人体阻抗

人体阻抗
人体阻抗

人体阻抗

人体阻抗是包括人体皮肤、血液、肌肉、细胞组织及其结合部在内的含有电阻和电容的全阻抗。人体阻抗是确定和限制人体电流的参数之一。

人体阻抗的等值电路见图1。图中,R

s1和R

s2

是皮肤电阻,C

s1

和C

s2

是皮肤电容,

Ri及与其并联的虚线支路是体内阻抗。皮肤表面0.05~0.2mm厚的角质层的电阻值很高。在干燥和干净的状态下,其电阻率可达1×105~1×106Ω·m。但因其不是一张完整的薄膜,又很容易受到破坏,故计算人体阻抗时一般不予考虑。人体电容很小,工频条件下可忽略不计。皮肤阻抗在人体阻抗中占有较大的比例。体内阻抗是除去表皮之后的人体阻抗。人体阻抗是皮肤阻抗与体内阻抗之和。

图1 人体阻抗等值电路

人体阻抗受皮肤状态、接触电压、电流、接触面积、接触压力等多种因素的影响,在很大的范围内变化。在皮肤干燥、电流途径从左手到右手、接触面积为50~100cm2的条件下,人体阻抗见下表。

电流途径左手到右手,或单手到单脚时的人体阻抗曲线见图2。

图2 人体阻抗

角质层的击穿强度只有500~2 000V/m,数十伏的电压即可击穿角质层,使人体阻抗大大降低。接触电压在50~100V以下时,随着接触电压升高,人体阻抗明显降低。在角质层击穿后,人体阻抗变化不大。皮肤击穿后,人体阻抗近似等于体内

阻抗。

随着电流增加,皮肤局部发热增加,使汗液增多,人体阻抗下降。电流持续时间越长,人体阻抗下降越多。

皮肤沾水、有汗、损伤、表面沾有导电性粉尘等都会使人体阻抗降低。接触压力增加、接触面积增大也会使人体阻抗降低。例如,干燥条件下的人体阻抗约为 1 000~3 000Ω,而用导电性溶液浸湿皮肤后,人体阻抗锐减为干燥条件下的1/2。

此外,女子的人体阻抗比男子的小、儿童的比成人的小、青年人的比中年人的小。遭受突然的生理刺激时,人体阻抗可能明显降低。

——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6

月出版)

用生物电阻抗法测量身体脂肪含量

关于用生物电阻抗法测量身体脂肪含量的研究摘要:体脂率现已成为判断是否健康的标准之一,测量体脂率的方法有很多,但大多方法的设备仪器复杂,操作复杂而不适用于生活中。生物电阻抗则是近年来被广泛应用的一种快速、简便、安全测量体成分的一种方法。本文将对其原理,数据分析方法进行介绍,对其准确性进行分析,并对其前景进行展望。 关键词:生物电阻抗脂肪统计方法误差 一、引言 现代社会,随着生活条件不断改善,人们对健康也越来越重视。对于大多数人而言,体重是最直接也是最简单的衡量身体状况的一个标准。其中BMI=m/h2,m为体重(千克),h为身高(米),是被使用最广泛的公式,BMI 指数以22为最佳。但是,越来越多的案例表明BMI指数不能够客观地反映一个人的身体状况。因为每个人的脂肪肌肉比例不同,并且肌肉和脂肪密度相差较大,相同BMI指数的人可能是虚胖也可能是强壮。这时,脂肪率则是另一个至关重要的指数,所以既简单又不失精确的生物电阻法就很有价值。 二、原理 生物电阻分析方法(bio-impedance analysis)BIA 技术测定骨骼肌含量的基本原理是,组织、器官层次的各个组分具有不同的电导性。人体细胞被细胞外液包围,细胞则由具有选择透过性的细胞膜、细胞质和细胞器构成。细胞外液以及细胞内部可近似视作电阻。而细胞膜则可视为电容。故人体的电学性质可视作若干个电容与电阻连接而成,其中最为简洁的三元件模型下

图所示。 一种常见的测试方式是,受试者仰面平躺,电流信号从脚部的电极传导 到手部的电极上,得出电阻抗(R)和电容抗(C),并计算生物电阻抗 ,为系数,L为身高。骨骼肌含有大量水分与电解质,其电导性最好;脂肪组织含有的水分与电解质很少,其电导性很差。信号传输越慢,受到阻力越大,表明脂肪量越多。 当然,复杂的人体是不能用上述简陋的模型描述的。因为生物电阻分析法本身就不是在数学物理定义上严格,而是由大量数据依据统计学规律发展而来。而正好该模型得到的阻抗指数和一些身体参数显着相关,所以我们认为这种方法是可行的。 最初,大多数研究的电流频率固定在50KHZ,现在则大多使用多频率电阻抗进行脂肪等身体成分的测量分析。 三、数据统计方法 选取若干不同性别、身高、体重、年龄、身体状况的人,由生物电阻法测出其阻抗指数,对以上变量和在实验室用排水法测得的体脂率的精确值做相关性分析。使用统计软件,用多元线性逐步回归分析方法,建立体脂含量的推算方程。 根据相关的研究数据[1]显示,生物电阻抗推算去脂体重的推算方程为:

安规测试面面观-浅谈人体阻抗模型(MD) & 接触电流测试方法

在华仪电子前几期的电子报中曾经为各位介绍有关电源泄漏电流测试(Line Leakage Current T est, LLT) 或是现在根据IEC60990所描述专为人体的泄漏电流测试称为”接触电流测试 (T ouch Current T est ,TC T est)”的应用和测试方法。但在这一期的的电子报中我们将为各位介绍有关接触 电流测试不可少的部份就是人体阻抗模型(Measuring Dev ice, MD),我们要知道因为是模拟人体 的阻抗,所以会有男生和女生的差异,还有也会因为生病,人体的阻抗结构也会有所改变,当然外在 因素如:触电的电压/频率、触电时间、接触面积、湿度环境都会有着绝对密切的关系。 人体阻抗模型Measuring Device(MD) 人体的阻抗基本上可分为两种,一是皮肤阻抗(Skin Impedance),一为人体内部阻抗(Internal Impedance),所以总的人体阻抗(ZT)的定义为皮肤阻抗(Zp)与人体内部阻抗(Zi)的向量和。人体阻抗的等效电路就如 (图一)所示,其中Zp1及Zp2代表人身上任何两处,Zi代表人体内部的阻抗,人体阻抗分为皮肤阻抗和 人体内阻抗的原因,乃是因为这两种阻抗无论是阻抗值或特性均有很大的差异: (图一)人体阻抗的等效电路 (1) 皮肤阻抗Zp (Skin Impedance)

