高纯度低粘度环氧树脂的合成综述

高纯度低粘度环氧树脂的合成综述
高纯度低粘度环氧树脂的合成综述

怎样使用环氧树脂才能粘得牢

怎样使用环氧树脂才能粘得牢 环氧树脂可以用来粘接金属、玻璃、木器等物品.它是一种合成的高分子物质, 未固化之前性质稳定, 常温下可以贮存多年.但与胺类固化剂接触混合, 便会迅速起反应固化.因此, 使用时必须注意以下事项, 粘接效果才能理想. 1.固化剂.常用的常温固化剂有乙二胺、二乙烯、三胺等.选用不同的固化剂, 对树脂硬化程度、操作时间、固化后的性能都有很大影响.乙二胺是无色液体, 有刺激性臭味和腐蚀性, 毒性比较大.它固化速度快, 因此混合时温度水温过高.二乙烯三胺是有刺激性的淡黄色液体, 挥发比较慢, 对人体危害也比较小, 固化后脆性也比乙二胺小, 因此被广泛采用. 固化剂的用量必须严格控制.用多了, 没有粘接就已经先固化了, 固化物发脆;用少了固化时间长, 固化物强度低.乙二胺一般用量在6% -8% , 二乙烯三胺为8% -11% .市场上出售的乙二胺溶液, 有70% 和95% 两种, 要注意换算使用. 2.增韧剂.为了降低树脂硬化后的脆性, 增加韧性, 提高抗弯强度和杭冲击强度, 可以加进增韧性, 常用的增韧剂为邻苯二甲酸二丁脂, 用量为环氧树脂的15% 左右. 3.稀释剂.操作时可加入稀释剂, 可以降低环氧树脂的粘度和延长操作时间.常用的稀释剂有丙酮、甲苯、二甲苯、醋酸丁脂等.这些都属于非活性稀释剂, 多加会降低粘结强度.如果改用活性稀释剂环氧丙烷苯基醚, 用量应提高到树脂量的20% 左右. 4.填料.可以改善环氧树脂的性能, 提高强度和粘结力.常用的粉状填料有石英粉、石棉粉、铝粉、滑石粉和水泥等.

5.表面清洗.粘接的部位必须干净, 清除铁锈, 有油污的地方必须用汽油清洗, 才能保证粘接的牢固.

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

环氧树脂固化剂种类大全

一、脂肪多元胺型固化剂 环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。为适应各种应用领域的要求, 应使用相应的固化剂。固化剂的种类很多,现介绍于下: 乙二胺 EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。 该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期 短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。 二乙烯三胺 DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率 5.5%,冲击强度 0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。 三乙烯四胺 TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率 4.4%,冲击强度 0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺 TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每100份标准树脂用11-15份性能同上。 多乙烯多胺 PEPA H2NC2H4(NHC2H4)nNH2 浅黄色液体每100份标准树脂用14-15份性能:毒性较小,挥发性低、适用期较长、价廉。 二丙烯三胺 DPTA H2N(CH2)3 NH(CH2)3NH2 分子量131 活泼氢当量26 浅黄色液体每100份标准树脂用12-15份性能同TETA。 二甲胺基丙胺 DMAPA (CH3)2N (CH2)3NH2 低粘度透明液体每100份标准树脂用4-7份毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。 二乙胺基丙胺 DEAPA (C2H5)2N (CH2)3NH2 分子量130 活泼氢当量65 低粘度透明液体每100份标准树脂用4-8份固化:60-70℃4小时。性能:适用期50克25℃4小时,

