。对-向其它坐标面投影或门不易作出的情形不赘述。 三重积分的计算方法小结: 1.对三重积分,采用“投影法”还是“截面法”,要视积分域「及被积函数 f(x,y,z) 的情况选取。 一般地,投影法(先一后二):较直观易掌握; 截面法(先二后一):D z是门在z处的截面,其边界曲线方程易写 错,故较难一些。 特殊地,对D z积分时,f(x,y,z)与x,y无关,可直接计算S D Z。因而门 中只要z?[a,b],且f(x,y,z)仅含z时,选取“截面法”更佳。 2.对坐标系的选取,当门为柱体,锥体,或由柱面,锥面,旋转抛物面与其它曲 面所围成的形体;被积函数为仅含z或zf(x2y2)时,可考虑用柱面 坐标计算。

定积分证明题方法总结六

定积分证明题方法总结六篇 定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。 篇一:定积分计算方法总结一、不定积分计算方法 1. 凑微分法 2. 裂项法 3. 变量代换法 1) 三角代换 2) 根幂代换 3) 倒代换 4. 配方后积分 5. 有理化 6. 和差化积法 7. 分部积分法(反、对、幂、指、三) 8. 降幂法 二、定积分的计算方法 1. 利用函数奇偶性 2. 利用函数周期性 3. 参考不定积分计算方法 三、定积分与极限

1. 积和式极限 2. 利用积分中值定理或微分中值定理求极限 3. 洛必达法则 4. 等价无穷小 四、定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则 >= ()dx 2) 利用被积函数所满足的不等式比较之 a) b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法

五、变限积分的导数方法 篇二:定积分知识点总结 1、经验总结 (1) 定积分的定义:分割—近似代替—求和—取极限 (2)定积分几何意义: ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a 反数 (3)定积分的基本性质: ①kf(x)dx=kf(x)dx aabb ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa ③f(x)dx=f(x)dx+f(x)dx aac (4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb ①定义法:分割—近似代替—求和—取极限②利用定积分几何意义 ’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba 篇三:定积分计算方法总结 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上

(整理)定积分应用二重积分三重积分.

积分的应用 定积分的应用 平面图形面积 1、图形由0)(≥=x f y ,a x =,b x =及0=y 围成: ?=b a dx x f A )(. 2、 图形由)(x f y =,)(x g y =,a x =及b x =围成: ?-=b a dx x g x f A )]()([, 其中:],[),()(b a x x g x f ∈≥. 3曲线由参数方程)(),(t y y t x x ==给出时,在],[21t t t ∈上所围图形的面积公式为 dt t x t y A t t )()(2 1 '=? 4曲边扇形的面积 由曲线)(θ?=r 及矢径)(,βαβθαθ<==所围成的曲边扇形的面积公式为 θ θ?θβ α βαd d r A ??==22)]([2121 例1求由x y 22 =,4-=x y 所围成的图形的面积A . 解:由 ???-==4 22x y x y 得 ???-==22y x 或 ???==48 y x . ?--+=4 2 2]21)4[(dy y y A .18642 14 232=??? ???-+=-y y y 例2 计算由曲线3)cos 1(=+θr 和直线1cos =θr 所围成图形的面积 解:?? ?==+1 cos 3)cos 1(θθr r 解之得3 ,2πθ±==r . 则 θθ θθθθπ π πd d S ]cos 1)cos 1(9[]cos 1)cos 1(9[2130223322??-+=-+=- 3cos 29][tan 2 cos 229cos 1)cos 1(960430304302302-=-=-+=????ππππ πθθθ θθθθt dt d d d 3 23]tan 31[tan 293)tan 1(sec 2960360 22=-+=-+=?ππ t t dt t t 平面曲线的弧长 光滑(即连续可微分的)曲线)(x y y =在区间[a ,b ]上的弧长公式为

相关文档
最新文档