人体的皮肤阻抗基本上是非常近似一个电阻和一个电容并联的等效阻抗,影响皮肤阻抗的因素很多如: 电压、频率、触电时间、接触面积、接触力度、皮肤湿度,甚至呼吸的状况都有关系。底下将说明电 压高低、频率大小、时间长短和湿度对人体皮肤阻抗的影响。 电压的影响:当电压在50V 以下时,皮肤的阻抗明显受到接触面积、室温及呼吸状况的影响;但当 电压在50V以上时,皮肤阻抗则明显下降到几乎可以忽视的地步。 频率的影响:'当频率越高时,皮肤阻抗则越低,这也是为什么皮肤的阻抗等效电路会采用一个电 容和一个电阻并联的原因。至于时间,则是触电时间超过几个毫秒,阻抗就会明显的减少;而于湿度 方面,若皮肤沾湿了水,阻抗就会趋近于零。 综合上列之特点,我们可以简单而清楚地了解人体在触及一个50V电压源时的状况。首先由于皮肤的 电容的充电特性使其阻抗几乎不存在,之后在电容充饱阻抗形成时,依然会在不到几个毫秒的时间 内,阻抗明显地减少,所以人体的皮肤阻抗与外在和环境因素有非常密切的关系。 (2) 人体内部阻抗Zi (Internal Impedance) 人体的体内阻抗在接触电源的频率不高(约1000Hz 以下)的情况下,可以说几乎是一个纯阻的阻抗,而其中电阻的大小和电流流通的途径(Current Path)有着绝对的关系,一般的安规标准会将体内阻抗以500 奥姆作为合理的参考值,接触面积也是另一个影响体内阻抗的重要因素,基本上,当接触面积小于几 个平方毫米时,体内阻抗即会明显的增加,人体在干燥与潮湿情况下的阻抗相差有三倍以上,因为皮 肤在潮湿时几乎是没有阻抗。整体而言,人体处于高压高湿的状况下,皮肤阻抗将不起任何效用,仅 存体内阻抗,约在500 ~ 1000奥姆之间。 触电程度及对人体的反应 了解人体阻抗后,在来我们讨论一下触电的情形。根据相关研究报告指出触电危险的程度是取决于通 过人体电流的大小和时间的长短,而不是电压或其它因素。另外当电流小于某个固定值时,触电时间

体验“人体成分分析仪”——生物电阻抗法

体验“人体成分分析仪”——生物电阻抗法 生物电阻抗法(Bioelectrlcal Impedance Analysls)是一种通过电学方法测定人体水份的技术。 1、生物电阻抗法(BIA)基本原理 人体的体液里有许多离子,因此人体的体液具有导电性。将微弱的交流电流信号导入人体时,电流会在电阻小、传导性能较好的体液中传输。 在电学中,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。因此阻抗包括导体的电阻、电容的容抗和电感的感抗,简称电阻、容抗、感抗;其中容抗、感抗与所加的交流电频率有关,同样的电容、电感,交流电频 率越高,容抗越小,而感抗越大;阻抗由电阻R、感抗X c和容抗X L三者组成, 但不是三者简单相加,而是三者平方和的平方根。阻抗常用Z表示,单位是“欧姆”。 体液是导电介质,因此人体相当于导体,具有电阻;细胞壁相当于电容,因为细胞内部和外部都是可以导电的体液,但被细胞壁隔开,因此具有电容效应;人体里面几乎不存在感抗。如果将人体比作导体的话,那么人体中水分的多少,即反应人体电阻的大小;而容抗在大小则能反应细胞内外水分的比例。人体总阻抗的大小是两者的平方和的平方根,但在固定频率测试中,人体的阻抗与电阻的相差不多,经常就用电阻R替代阻抗Z。 构成身体的人体成份可分为水(Body water)、蛋白质(Proteln)、体脂(Body Fat)、无机物(Mineral )四种。这些成份在人体中虽然会因为性别与个人的不同存在着一些差异,但大致上为55:20:20:5的比例。因此,在这些人体成份中,如果知道了人体水分含量和人体脂肪含量,就可以分别求出这四种成份各自的量。 人体的肌肉的主要成分是蛋白质和人体水份,它们之间存在着一定的比例关系,健康的肌肉是由约73%的水和27%的蛋白质组成。人体中的无机物主要是人体骨骼的重量,骨的重量又与肌肉量有着密切的关系,即可以由身体水分含量求出蛋白质和无机物的含量。因此,如果知道人体水分含量和脂肪含量,就可以分别确定人体四大成分并予以分类。 在电学中,导体的电阻与导体的长度成正比,与横截面成反比。当导体的长度已知时,导体的电阻大小反应了导体横截面的大小,即导体的粗细。每一种导体都有其固定的电阻属性——“电阻率”:某种材料制成的长1米、横截面积是1平方毫米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率;计算公式为ρ=RS/L,(其中ρ为电阻率、R为电阻、S为截面积、L为长度),常用