常用环氧树脂参数总结

常用环氧树脂参数总结 一、缩水甘油基型环氧树脂: 1.缩水甘油醚型环氧树脂 1.1双酚A型环氧树脂: 双酚A型环氧树脂是应用最广泛的树脂之一,占环氧树脂树脂总产量的90%。在分子结构中含有羟基和醚键,固化过程进一步生成新的—OH和—O—,使固化物具有很高的内聚力和粘附力。因此可以对金属、陶瓷、木材、水泥和塑料进行粘接。 另外,双酚A型环氧树脂属无毒树脂,其白鼠的最低口服致死量为LD50为11.4g/kg。 双酚A型环氧树脂的牌号与性质表 新牌号原牌号外观粘度(Pa.s)软化点(℃)环氧值 E—55 616# 浅黄粘稠液体 6-8 ---- 0.55-0.56 E—51 618# 浅黄粘稠液体 10-16 ---- 0.48-0.54 E—44 6101# 黄色高粘度液体 20-40 ---- 0.41-0.47 E—42 634# 同上---- 21-27 0.38-0.45 E—35 637# 同上---- 20-35 0.30-0.40 E—31 638# 浅黄粘稠液体---- 40-55 0.23-0.38 E—20 601# 黄色透明固体---- 64-76 0.18-0.22 E—14 603# 同上---- 78-85 0.10-0.18 E—12 604# 同上---- 85-95 0.10-0.18 E—06 607# 同上---- 110-135 0.04-0.07 E—03 609# 同上---- 135-155 0.02-0.04 E—01 665# 液体 30-40 ---- 0.01-0.03 1.2双酚S型环氧树脂 双酚S型环氧树脂是由双酚S和过量环氧氯丙烷在碱性条件下缩聚得到的耐高温环氧树脂。 双酚S为浅黄色固体,由东北石化研究所研制,全名为“4,4‘—二羟基二苯双缩水甘油醚环氧树脂”,胺类、酸酐、咪唑均能固化双酚S,其固化物具有热变形温度高、热稳定性能好的特点。这是因为分子中极性强的砜基—SO2—取代双酚A中的异丙基,提高了热稳定性;砜基改善了粘附力,增强了环氧基的开环活性。 1.3双酚F型环氧树脂 双酚F型环氧树脂是由双酚F和过量环氧氯丙烷(1:10),在四甲基氯化铵和NaOH条件下,经醚化和闭环反应,缩聚而成的。 双酚F型环氧树脂的粘度低,可用于碳纤维复合材料、玻纤增强塑料以及地下油井的灌封材料。 1.4环氧化线型酚醛树脂 环氧酚醛是由低分子量酚醛树脂与环氧氯丙烷在酸催化剂下缩合而成,兼有酚醛和双酚A型环氧树脂的优点。按线型酚醛树脂分子量和发羟基含量不同,可以合成不同分子量和官能度的环氧酚醛,如甲酚线型酚醛树脂。 环氧酚醛高粘度半固体,平均官能度为2.5-6.0,软化点≤28℃,环氧值0.53-0.57,在上海树脂厂和无锡树脂厂生产。为改善工艺,添加低粘度的稀释剂,或与双酚A混合使用。 胺类、酸酐类和咪唑均能固化环氧酚醛。在150℃以下固化环氧酚醛和双酚A型环氧树脂的热变形温度相近。例如: 固化剂固化条件用量% 热变形温度(℃)

环氧树脂配置讲义

校讲义 《水声换能器设计与制作工艺》 实验指导书 水声工程学院 王文芝

目录 1.实验一压电瓷材料主要参数测试 (1) 2.实验二环氧树脂粘结与灌封工艺实验 (4) 3.实验三薄壁圆管换能器的制作 (6) 4.实验四复合棒换能器的制作 (10) 5.实验五聚氨酯橡胶的灌封工艺 (13) 6.实验六薄圆片径向振动换能器的制作 (15) 7.实验七薄长片长度振动换能器的设计与制作 (18) 8.实验八水声换能器电声性能参数测量实验 (20) 9.实验九氯丁橡胶硫化工艺实验 (26) 10.实验十超声应用实验 (27)

实验一、压电瓷材料主要参数测试 一、实验目的:掌握压电瓷材料性能参数的测试方法,了解主要参数的计算方法。 二、实验容: 1.学习实验仪器的使用; 2.用“谐振-反谐振”法测试PZT-4、PZT-5的主要参数; 3.电容电桥测量T C ,δtg ; 4.用NW1232低频频率特性测试仪测量1,,m n m f f f ; 5.用ZJ-3A 型准静态33d 测量仪测量各元件的33d 值。 三、实验仪器: 信号源 GFG ——8250A 一台 毫伏表 DF2175 二台 π型网络转接器 自制 一个 低频频率特性测试仪 NW1232 一台 准静态33d 测量仪 ZJ-3A 一台 电容电桥 一台 四、实验原理:通过“谐振-反谐振”方法,测试压电瓷材料的串联谐振频率s f 、并联谐振频率1s p f f 及等,计算出各主要参数。 实验仪器:

五、仪器连接: 六:实验方法: 1.按图连接好仪器。 2.打开仪器开关,将样品夹到夹持架两顶尖处,注意夹持力要尽量小,以样品不掉下来即可,夹持点应选在样品的中心处。 3.调节输入电压,测量薄圆片和薄长条片材料时,使V=1V ,测量长圆柱试样时,使V=3V 。 4.调节信号频率,按测量参数的需要测出试样的1,,m n m f f f ,测量1,m m f f 时,将转接器开关拨到2T R ,测量n f 时将转接器开关拨到3T R ,注意观察输出电压,当输出电压出现第一个峰值时,此时的信号频率即为m f ,继续调节输入信号频率,当输出电压出现第一个谷值时,此时频率为n f ,当输出电压出现第二个峰值时,此时的输入信号频率为1m f 。 5.用NW1232低频频率特性测试仪测量1,,m n m f f f 时,选扫频方式为“线性”,检波方式为“线性”,调节扫频宽度可观测到频率特性曲线,再将扫频方式改为“手动”,可在相应位置测出1,,m n m f f f 。 6.ZJ-3A 静态33d 测量仪使用方法见附页。 七、实验步骤: 1、用薄圆片试样(PZT-4,PZT-5二种)测试材料的δεσtg k T p ,,,33 2、用薄长方片试样(PZT-4,PZT-5二种)测试材料的3111 31),(,d Y S k E