电与人体的关系

电与人体的关系 ——附谈电话标准( UL 1459 ) 的MIU 如果我们想要了解安规的标准是如何制定的,首先就必须了解人体和电之间究竟存在着什么样的关系。然而我们很难以人体实验的方式,去探究其对电的各种反应。因此,原则上有关的学者是经由下列两种途径来做此研究的。其一乃先以动物做为实验对象,在确定某个电流值不会对生命构成危险时,再以此电流值在人体重新测试;而对生命会造成威胁的值数范围,均只以等式换算的方式来表示之。其二则为搜集、集理以往触电事故资料而加以评估。 本文试着将这种关系分为人体的阻抗模型、触电的程度及变数、以及电压的限制三部分来讨论。 一、人体的阻抗模型 人体的阻抗基本上可分为两种,一是皮肤阻抗( SKIN Impedance ),一为体内阻抗 ( Internal Impedance ),人体阻抗的等效电路就如图一所示,其中Z P1及Z P2,代表人身上任何两处的皮肤阻抗,Z i则是体内阻抗,而Z T则为以上阻抗的总和。 将人体阻抗分为皮肤阻抗与体内阻抗的原因,乃是因为这两种阻抗无论是阻值或特性均有很大的差异: (1) 皮肤阻抗—人体的皮肤阻抗基本上非常近似于一个电阻和一个电容并联的等效阻抗,其中的电容大约在0.22到0.05MF/cm2之间。 影响皮肤阻抗的因素很多,如电压、频率、触电时间、接触面积、接触力度、皮肤湿度、甚至呼吸的状态都有关系。 就电压的影响而言,当电压在50V以下时,皮肤的阻抗明显的受到接触面积、室温及呼吸状态的景响;但当电压在50V以上时,皮肤阻抗则明显地下降到几乎可以忽视的地步。 就频率影响而言,当频率越高时,皮肤阻抗则越低,这也是为什么皮肤阻抗的等效电路会采用一个电容和一个电阻并联的原因。 至于时间,则是只要触电时间超过几个毫秒,阻抗就会明显的减少;而于湿度方面,若皮肤沾湿了水,阻抗亦将会趋近于零。 综合上列之特点,我们可以简单而清楚地了解人体在触及一个50V电压时的状况。首先由于皮肤的电容的充电特性使其阻阻抗几乎不存在,然后在电容充饱阻抗形成时,依然会在不到几个毫秒的时间内,阻抗明显地减少。 (2) 体内阻抗—人体的体内阻抗在触电电源的频率不高 (约1000 H Z以下) 的情况下,可以说几乎是一个纯电阻的阻抗,而其中电阻的大小则和电流的通路途径 ( Current Path )有着绝对的关系,请参考图二,

人体阻抗模型

人体电阻模型 在华仪电子前几期的电子报中曾经为各位介绍有关电源泄漏电流测试(Line Leakage Current Test, LLT)或是现在根据IEC60990所描述专为人体的泄漏电流测试称为”接触电流测试(Touch Current Test ,TC Test)”的应用和测试方法。但在这一期的的电子报中我们将为各位介绍有关接触电流测试不可少的部份就是人体阻抗模型(Measuring Device, MD),我们要知道因为是模拟人体的阻抗,所以会有男生和女生的差异,还有也会因为生病,人体的阻抗结构也会有所改变,当然外在因素如:触电的电压/频率、触电时间、接触面积、湿度环境都会有着绝对密切的关系。 人体阻抗模型Measuring Device(MD) 人体的阻抗基本上可 分为两种,一是皮肤阻抗 (Skin Impedance),一为人体 内部阻抗(Internal Impedance),所以总的人体 阻抗(ZT)的定义为皮肤阻抗 (Zp)与人体内部阻抗(Zi)的 向量和。人体阻抗的等效电 路就如(图一)所示,其中Zp1 及Zp2代表人身上任何两 处,Zi代表人体内部的阻 抗,人体阻抗分为皮肤阻抗 和人体内阻抗的原因,乃是 因为这两种阻抗无论是阻抗值或特性均有很大的差异: (1)皮肤阻抗Zp (Skin Impedance) 人体的皮肤阻抗基本上是非常近似一个电阻和一个电容并联的等效阻抗,影响皮肤阻抗的因素很多如: 电压、频率、触电时间、接触面积、接触力度、皮肤湿度,甚至呼吸的状况都有关系。底下将说明电压高低、频率大小、时间长短和湿度对人体皮肤阻抗的影响。 电压的影响:当电压在50V 以下时,皮肤的阻抗明显受到接触面积、室温及呼吸状况的影响;但当电压在50V以上时,皮肤阻抗则明显下降到几乎可以忽视的地步。 频率的影响:'当频率越高时,皮肤阻抗则越低,这也是为什么皮肤的阻抗等效电路会采用一个电容和一个电阻并联的原因。至于时间,则是触电时间超过几个毫秒,阻抗就会明显的减少;而于湿度方面,若皮肤沾湿了水,阻抗就会趋近于零。 综合上列之特点,我们可以简单而清楚地了解人体在触及一个50V电压源时的状况。首先由于皮肤的电容的充电特性使其阻抗几乎不存在,之后在电容充饱阻抗形成时,依然会在不到几个毫秒的时间内,阻抗明显地减少,所以人体的皮肤阻抗与外在和环境因素有非常密切的关系。 (2)人体内部阻抗Zi (Internal Impedance) 人体的体内阻抗在接触电源的频率不高(约1000Hz 以下)的情况下,可以说几乎是一个纯阻的阻抗,而其中电阻的大小和电流流通的途径(Current Path)有着绝对的关系,一般的安规标准会将体内阻抗以500奥姆作为合理的参考值,接触面积也是另一个影响体内阻抗的重要因素,基本上,当接触面积小于几个平方毫米时,体内阻抗即会明显的增加,人体在干燥与潮湿情况下的阻抗相差有三倍以上,因为皮肤在潮湿时几乎是没有阻抗。整体而言,人

人体成分分析仪中电阻抗法的应用

人体成分分析仪中电阻抗法的应用 目前,国内外很多公司都推出了不同型号的人体成分分析仪,均可实现对人体成分的常规性测试和分析。但是大都存在以下不足之处: (1)在人体阻抗测量中,多采用四电极法,虽然减少了接触阻抗的影响,但是由于同时只有两个电极作为测试端,所以并不能测出手脚处的体阻抗,这使得整体测试结果偏大;而且由于每个电极都是作为电流电极和电压电极共用的,这使得测量过程中不可避免地发生电压和电流互相干扰的现象,以上两种因素使得系统误差增大。 (2)目前一些公司研制的仪器可以实现多频检测,这在准确测定人体水分含量上进了一步,但都没有完全实现全自动控制,还需要操作者手动去控制,对非专业人员的使用造成了一定困难。 (3)国内外公司研制的人体成分分析仪,所有的测试数据都需要上传到联机电脑中进行显示、存储、分析、管理,因此一台仪器需要一台专用电脑,这对该仪器的推广使用造成了很大不便。 根据以上情况分析,一些科技研发公司开始研发弥补以上不足的新设备。本文以西奈SN-2A 为例,目前市面上开始采用生物多频电阻抗(MFBIA)的原理来检测,这种仪器可以检测、分析不同频率下(5k、50k、100k、250k、500k)的人体阻抗信号,根据总结出的计算公式(Lukaski方程),可以计算出一系列人体成分参数,通过这些参数可以诊断出人体成分的变化以及健康状况。除实现这些基本功能外,还对目前国内外同类仪器存在的问题进行了如下改进:(1)全机采用八个接触电极,这些电极都是用不锈钢制成,电极接触面由直立的握式电极和脚踏式电极组成。在左右两个测量回路中,分别使用两个独立电极作为电流电极,电压电极和电流电极都是独立使用,不存在重复使用现象,这保证了在测量过程中电压和电流互不干扰;在任意一个测量回路中,同时都有四个测试电极工作,不仅可以测出准确的身体节段阻抗,还可以测出手脚处的体阻抗以及接触阻抗,这大大提高了测试结果的重复性和准确性。当选通右半身测量回路时,E1和E7作为电流电极,E3、E4、E5、E6作为电压电极,可以分别测出接触阻抗+右手体阻抗、右上肢阻抗、接触阻抗+右脚体阻抗、右下肢阻抗。经过简单计算即可得到躯干阻抗。反之亦然。 (2)仪器操作十分简单,操作者只需按下开机键,其他所有功能都由仪器本身来实现,测量过程中不需要再进行其他操作,这一点对非专业人员的使用来说尤为重要。 (3)仪器通过CAN总线与上位机进行互联,进而实现了一对传输线、Ⅳ台仪器,双向传输多个信号,一台电脑同时监测多台仪器,这为社区医院进行大规模会诊创造了条件,也为以后利用以太网进行远程监控打下坚实的基础。 多频生物电阻抗法有效地解决了同类仪器中存在的不足。适合家庭医疗保健和医院保健科使用。在医学临床与基础研究中,测量人体成分具有重要的价值。它可以提供人体成分正常值范围,评价生长发育、成熟情况以及老化进程,有助于对营养状况和相关疾病的研究。在儿童生长发育期,监测身体成长变化,了解发育状况,正确指导营养补充,对确保儿童健康成长是非常重要的。在体育运动中,为了减轻体重,提高竞赛成绩,以及在运动员训练过程中,安排合理的运动量,都需要监测体内成分的变化。健美和减肥锻炼若能在脂肪含量监测的指导下进行,也将会收到事半功倍的效果。

基于生物电阻抗原理的人体成分测试装置的研制

一种基于生物电阻抗原理的人体成分测试装置的研制 作者:祁朋祥,马祖长,孙怡宁,刘世法作者单位:(1.安徽省仿生感知与先进机器人技术重点实验室,中国科学院合肥智能机械研究所,合肥230031;2.中国科学技术大学自动化系,合肥230027) 【摘要】人体内各种成分之间的合理比例是维持人体健康的重要因素。与同位素稀释法、总体钾法、双能X线吸收法(DXA)以及皮褶厚度法等方法相比,生物电阻抗法测量人体成分简单、快速和准确,是体成分测量的理想手段。我们介绍了基于生物电阻抗测量技术的体成分测量原理,并以此为指导设计了一种体成分测试仪。该仪器测试数据重复性高,与同类仪器的对比实验验证了其准确性。 【关键词】生物电阻抗法;人体成分;人体健康;生物电阻抗测量技术;体成分测量仪 The Development of a Body Composition Test Device based on Bioelectrical ImpedanceQI Pengxiang1,2,MA Zuchang1, SUN Yining1,LIU Shifa1,2 (1.The Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Anhui Province, Institute of Intelligence Machines, Chinese Academy of Science, Hefei 230031,China; 2.Dept of Auto,University of Science and Technology of China, Hefei 230027) Abstract:A reasonable ratio between various compositions of the human body is an important factor to make people keep health. Compared with the methods such as isotope dilution, total body potassium, Dual-energy X-ray absorption and skinfold thickness, bioelectrical impedance analyses is simple, fast and accurate. It is an ideal means to measure body composition. In this paper, based on bioelectrical impedance measurement technique, the principium of human body composition test was introduced. Guided by this, a type of human body composition tester was developed. The repeatability of the data measured by this equipment is very high. Comparisons with similar experimental devices have verified the accuracy of the equipment developed by this paper. Key words:Bioelectrical impedance; Body composition; Body health; Bioelectrical impedance measurement technique ; Body composition tester 1 引言 随着社会的进步和生活水平的提高,人们越来越注重自身的健康状况。人体内各种成分维持合理的比例是保持身体健康的重要条件,例如,体内脂肪增加到一定量将导致肥胖症等疾病的发生,矿物质的大量流失将导致骨质疏松症,而肾脏功能性减弱将导致体内水分平衡

人体阻抗

人体阻抗 人体阻抗是包括人体皮肤、血液、肌肉、细胞组织及其结合部在内的含有电阻和电容的全阻抗。人体阻抗是确定和限制人体电流的参数之一。 人体阻抗的等值电路见图1。图中,R s1和R s2 是皮肤电阻,C s1 和C s2 是皮肤电容, Ri及与其并联的虚线支路是体内阻抗。皮肤表面0.05~0.2mm厚的角质层的电阻值很高。在干燥和干净的状态下,其电阻率可达1×105~1×106Ω·m。但因其不是一张完整的薄膜,又很容易受到破坏,故计算人体阻抗时一般不予考虑。人体电容很小,工频条件下可忽略不计。皮肤阻抗在人体阻抗中占有较大的比例。体内阻抗是除去表皮之后的人体阻抗。人体阻抗是皮肤阻抗与体内阻抗之和。 图1 人体阻抗等值电路 人体阻抗受皮肤状态、接触电压、电流、接触面积、接触压力等多种因素的影响,在很大的范围内变化。在皮肤干燥、电流途径从左手到右手、接触面积为50~100cm2的条件下,人体阻抗见下表。 电流途径左手到右手,或单手到单脚时的人体阻抗曲线见图2。 图2 人体阻抗 角质层的击穿强度只有500~2 000V/m,数十伏的电压即可击穿角质层,使人体阻抗大大降低。接触电压在50~100V以下时,随着接触电压升高,人体阻抗明显降低。在角质层击穿后,人体阻抗变化不大。皮肤击穿后,人体阻抗近似等于体内