环氧树脂是一类具有良好的粘接性

环氧树脂是一类具有良好的粘接性、电绝缘性、化学稳定性的热固性高分子材料,作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于建筑、机械、电子电气、航空航天等领域。环氧树脂使用时必须加入固化剂,并在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。因此固化剂在环氧树脂的应用中具有不可缺少的,甚至在某种程度上起着决定性的作用。环氧树脂潜伏性固化剂是近年来国内外环氧树脂固化剂研究的热点。所谓潜伏性固化剂,是指加入到环氧树脂中与其组成的单组分体系在室温下具有一定的贮存稳定性,而在加热、光照、湿气、加压等条件下能迅速进行固化反应的固化剂,与目前普遍采用的双组分环氧树脂体系相比,由潜伏性固化剂与环氧树脂混合配制而成的单组分环氧树脂体系具有简化生产操作工艺,防止环境污染,提高产品质量,适应现代大规模工业化生产等优点。 环氧树脂潜伏性固化剂的研究一般通过物理和化学的手段,对普通使用低温和高温固化剂的固化活性加以改进,主要采取以下两种改进方法:一是将一些反应活性高而贮存稳定性差的固化剂的反应活性进行封闭、钝化;二是将一些贮存稳定性好而反应活性低的固化剂的反应活性提高、激发。最终达到使固化剂在室温下加入到环氧树脂中时具有一定的贮存稳定性,而在使用时通过光、热等外界条件将固化剂的反应活性释放出来,从而达到使环氧树脂迅速固化的目的。本文就国内外环氧树脂潜伏性固化剂的研究进展作一基本概述。 1 环氧树脂潜伏性固化剂 1.1 改性脂肪族胺类 脂肪族胺类固化剂如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的双组分环氧树脂室温固化剂,通过化学改性的方法,将其与有机酮类化合物进行亲核加成反应,脱水生成亚胺是一种封闭、降低其固化活性,提高其贮存稳定性的有效途径。 这种酮亚胺型固化剂与环氧树脂组成的单组分体系通过湿气和水分的作用而使酮亚胺分解成胺因此在常温下即可使环氧树脂固化。但一般固化速度不快,使用期也较短,原因是亚胺氮原子上的孤对电子仍具有一定的开环活性。为解决这一问题,武田敏之用羰基两端具有立体阻碍基团的酮3-甲基-2 -丁酮与高活性的二胺1,3 二氨甲基环己烷反应得到的酮亚胺不仅具有较高的固化反应活性,而且贮存稳定性明显改善。另外日本专利报道采用聚醚改性的脂肪族胺类化合物与甲基异丁基酮反应得到的酮亚胺也是一种性能良好的环氧树脂潜伏性固化剂。脂肪族胺类固化剂通过与丙烯腈、有机膦化合物,过渡金属络合物的反应,也可使其固化反应活性降低,从而具有一定的潜伏性。 1.2 芳香族二胺类 芳香胺由于具有较高的Tg而受到重视,但由于其的剧毒性而限制了应用。经改性制得的芳香族二胺类固化剂则具有Tg高、毒性低、吸水率低、综合性能好的优点。近年来研究较多的芳香族二胺类固化剂有二胺基二苯砜(DDS)、二胺基二苯甲烷(DDM)、间苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成为高性能环氧树脂中常用的固化剂。DDS用作环氧树脂潜伏性固化剂时,与MP DA、DDM等芳香二胺相比,由于其分子中有强吸电子的砜基,反应活性大大降低,其适用期也增长。在无促进剂时,100克环氧树脂配合物的适用期可达1年,固化温度一般要达到200℃。为了降低其固化温度,常加入促进剂以实现中温固化。近年来为了改善体系的湿热性能和韧性,对DDS进行了改性,开发出多种聚醚二胺型固化剂,使得它们在干燥时耐热性有所降低,这些二胺因两端胺基间的距离较长,造成吸水点氨基减少,并且具有优良的耐冲击性。

环氧树脂特性

环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。 9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。 1、缩水甘油醚类环氧树脂 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。

环氧树脂固化剂概述

环氧树脂固化剂概述 环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。只有加入固化剂后,环氧树脂才能得到实用。一个完整概念的环氧树脂组成物应该由四个方面的成分组成。但在实际应用时,不一定四个方面的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。 环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。 固化剂定义及分类 1、定义 环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。 2、固化剂的分类 固化剂按反应性和化学结构分类如下 1、伯胺与环氧基的反应 当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。 胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较多,到达一定的时间后,环氧基的消耗不像开始那么多。环

氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。 当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。有些基团具有抑制作用。 如:,OR、,COOR、,SO3R、,CON2R、,SO2NR2、,CN、,NO2等。 2、叔胺与环氧基的反应 叔胺是强碱性化合物。叔胺固化环氧树脂按阴离子聚合反应进行。阴离子聚合固化剂首先作用环氧基,使其开环,生成氧阴离子,氧阴离子攻击环氧基,开环加成,这种开环加成连锁 反应进行下去固化环氧树脂。 3、咪唑化合物与环氧基反应 咪唑化合物为五元杂环化合物。结构式中含有两个氮原子,一个氮原子处于仲胺,另一个氮原子为叔胺。首先仲胺基的活泼氢和环氧基反应生成加成物,该加成物再和别的环氧基反应生成在分子内兼具?和?离子的离子络合物,生成的离子络合物的?和环氧基反应,以连锁反应的方式开环聚合固化环氧树脂。咪唑的阴离子聚合受加成物生成的制约,因此聚合速度比叔胺慢。 4、三氟化硼,胺络合物与环氧基的反应 BF3是环氧树脂的阳离子型催化剂,由于反应剧烈,无法应用,以与路易斯碱(胺类、醚类等)形成络合物的形式使用。BF3胺络合物是应用最早的潜伏型固化剂之一。它的阳离子聚合反应历程引发环氧基开环聚合,在和环氧基反应时,环氧基

环氧树脂

环氧树脂

环氧树脂的命名 (1) 双酚A型环氧树脂 (2) 水性环氧树脂 (3) 柔韧性环氧树脂 (4) 环氧树脂的主要性能指标及测定方法 .......

一、环氧树脂的命名 1、国标GB/T1630-1989的命名法 按照GB/T1630-1989的规定,环氧树脂的名称由树脂缩写代号加牌号组成。按照GB/T1844-1995规定,环氧树脂缩写代号用“EP”表示。环氧树脂牌号由两个数字组组成。两组数字间用一字线连接:第Ⅰ数字组—第Ⅱ数字组。 (1)第1数字组。第1数字组由5位阿拉伯数字组成。每一数字(命名顺序号l、2、3、4、5)代表所指的特性,前两位数字表示树

脂的化学组分,后三位数字分别表示树脂黏度、环氧当量的范围值和对改性剂或溶剂的规定。按照表2—1列出的命名顺序号,依次标出各项性能的类别数或档数。如果某项性能末作规定,则在相应位置以“0”表示。 (2)第Ⅱ数字组。第Ⅱ数字组由3位阿拉伯数字组成。每一数字(命名顺序号6、7、8)代表所指的特性,分别表示树脂的密度范围值、添加剂类型和特征。按照表2—2列出的命名顺序号,依次标出各项性能的档数。如果某项性能未作规定,则在相应位置以“0”表示。 环氧树脂的主要性能

注:树脂化学组分用两位阿拉伯数字表示,如“1”类树脂写作“01”,“10”类树脂写作“10”。对由两类不同化学组分组成的树脂混合物,可用符号“00”表示。 环氧树脂的次要性能

注:①如果使用多种添加剂或规定有多种特征标示,应标出最主要的一种。②全面评定材料的燃烧性,至少需要测定燃烧性、引火性、放出热量、释放的有毒气体和烟密度等性能。 (3)命名举例。例1-某种环氧树脂(EP),化学组分为脂肪族缩水甘油醚(03),教度为l-5Pa·s(3),环氧当量为291-525g/mol(6),不含改性剂(1),密度为1.15-1.19g/cm3(3),未规定添加剂(0)和特征(o),其名称为EP0336l-300。例2- 某种环氧树脂(EP),系以两种不同化学组分(00)组成,树脂为半固体(5),环氧当量为2ll一290g/mol(5),含有活性剂(2),密度为1.20-1.29 g/cm3 (4),加有填料(2)和具有耐热注(5),其名称为EP 00552—425。 2、国标GB/T1630-1989的命名法 鉴于目前仍大量采用环氧树脂的老型号,故将老国标“GB/T1630-1989环氧树脂分类、型号、命名”中环氧树脂的命名摘录于下,以便查阅。 (1)分类和代号环氧树脂按其主要组成物质不同而分类,并分别给以代号如下。