阻抗。 随着电流增加,皮肤局部发热增加,使汗液增多,人体阻抗下降。电流持续时间越长,人体阻抗下降越多。 皮肤沾水、有汗、损伤、表面沾有导电性粉尘等都会使人体阻抗降低。接触压力增加、接触面积增大也会使人体阻抗降低。例如,干燥条件下的人体阻抗约为 1 000~3 000Ω,而用导电性溶液浸湿皮肤后,人体阻抗锐减为干燥条件下的1/2。 此外,女子的人体阻抗比男子的小、儿童的比成人的小、青年人的比中年人的小。遭受突然的生理刺激时,人体阻抗可能明显降低。 ——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6 月出版)

泄漏电流测试中的人体模拟阻抗

:安规测试面面观–浅谈人体阻抗模型(MD) & 接触电流测试方法厂商:安规测试面面 观–浅谈人体阻抗模型(MD) & 接触电流测试方法 在华仪电子前几期的电子报中曾经为各位介绍有关电源泄漏电流测试(Line Leakage Current Test, LLT)或是现在根据IEC60990所描述专为人体的泄漏电流测试称为”接触电流测试(Touch Current Test ,TC Test)”的应用和测试方法。但在这一期的的电子报中我们将为各位介绍有关接触电流测试不可少的部份就是人体阻抗模型(Measuring Device, MD),我们要知道因为是模拟人体的阻抗,所以会有男生和女生的差异,还有也会因为生病,人体的阻抗结构也会有所改变,当然外在因素如:触电的电压/频率、触电时间、接触面积、湿度环境都会有着绝对密切的关系。 人体阻抗模型Measuring Device(MD) 人体的阻抗基本上可分为两种,一是皮肤阻抗(Skin Impedance),一为人体内部阻抗(Internal Impedance),所以总的人体阻抗(ZT)的定义为皮肤阻抗(Zp)与人体内部阻抗(Zi)的向量和。人体阻抗的等效电路就如(图一)所示,其中Zp1及Zp2代表人身上任何两处,Zi代表人体内部的阻抗,人体阻抗分为皮肤阻抗和人体内阻抗的原因,乃是因为这两种阻抗无论是阻抗值或特性均有很大的差异: 人体的皮肤阻抗基本上是非常近似一个电阻和一个电容并联的等效阻抗,影响皮肤阻抗的因素很多如:电压、频率、触电时间、接触面积、接触力度、皮肤湿度,甚至呼吸的状况都有关系。底下将说明电压高低、频率大小、时间长短和湿度对人体皮肤阻抗的影响。 电压的影响:当电压在50V 以下时,皮肤的阻抗明显受到接触面积、室温及呼吸状况的影响;但当电压在50V以上时,皮肤阻抗则明显下降到几乎可以忽视的地步。 频率的影响:'当频率越高时,皮肤阻抗则越低,这也是为什么皮肤的阻抗等效电路会采用一个电容和一个电阻并联的原因。至于时间,则是触电时间超过几个毫秒,阻抗就会明显的减少;而于湿度方面,若皮肤沾湿了水,阻抗就会趋近于零。 综合上列之特点,我们可以简单而清楚地了解人体在触及一个50V电压源时的状况。首先由于皮肤的电容的充电特性使其阻抗几乎不存在,之后在电容充饱阻抗形成时,依然会在不到几个毫秒的时间

人体成分分析仪中多频生物电阻抗的应用

人体成分分析仪中多频生物电阻抗的应用 https://www.360docs.net/doc/4a1254768.html,work Information Technology Company.2020YEAR

人体成分分析仪中多频生物电阻抗的应用 目前,国内外很多公司都推出了不同型号的人体成分分析仪,均可实现对人体成分的常规性测试和分析。但是大都存在以下不足之处: (1)在人体阻抗测量中,多采用四电极法,虽然减少了接触阻抗的影响,但是由于同时只有两个电极作为测试端,所以并不能测出手脚处的体阻抗,这使得整体测试结果偏大;而且由于每个电极都是作为电流电极和电压电极共用的,这使得测量过程中不可避免地发生电压和电流互相干扰的现象,以上两种因素使得系统误差增大。 (2)目前一些公司研制的仪器可以实现多频检测,这在准确测定人体水分含量上进了一步,但都没有完全实现全自动控制,还需要操作者手动去控制,对非专业人员的使用造成了一定困难。 (3)国内外公司研制的人体成分分析仪,所有的测试数据都需要上传到联机电脑中进行显示、存储、分析、管理,因此一台仪器需要一台专用电脑,这对该仪器的推广使用造成了很大不便。 根据以上情况分析,一些科技研发公司开始研发弥补以上不足的新设备。本文以西奈SN-2A为例,目前市面上开始采用生物多频电阻抗(MFBIA)的原理来检测,这种仪器可以检测、分析不同频率下(5k、50k、100k、250k、500k)的人体阻抗信号,根据总结出的计算公式(Lukaski方程),可以计算出一系列人体成分参数,通过这些参数可以诊断出人体成分的变化以及健康状况。除实现这些基本功能外,还对目前国内外同类仪器存在的问题进行了如下改进: (1)全机采用八个接触电极,这些电极都是用不锈钢制成,电极接触面由直立的握式电极和脚踏式电极组成。在左右两个测量回路中,分别使用两个独立电极作为电流电极,电压电极和电流电极都是独立使用,不存在重复使用现象,这保证了在测量过程中电压和电流互不干扰;在任意一个测量回路中,同时都有四个测试电极工作,不仅可以测出准确的身体节段阻抗,还可以测出手脚处的体阻抗以及接触阻抗,这大大提高了测试结果的重复性和准确性。当选通右半身测量回路时,E1和E7作为电流电极,E3、E4、E5、E6作为电压电极,可以分别测出接触阻抗+右手体阻抗、右上肢阻抗、接触阻抗+右脚体阻抗、右下肢阻抗。经过简单计算即可得到躯干阻抗。反之亦然。 (2)仪器操作十分简单,操作者只需按下开机键,其他所有功能都由仪器本身来实现,测量过程中不需要再进行其他操作,这一点对非专业人员的使用来说尤为重要。 (3)仪器通过CAN总线与上位机进行互联,进而实现了一对传输线、Ⅳ台仪器,双向传输多个信号,一台电脑同时监测多台仪器,这为社区医院进行大规模会诊创造了条件,也为以后利用以太网进行远程监控打下坚实的基础。 多频生物电阻抗法有效地解决了同类仪器中存在的不足。适合家庭医疗保健和医院保健科使用。在医学临床与基础研究中,测量人体成分具有重要的价值。它可以提供人体成分正常值范围,评价生长发育、成熟情况以及老化进程,有助于对营

等效电路阻抗模型、阻抗比矩阵获取及稳定性分析方法与制作流程

图片简介: 本技术介绍了等效电路阻抗模型、阻抗比矩阵获取及稳定性分析方法,属于电机技术领域。本技术建立了发电单元的dq等效电路阻抗模型,解决了电励磁凸极式发电机外特性难以表示问题。将锁相环传递矩阵和直流母线电压控制环融入双馈异步电机等效阻抗矩阵的计算过程中,通过直流母线电压PI控制来表示电源侧变换器电流参考值,能够反映直流母线电压PI控制参数对系统整体稳定性的影响;通过将定子电压扰动与锁相环输出角度扰动间的传递函数融入双馈异步电机等效阻抗矩阵的计算过程中,锁相环PI控制参数对整体稳定性的影响也得到体现。考虑系统自身的阻抗以及各控制环的控制效果引入的等效阻抗,是用于分析系统输入输出小信号稳定性的有效手段。 技术要求 1.一种发电单元等效电路阻抗模型,所述发电单元包括:原动机、调速模块、励磁控制模块和同步发电机;原动机与同步发电机连接,用于带动同步发电机转动;调速模块,用于对原动机发出功率指令以控制原动机的运行,从而控制同步发电机的转速;励磁控制模块,用于产生励磁电压信号;同步发电机用于根据励磁控制模块产生的励磁电压信号,在发电机定子侧产生三相交流电压,同时也作为反馈信号输入励磁控制模块,其特征在于, 同步发电机被等效为dq坐标系下的等效电路,其中,d轴与转子磁链方向相同,q轴由d轴向逆时针方向旋转90°获得; 同步发电机d轴定子侧阻抗被等效为定子电阻Rgs与定子漏感抗sLgls之和,且耦合项(-ωgψgsq)被等效为电 压源,与Rgs和sLgls串联;同步发电机d轴转子侧阻抗被等效为转子阻尼电阻Rkd与转子阻尼漏感抗sLlkd之和及转子励磁电阻Rf与转子励磁漏感抗sLlf之和的并联阻抗;同步发电机d轴互感抗sLgmd与同步发电机d 轴转子侧阻抗并联后,再与同步发电机d轴定子侧阻抗串联,从而构成同步发电机d轴等效电路阻抗模型; 同步发电机q轴定子侧阻抗被等效为定子电阻Rgs与定子漏感抗sLgls之和,且耦合项ωgψgsd被等效为电压源,与Rgs和sLgls串联;同步发电机d轴转子侧阻抗被等效为转子阻尼电阻Rkq与转子阻尼漏感抗sLlkq之和;同步发电机q轴互感抗sLgmq与同步发电机q轴转子侧阻抗并联后,再与同步发电机q轴定子侧阻抗串联,从而构成同步发电机q轴等效电路阻抗模型,

生物电阻抗技术与人体功能信息

生物电阻抗技术与人体功能信息任超世 (中国医学科学院、中国协和医科大学) [摘要] 生物电阻抗技术是与人体组织和器官的功能信息相联系的。生物电阻抗技术今后的发展方向在于采用全信息生物阻抗检测方法,注意提取与人体生理、病理状态相联系的,丰富的阻抗全信息。该技术今后具有一定的应用与发展前景。 关键词: 生物电阻抗 阻抗全信息 功能信息 1 引言 生物电阻抗(Electrical Bioimpedance)技术是利用生物组织与器官的电特性及其变化提取与人体生理、病理状况相关的生物医学信息的一种无损伤检测技术。它通常是借助置于体表的电极系统向检测对象送入一微小的交流测量电流或电压,检测相应的电阻抗及其变化情况,然后根据不同的应用目的,获取相关的生理和病理信息。这种技术具有无创、廉价、安全、无毒无害、操作简单和功能信息丰富等特点,医生和病人易于接受。 国外的生物阻抗技术在基础研究方面水平较高,以电阻抗断层图像技术(EIT)为发展方向的新一代生物阻抗技术正吸引着世界各国越来越多的研究者[1]。国内的生物阻抗技术以应用研究为主,以各种临床血流图为代表的生物阻抗技术已广泛用于临床,并不断取得进展,水平较高。但是,无论在基础研究还是在临床应用领域,使用单一测量频率,只取阻抗模量的现行阻抗测量方法的现状是不能令人满意的。除了定量性差和定位性不好以外,它还把一些可能是最重要的,最能反映生物阻抗特点和优越性的宝贵信息丢失了[2]。 2 阻抗技术与人体功能信息 生物阻抗技术的真正优势或诱人之处在于利用生物阻抗所携带的丰富生理和病理信息,进行人体组织与器官的无损伤功能评价。当疾病发生时,相关组织与器官的功能性变化往往会先于器质性病变和其它临床症状,如能在疾病的潜伏期或功能代偿期及时检测和确认这些变化,对于相关疾病的普查、预防和早期治疗将是非常有利的。生物阻抗技术提取的是与人体组织和器官功能紧密相关的电特性信息,对血液、气体、体液和不同组织成份具有独特的鉴别力,对那些影响组织与器官电特性的因素,如血液的流动与分布,肺内的血气交换,体液变化与移动等非常敏感。以此为基础,进行心、脑、肺及相关循环系统的功能评价,血液动力学与流变学在体动态研究,肿瘤的早期发现与诊断以及人体组成成份分析等功能性评价,将是生物阻抗技术显示优越性,展现其诱人应用前景的广阔天地。可惜这一点至今还没有被大多数研究者所充分注意。 阻抗技术的进一步发展应把重点放在全信息复阻抗检测方法和人体组织和器官功能信息的提取方面[2]。如果充分考虑人体组织阻抗中的容抗特性,改进理论模型,采用复阻抗全信息的检测方法,以血流中的红细胞为观察研究对象,就可能实现从细胞水平上提取与人体生理、病理状态相联系的,丰富的阻抗全信息。建立旨在评价人体组织和器官功能状态的新型检测技术。 3 发展与应用前景 在获取阻抗全信息(模量与相角或实部与虚部)的前提下,生物阻抗技术可进入细胞层 1998年第11期?热点评介?