环氧树脂基本知识

环氧树脂及环氧树脂胶粘剂的基本知识 (一)、环氧树脂的概念: 环氧树脂是指高分子链结构中含有两个或两个以上环氧基团的高分子化合物的总称,属于热固性树脂,代表性树脂是双酚A型环氧树脂。 (二).环氧树脂的特点(通常指双酚A型环氧树脂) 1.单独的环氧树脂应用价值很低,它需要与固化剂配合使用才有实用价值。 2.高粘接强度:在合成胶粘剂中环氧树脂胶的胶接强度居前列。3.固化收缩率小,在胶粘剂中环氧树脂胶的收缩率最小,这也是环氧树脂胶固化胶接高的原因之一。例如: 酚醛树脂胶:8—10% ;有机硅树脂胶:6—8% 聚酯树脂胶:4—8% ;环氧树脂胶:1—3% 若经过改性加工后的环氧树脂胶收缩率可降为0.1—0.3%,热膨胀系数为6.0×10-5/℃ 4.耐化学性能工好:在固化体系中的醚基、苯环和脂肪羟基不易受酸碱侵蚀。在海水、石油、煤油、10%H2SO4、10%HCl、10%HAc、10%NH3、10%H3PO4和30%Na2CO3中可以用两年;而在50%H2SO4和10%HNO3常温浸泡半年;10%NaOH(100℃)浸泡

一个月,性能保持不变。 5.电绝缘性优良:环氧树脂的击穿电压可大于35kv/mm 6.工艺性能良好、制品尺寸稳定、耐性良好和吸水率低。 双酚A型环氧树脂的优点固然好,但也有其缺点: ①.操作粘度大,这在施工方面显的有些不方便 ②.固化物性脆,伸长率小。 ③.剥离强度低。 ④.耐机械冲击和热冲击差。 (三).环氧树脂的应用与发展 1.环氧树脂的发展史: 环氧树脂是1938年由P.Castam申请瑞士专利,由汽巴公司在1946年研制出最早的环氧粘接剂,1949年美国的S.O.Creentee研制了环氧涂料,我国于1958年开始环氧树脂的工业化生产。 2.环氧树脂的应用: ①涂料工业:环氧树脂在涂料工业中需用量最大,目前较广泛使用的有水性涂料、粉末涂料和高固分涂料。可广泛用于管道容器、汽车、船舶、航天、电子、玩具、工艺品等行业。 ②电子电器工业:环氧树脂胶可用于电气绝缘材料,例如整流器、变压器的密封灌注;电子元器件的密封保护;机电产品的绝缘处理与粘

环氧树脂化学成分

环氧树脂化学成分 主要成份是:酚醛树脂; 酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂,其中以苯酚和甲醛树脂为最重要。也是世界上最早由人工合成的,至今仍很重要的高分子材料。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 NL固化剂是酚醛树脂呋喃树脂的高效低毒固化剂。NL固化剂毒性低,基本无刺激味,树脂固化后强度高、耐蚀性好,使用用量少,操作方便,贮存期长。本品适用于热固性酚醛树脂及呋喃树脂的常温固化。用来配制酚醛树脂及呋喃胶泥;玻璃钢制品;制笔、制刷、竹木等制品的粘合;也可用作铸造树脂的室温固化剂。质量指标外观暗灰色液体相对密度(20℃)1.16±0.01粘度(涂-4,25℃)秒20-30 总酸度(以H2SO4计)% 18±2 游离酸(以H2SO4计)% 3-5 贮存期一年以上(密闭存放)应用对酚醛树脂或呋喃树脂,NL固化剂的用量范围一般为5-12%。环境温度20℃时,2130酚醛树脂的NL固化剂用量为8%左右,NL固化剂用量可随温度调整。参考配方酚醛树脂酒精NL固化剂石英粉酚醛胶泥100 0-5 6-10 150-200玻璃钢腻子100 0-5 6-10 120-200玻璃钢面料100 10 8-15 10-1520℃时NL用量为8%,1小时左右初凝,使用期30分钟左右配方注意:酚醛树脂或呋喃树脂用NL固化剂来固化时,对填料的要求较高,要求填料的耐酸性达到规范的要求。劣质填料含有碳酸钙等会与酸性固化剂反应产生气泡,影响制品质量,并可能造成树脂不固化。包装及贮运10Kg、25Kg塑料桶装。室温密闭储存。可长期贮存,超过一年复测合格可继续使用。