人体成分分析仪中多频生物电阻抗的应用

人体成分分析仪中多频生物电阻抗的应用 目前,国内外很多公司都推出了不同型号的人体成分分析仪,均可实现对人体成分的常规性测试和分析。但是大都存在以下不足之处: (1)在人体阻抗测量中,多采用四电极法,虽然减少了接触阻抗的影响,但是由于同时只有两个电极作为测试端,所以并不能测出手脚处的体阻抗,这使得整体测试结果偏大;而且由于每个电极都是作为电流电极和电压电极共用的,这使得测量过程中不可避免地发生电压和电流互相干扰的现象,以上两种因素使得系统误差增大。 (2)目前一些公司研制的仪器可以实现多频检测,这在准确测定人体水分含量上进了一步,但都没有完全实现全自动控制,还需要操作者手动去控制,对非专业人员的使用造成了一定困难。 (3)国内外公司研制的人体成分分析仪,所有的测试数据都需要上传到联机电脑中进行显示、存储、分析、管理,因此一台仪器需要一台专用电脑,这对该仪器的推广使用造成了很大不便。 根据以上情况分析,一些科技研发公司开始研发弥补以上不足的新设备。本文以西奈SN-2A 为例,目前市面上开始采用生物多频电阻抗(MFBIA)的原理来检测,这种仪器可以检测、分析不同频率下(5k、50k、100k、250k、500k)的人体阻抗信号,根据总结出的计算公式(Lukaski方程),可以计算出一系列人体成分参数,通过这些参数可以诊断出人体成分的变化以及健康状况。除实现这些基本功能外,还对目前国内外同类仪器存在的问题进行了如下改进:(1)全机采用八个接触电极,这些电极都是用不锈钢制成,电极接触面由直立的握式电极和脚踏式电极组成。在左右两个测量回路中,分别使用两个独立电极作为电流电极,电压电极和电流电极都是独立使用,不存在重复使用现象,这保证了在测量过程中电压和电流互不干扰;在任意一个测量回路中,同时都有四个测试电极工作,不仅可以测出准确的身体节段阻抗,还可以测出手脚处的体阻抗以及接触阻抗,这大大提高了测试结果的重复性和准确性。当选通右半身测量回路时,E1和E7作为电流电极,E3、E4、E5、E6作为电压电极,可以分别测出接触阻抗+右手体阻抗、右上肢阻抗、接触阻抗+右脚体阻抗、右下肢阻抗。经过简单计算即可得到躯干阻抗。反之亦然。 (2)仪器操作十分简单,操作者只需按下开机键,其他所有功能都由仪器本身来实现,测量过程中不需要再进行其他操作,这一点对非专业人员的使用来说尤为重要。 (3)仪器通过CAN总线与上位机进行互联,进而实现了一对传输线、Ⅳ台仪器,双向传输多个信号,一台电脑同时监测多台仪器,这为社区医院进行大规模会诊创造了条件,也为以后利用以太网进行远程监控打下坚实的基础。 多频生物电阻抗法有效地解决了同类仪器中存在的不足。适合家庭医疗保健和医院保健科使用。在医学临床与基础研究中,测量人体成分具有重要的价值。它可以提供人体成分正常值范围,评价生长发育、成熟情况以及老化进程,有助于对营养状况和相关疾病的研究。在儿童生长发育期,监测身体成长变化,了解发育状况,正确指导营养补充,对确保儿童健康成长是非常重要的。在体育运动中,为了减轻体重,提高竞赛成绩,以及在运动员训练过程中,安排合理的运动量,都需要监测体内成分的变化。健美和减肥锻炼若能在脂肪含量监测的指导下进行,也将会收到事半功倍的效果。