环氧树脂固化剂用量的计算

环氧树脂固化剂用量的 计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

环氧树脂固化剂用量的确定 epoxy value 环氧值是100g环氧树脂中所含环氧基团的物质的量。它与环氧当量的关系为环氧值=100/环氧当量。它是鉴别环氧树脂性质的最主要的指标。epoxy equivalent per weight;EEW环氧当量含一个的树脂量(克/当量),即的除以每一分子所含环氧基数量的值。 1、胺类固化剂用量的计算 胺类固化剂用量的计算方法,其依据是以胺基上的—个活泼氢和一个环氧基相作用来考虑的。各种伯胺、仲胺的用量按下式计算求出: W=(M/Hn)×E 式中:W—一每100g环氧树脂所需胺类固化剂的质量,g;M——胺类固化剂分子量; Hn——固化剂分子中胺基上的活泼氢原子数;E一一环氧树脂的环氧值。 举例:用乙二胺作固化剂,使E-44环氧树脂固化,求每loog环氧树脂所需乙二胺的用量。 解:乙二胺的分子式为H2N—CH2一NH2乙二胺的分子量M=60乙二胺的活泼氢原子数Hn=4 从表中查出E-44环氧树脂的环氧值E=0.40~0.47,那么 W最大=60/4×0.47=7.05(g)W最小=60/4×0.40=6(g) 即每100gE-44环氧树脂需用6~7g乙二胺固化剂。实际上,随着胺分子的大小,以及反应能力和挥发情况的不同,一般比理论计算出的数值要多用10%以上。2、酸酐类固化剂的用量计算

酸酐类固化剂的用量通常按下式求出:W=AE·E·K 式中:W—一每100g环氧树脂所需酸酐固化剂的质量,g; AE一—酸酐摩尔质量,kg/mol; K——每摩尔质量环氧基所需酸酐的量,mol。经验数据,它在0.5~1.1范围内变动,一般取0.85。举例:对100g环氧值为0.43的环氧树脂,若用邻邦苯二甲酸酐(PA)作它的硬化剂,要用多少量合适? 解:邻苯二甲酸酐的分子式为:其分子量M=148 E=0.43经验数值取K=0.85因此其合适的用量为: W=148×0.43×0.85×=54.1(g) 即100g环氧值为0.43的环氧树脂,用54g左右的邻苯二甲酸酐作固化剂较合适。实际使用量也均比理论计算的用量值高。 固化剂用量一般比理论计算值高的原因有二,一是在配制过程和操作过程中会有挥发损失;二是不易与树脂混合均匀。但是当硬化剂用量过大时,会造成树脂链终止增长,降低硬化物的分子量,使固化后的树脂发脆。 上述计算值,都是指纯的固化剂,即含量百分之百。当达不到此纯度时,应进行换算调整。

环氧树脂胶粘剂的常用配方

环氧树脂胶粘剂的常用配方 玻璃钢 常用于环氧玻璃钢的环氧树脂,有普通双酚A型如681#、6101#、634#,酚醛型环氧树脂644#,脂环族环氧6207#和HY-201聚丁二烯环氧树脂。辅助材料中固化剂常用DTA、间苯二胺、顺丁烯二酸酐、邻苯二甲酸酐、内次甲基四氢邻苯二甲酸酐等,促进剂为三乙醇胺。 配方一: 6109#环氧树脂 100 苯乙烯 5 三乙醇胺 6 三乙烯四胺 4 室温10天,加上130℃6h τ=13MPa δ=298.5MPa δ抗压=300MPa 配方二: 644#酚醛环氧化 100 NA酸酐 68 二甲基苄胺 1.8 丙酮 100 室温——120℃(40min)——200℃(40分) ——降温——卸模处理150℃/2h+260℃/1天 配方三: 634#环氧树脂 32 3193#聚酯 28 邻苯二甲酸酐 8 BPO 2 苯乙烯 30 100。C/2h + 180。C/8h 弯曲强度和反弹能力佳。 配方一: 618# 100 DTA 8 DBP 20 AL2O3(200目) 100 固化条件:压力(MPa)/温度℃/时间(h)0.05/20℃/24h τ=18MPa 适用金属玻璃和陶瓷粘接。 配方二: 618# 100 二乙基丙胺 8 DBP 20 AL2O3 100 0.05/20℃/48h τ >20MPa 用途同上。 配方三:HYJ-6# 618#100 DBP 15 AL2O3 25 2#SiO22-5 四乙烯五胺 12 0.05/20℃/48h AL/玻钢>20MPa 适用于金属/玻璃钢粘接。 配方四: 618# 100 间苯二胺 18 600#稀释剂10 间苯二酚 10 0.05/20℃/24h τ=17.5MPa τ200℃=5.0MPa 用于耐热接头粘接。 配方五:913# A组:601#环氧 600#稀释剂201#聚酯铝粉和石英粉 B组:BF3乙醚四氢呋喃 A3PO4 A:B=10:1 0.05/15℃/6h τ=19MPa 低温快速固化适用于寒冷地区。 配方六: 四氢呋喃聚醚环氧 5 590#固化剂KH-550 0.2 0.05/30℃/30h τ

环氧树脂种类及性能

环氧树脂种类及性能 一、定义 1、环氧树脂(Epoxy Resin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物,简称环氧化物(Epoxide)。这些低相对分子质量树脂虽不完全满足严格的定义但因具有环氧树脂的基本属性在称呼时也不加区别地统称为环氧树脂。典型的环氧树脂结构如下式。 2、环氧基是环氧树脂的特性基团,它的含量多少是这种树脂最为重要的指标。描述环氧基含量有以下几种不同的表示法: ⑴环氧当量:是指含有1 mol环氧树脂的质量,低相对分子质量(分子量)环氧树脂的环氧当量为175~200,随着分子量的增大环氧基间的链段越长,所以高分子量环氧树脂的环氧当量就相应的高。 ⑵环氧值:每100g树脂中所含有环氧基的物质的量(摩尔)。这种表示方法有利于固化剂用量的计量和用量的表示。因为固化剂用量的含义是每100g环氧树脂中固化剂的加入量(part perhundred of resin缩写成phr)。我国采用环氧值这一物理量。 环氧当量=100/环氧值 3、粘度的定义 粘度:液体在流动时,在其分子间产生的内摩擦的性质,称为液体的黏性,黏性的大小用黏度表示,是用来表征液体性质相关的阻力因子。 粘度单位有两种:1、厘泊 (cps) 2、毫帕秒(m·pas)

1厘泊(cps)= 1 毫帕秒(m·pas) 二、种类及性能 1、双酚A型环氧树脂:双酚A(即二酚基丙烷)型 环氧树脂即二酚基丙烷缩水甘油醚。在环氧树脂中它的原材料易得、成本最低,因而产量最大(在我国约占环氧树脂总产量的90%,在世界约占环氧树脂总产量的75%~80%),用途最广,被称为通用型环氧树脂。由双酚A型环氧树脂的分子结构决定了它的性能具有以下特点: ⑴是热塑性树脂,但具有热固性,能与多种固化剂,催化剂及添加剂形成多种性能优异的固化物,几乎能满足各种使用需求。 ⑵树脂的工艺性好。固化时基本上不产生小分子挥发物,可低压成型。能溶于多种溶剂。 ⑶固化物有很高的强度和粘结强度。 ⑷固化物有较高的耐腐蚀性和电性能。 ⑸固化物有一定的韧性和耐热性。 ⑹主要缺点是:耐热性和韧性不高,耐湿热性和耐候性差。 2、双酚F型环氧树脂:这是为了降低双酚A型环氧树脂本身的粘度并具有同样性能而研制出的一种新型环氧树脂。通常是用双酚F(二酚基甲烷)与环氧氯丙烷在NaOH作用下反应而得的液态双酚F型环氧树脂。 双酚F型环氧树脂的特点是黏度小,不到双酚A型环氧树脂黏度的,对纤维的浸渍性好。其固化物的性能与双酚A 型环氧树脂几乎相同,但耐热性稍低而耐腐蚀性稍优。液态双酚F型环氧树脂可用于无溶剂涂料、胶粘剂、铸塑料、玻璃钢及碳纤维复合材料等。

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

环氧树脂胶配制方法

环氧树脂胶配方参考 金属与塑料制品粘接用胶黏剂 HYJ-6环氧胶黏剂 配方 组分用量/g 组分用量/g E-51环氧树脂100 气相法白炭黑2~5 邻苯二甲酸二丁酯15 四乙烯五胺13 氧化铝粉25 制备及固化将配方中前4种组分调制均匀,粘接前加入四乙烯五胺,混合均匀后,即得用于 粘接。粘接后,稍加压力,室温固化2~3d,或70℃固化24h。 用途本胶用于金属与玻璃钢的粘接。 J-37胶 配方 E-44环氧树脂100 间苯二胺15 邻苯二胺15 制备及固化按比例配制,低温保存。固化为80℃时6h。 用途本胶用于粘接金属、玻璃钢等材料。 HYJ-29胶 配方

组分用量/g 组分用量/g E-51环氧树脂100 气相法白炭黑2~5 液体羧基丁腈橡胶16 2-乙基-4-甲基咪唑8 三氧化三铝粉25 制备及固化依次称量,混合均匀。固化:70℃下3h。 用途用于粘接金属和玻璃钢。 KH-511胶 配方 组分用量/g 组分用量/g E-51环氧树脂100 间苯二胺11 液体丁腈橡胶-40 18~20 2-乙基-4-甲基咪唑4 制备及固化依次称量,混合均匀。在0.01MPa压力、120℃下固化3h。用途用于各种金属、玻璃钢、陶瓷、热固性塑料等的粘接,强度较高,中等温度固化,使用 工艺简便,可在-60~+150℃下长期使用。 KH-512胶 配方 组分用量/g 组分用量/g E-51环氧树脂100 647酸酐80 液体丁腈20 2-乙基-4-甲基咪唑2 制备及固化依次称量,混合均匀。固化:120℃下3~4h。 用途用于铝与玻璃钢、金属与硬质塑料等粘接。该胶粘接性能好,