基于multisim11仿真的生物医学工程课程设计:人体阻抗测量

课程设计报告———— 人体阻抗测量

引言 本课程设计探索了一种适用于家庭的低成本生物电阻抗测量系统。采用由一对激励电极及一对敏感电极组成的四电极结构, 用文氏电桥振荡器产生50 kH z 的正弦波信号, 经过一定的削减,施加在与人体皮肤接触的激励电极对上,通过测量敏感电极对的电压, 实现人体生物阻抗的检测, 可望有效克服接触电阻抗以及空间电磁波的干扰。multisim软件仿真结果表明, 这种测量系统在测量结果的线性、稳定性及准确性等方面的性能可满足人体成分测量的要求。这为人体肥胖程度的家庭检测提供了一种有效的工具。 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。Multisim被美国NI公司收购以后,其性能得到了极大的提升。最大的改变就是:Multisim 9与LABVIEW 8的完美结合: (1)可以根据自己的需求制造出真正属于自己的仪器; (2)所有的虚拟信号都可以通过计算机输出到实际的硬件电路上; (3)所有硬件电路产生的结果都可以输回到计算机中进行处理和分析。 如此,学员可以很好地、很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来。并且可以用虚拟仪器技术创造出真正属于自己的仪表。极大地提高了学员的学习热情和积极性。真正的做到了变被动学习为主动学习。 1、人体阻抗模型及其测量的意义: 人体的基本构造单位是细胞。细胞被一层具有特殊结构和功能的半透性膜所包被,称作细胞膜或质膜,它允许某些物质有选择地通过,同时又严格地保持细胞内物质成分的稳定。由于细胞膜的存在,人体组织的阻抗特性可由图1 所示的等效电路表示。其中Re,Ri和Ci分别为细胞外液电阻,细胞内液电阻和细胞膜电容。 人体阻抗是包括人体皮肤、血液、肌肉、细胞组织及其结合部在内的含有电阻和电容的全阻抗,如图2所示。皮肤表面0.05~0.2mm厚的角质层电阻值很高。在干燥和干净的状态下,其电阻率可达105~ 106Ω·m。但因其不是一张完整的薄膜,又很容易受到破坏,故计算人体阻抗时一般不予以考虑。人体各部分阻抗大小对比如表1所示。遭受突然的生理刺激时,人体阻抗可能明显降低。 便携式人体健康状况检测仪受到越来越多的重视, 该类仪器中人体成分检测占据极其重要的地位, 例如脂肪、水分检测仪等。目前存在的测量人体成分的方法主要有生物电阻抗法、水重法、同位素稀释法以及双能量X光吸收法等。其中,生物电阻抗分析法(BIA :Bioelectrical impedanceanalysis)具有无创、简便、廉价、可靠的独特优点, 医生和病人都易于接受,并且这种方法测量人体成分的可行性已经得到大量实验结果的验证。生物阻抗技术的真正优势或诱人之处在于利用生物阻抗所携带的丰富生理和病理信息,进行人体组织与器官的无损伤功能评价。

用生物电阻抗法测量身体脂肪含量

关于用生物电阻抗法测量身体脂肪含量的研究 摘要:体脂率现已成为判断是否健康的标准之一,测量体脂率的方法有很多,但大多方法的设备仪器复杂,操作复杂而不适用于生活中。生物电阻抗则是近年来被广泛应用的一种快速、简便、安全测量体成分的一种方法。本文将对其原理,数据分析方法进行介绍,对其准确性进行分析,并对其前景进行展望。 关键词:生物电阻抗脂肪统计方法误差 一、引言 现代社会,随着生活条件不断改善,人们对健康也越来越重视。对于大多数人而言,体重是最直接也是最简单的衡量身体状况的一个标准。其中BMI=m/h2,m为体重(千克),h为身高(米),是被使用最广泛的公式,BMI指数以22为最佳。但是,越来越多的案例表明BMI指数不能够客观地反映一个人的身体状况。因为每个人的脂肪肌肉比例不同,并且肌肉和脂肪密度相差较大,相同BMI指数的人可能是虚胖也可能是强壮。这时,脂肪率则是另一个至关重要的指数,所以既简单又不失精确的生物电阻法就很有价值。 二、原理 生物电阻分析方法(bio-impedance analysis)BIA 技术测定骨骼肌含量的基本原理是,组织、器官层次的各个组分具有不同的电导性。

人体细胞被细胞外液包围,细胞则由具有选择透过性的细胞膜、细胞质和细胞器构成。细胞外液以及细胞内部可近似视作电阻。而细胞膜则可视为电容。故人体的电学性质可视作若干个电容与电阻连接而成,其中最为简洁的三元件模型下图所示。 一种常见的测试方式是,受试者仰面平躺,电流信号从脚部的电 极传导到手部的电极上,得出电阻抗(R)和电容抗(C),并计算生物电 阻抗Z=R2+C2。进而得到阻抗指数V=ρL2/Z,ρ为系数,L为身高。骨骼肌含有大量水分与电解质,其电导性最好;脂肪组织含有的水分与电解质很少,其电导性很差。信号传输越慢,受到阻力越大,表明脂肪量越多。 当然,复杂的人体是不能用上述简陋的模型描述的。因为生物电阻分析法本身就不是在数学物理定义上严格,而是由大量数据依据统计学规律发展而来。而正好该模型得到的阻抗指数和一些身体参数显著相关,所以我们认为这种方法是可行的。 最初,大多数研究的电流频率固定在50KHZ,现在则大多使用多频率电阻抗进行脂肪等身体成分的测量分析。

人体胸部电阻抗成像建模方法研究

人体胸部电阻抗成像建模方法研究 肺损伤是一种常见的胸部外科疾病,其内外致病因素有严重感染、创伤、休克、吸入有害气体、中毒等。轻者会发生肺水肿、肺不张等症状,延长患者术后监护及住院时间,重者则导致急性呼吸窘迫综合症(Acute respiratory distress syndrome,ARDS)乃至急性呼吸衰竭,其病死率高达50%~70%。肺部疾病严重威胁着人类健康。 因此,对肺部功能状态的实时监测具有重要意义。胸部电阻抗成像(Electrical impedance tomography,EIT)技术是一种无损功能成像技术,具有无创、安全、实时成像等优点,对肺损伤早期诊断和治疗具有重要意义。目前,国内外对于胸部电阻抗成像的研究多基于圆形、椭圆形、或用近似人体胸部形状建立统一模型。 但是由于胸部轮廓具有特异性,用统一模型会引入测量误差进而引入成像误差。此外,目前胸部肺损伤电阻抗成像多采用二维图像重建,对轻度肺损伤的检测精度有限。针对上述问题,本课题围绕肺损伤电阻抗成像展开研究,构建基于人体胸部真实结构的电阻抗成像模型,实现肺损伤三维成像,并对肺损伤评价指标进行优化,主要完成的工作如下:1.针对胸部轮廓特异性问题,基于人体CT图片提取人体几何结构先验信息,优化胸部EIT二维正问题模型,基于边界先验信息提出一种图像剖分方法。 仿真结果表明:该方法能有效降低传统模型成像方法与人体真实胸部结构的成像误差,改善成像质量。在此基础上,采用广义最小残差算法(Generalized Minimal Residual Algorithm,GMRES)进行成像,提高成像质量。2.基于CT扫描序列构建人体胸部EIT成像三维正问题模型,并对多层电极激励测量模式进行优

相关文档
最新文档