在-60~150℃下使用。 SW-2胶 配方 组分用量/g 组分用量/g A、E-51环氧树脂2.0 苯酚-甲醛-四乙烯五胺0.9 聚醚N330 0.4 C、偶联剂KH-550 石英粉0.6 A:B:C=3:1:0.1 DMP-30 0.1 制备及固化按用量分别配制A、B、C三组分,混合均匀即可。适用期:20℃,10g量,10min 。固化:接触压力,常温下2~4h。 用途本胶为常温快速固化胶,在-60~+60℃下使用,用于铝、钢、铜等金属材料及玻璃钢等 的粘接。 粉末环氧黏合剂 配方 组分用量/g 组分用量/g E-42环氧树脂100 铁粉100 双氰胺7 制备及固化先将双氰胺和铁粉混合均匀,再加到低熔点E-42环氧树脂中,制成粉状(或棒 状)环氧黏合剂。

克服环氧树脂胶固化物的内在气泡问题

克服环氧树脂胶固化物的内在气泡问题 环氧树脂胶固化物肯定将要产生起泡问题,假如是表面的气泡还只是导致表观或者是密封性的问题,假如是内在的气泡,简要影响到机械性能和电气性能,本文并未讨论生产胶的厂家对气泡的处理,只是简单的谈到了使用者碰到的问题,那么我们就先要了解下真空的概念和设备然后是气泡的克服问题。 真空定义指没有任何实物粒子存在的空间,地球上什么都没有的空间是不存在的就是真空不空,所以气泡对环氧树脂胶影响只能降到最低,不能完全消除。 真空度:压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态,真空度的标识通常有两种方法:1、是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa(即一个标准大气压)。2、是用“相对压力”“相对真空度”(即比“大气压”低多少压力)来标识。"相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。例如:真空泵测量值为-75KPa,则表示泵可以抽到比测量地点的大气压低75KPa的真空状态,国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此广泛应用。理论上二者是可以相互换算的,两者换算方法如下:相对真空度=绝对真空度(绝对压力)-测量地点的气压,例如:真空泵的绝对压力为80KPa,则它的相对真空度约为80-100=-20Kpa,(测量地点的气压假设为100KPa)在普通真空表上就该显示为-0.02MPa,常用的真空度单位有Pa、Kpa、Mpa、大气压、公斤(Kgf/cm2)、mmHg、mbar、bar、PSI等。近似换算关系如下:1MPa=1000KPa 1KPa=1000Pa 1大气压=100KPa=0.1MPa 1大气压=1公斤(Kgf/cm2)=760mmHg 1大气压=14.5PSI 1KPa=10mbar 1bar=1000mbar 1Torr=133.3Pa 1Pa=0.0075torr=0.0075mmHg=0.01mbar=0.0000001Mpa 现在常用的真空形式为:旋片真空泵,其出口绝对真空是0.05Pa,而上图中的真空显示形式为相对真空,把绝对真空0.05Pa换算为相对真空即为:0.00025KPa- 101.325KPa =-101.32475KPa,其相对真空就是-0.10132475MPa,所以该表无法显示旋片泵的绝对真空。 生产时候的真空使用生产时生产设备和工艺原因造成电子灌封胶进入大量的空气,其微小的填料和树脂结合处的空隙、机械混入空气、树脂体系的微量低分子挥发物,对于近于绝对的真空状态,再微小的空气都是巨大的,成本导致生产真空设备的真空度只能为:100-1000Pa,是无法满足客户使用时候的真空要求,以对电子灌封胶要求最高的行业“高压包”为例,这种产品需要选用高温体系固化的环氧体系,原因是其高温下电气特性好,并在A/B混合后有较长的使用时间和在混合后可以加温A/B混合物,而使粘度更低利于脱泡,工艺制定为A 组份在60-80℃,真空度在100-250Pa,脱泡至液体表面无气泡升起为止。B料一般在40-50 ℃脱泡,真空度为100-250Pa ,因为其挥发比较大,此处真空就是为去除混合料液的时候产生的气泡,当然我们非常愿意配合客户研制有更高真空生产和最低的挥发物的产品,除泡后的A/B料液在真空度100-250Pa的条件下混合,混合物的温度控制在50-70 ℃,混合温度高流动性好,更容易浇注和脱泡,但会缩短最低流动时间。把被灌封的元件在高温110 ℃下除尽潮气,在元件还是>70 ℃的时候灌封,在元件灌封前应在真空100Pa的条件下真空保压60秒或越久越好,为避免料液飞溅在真空500-2000Pa下浇注,视产品要求和料液的溢流状态,然后保压在100-2000Pa,真空越低越好,时间越久越好。

相关文档
最新文档