809固体物理简答题

809固体物理简答题
809固体物理简答题

1.晶态,非晶态,准晶态在原子排列上各有什么特点?(2003) 答:晶态:原子呈周期性排列,长程有序。

非晶态:原子排列短程有序,长程无序。

准晶态 :具有长程的取向序但没有周期性。

2.可以测定晶格振动色散关系的实验方法有哪些?(2003)

答:中子的非弹性散射、X 射线散射、光的散射、布里渊区散射、刺曼散射。

3.晶体中的位错线有几种类型?各有什么特点?(2003)

答:两种 ①刃位错②螺位错 前者特点:位错线垂直于滑移方向。后者特点:位错平行于滑移方向。

4.为什么NaCl 晶体对红外线的反射率与波长关系曲线中会出现一个平缓的的峰值区?(2003)

答:因为离子晶体中,长光学纵波产生宏观极化,使纵波振动频率LO ω大于横波振动频率TO ω,于是在LO TO ωω-方向形成一个禁区。所以它对红外光的反射率与波长关系曲线中会呈现一个平缓的峰值区。

5. 晶体中原子的结合力类型有哪些?(2003)

答:晶体中原子结合力的类型有:离子型,共价型,金属型及范德瓦尔斯结合力 。

6. 比较宽度不同的两个能带说明宽能带中的电子共有化程度高。(2003)

答: k E dk dE v ??== 11

同样的k ?,宽能带E ?变化量大,故其公有化运动程度高。 7. 晶体中电子遭受散射的物理实质是什么?任何说明电子具有相当长(大约几百埃)的自由程?(2003)

答:晶体中电子遭受散射的物理实质是晶格周期势场遭受破坏,但实际上由于原子振动或者其它原因为杂质缺陷所引起的破坏仅仅是个微扰,晶体电子的平均自由程可以有几埃。

8. 由N 个原子组成的半导体材料硅晶体,试问该晶体中一个能带最多可以填充多少个电 子?(2003)

答:一个能带的状态数目等于该晶体原胞数目,由N 个原子组成的硅晶体原胞数目为:2N ,而一个状态中由自旋朝上与朝下两个电子占据,故一个能带最多可以填充:N N =?2

2个电子。

9.晶体中可以独立存在的对称元素有哪些?(2003)

答:晶体中可以独立存在的对称元素有:1,2,3,4,6,m,4,i

10.软X射线发射谱是获得晶体电子态密度信息的重要实验,有如图(a)和(b)所示的实验结果,试指出哪一个代表非导体的能带密度,为什么?(2003)

答:图(a)和图(b)在低能端都是逐渐上升的,反映了从带底随电子能量增加,能态密度逐渐增大,但是在高能端图(a)的谱线是陡然下降的,图(b)则是逐渐下降,这说明,图(b)的谱线逐渐下降还是反映了电子填充到能带顶部,能态密度逐渐下降为0,能带是被电子填满的,所以图(b)是非导体的能态密度。

11.试给出导体、半导体和绝缘体的能带理论解释。

答:A:满带电子对导电贡献,因为能带中每个电子对电流的贡献为-ev(k).由于函数的对称性,E(k)= E(-k),及V(k)=-V(-k)。在无外场作用下,能带E

(k)

波矢为-k的状态和波矢为k状态中的电子的速度的大小相等、方向相反,且在热平衡条件下,电子占据这两种状态的几率是一样。故对电流的作用相互抵消。在有外场作用的条件下,所有状态的电子都以相同的速度沿着电场反方向运动。但在满态的情形中,电子的运动不改变布里渊区中电子的分布,所以满态中的电子不产生宏观电流。B:导带中电子对导电的贡献,在无外场条件下,虽然只有部分状态被电子填充,但是波矢为k的状态与波矢为-k的状态中电子的速度大小相等,方向相反,且在热平衡状态下,电子占据k、-k两个状态的几率相等。故对电流的贡献相互抵消,即没有电流。在有外场的条件下,到带着部分状态被电子填充,外加电场的作用使布里渊区的状态分布发生变化,所有状态的电子以相同的速度沿电场的反方向运动。由于能带不是满带,你电场方向上运动的电子较多,因此产生电流。

绝缘体——原子中的电子是满壳层分布的,价电子刚好填满了许可的能带,形成满带,导带和价带之间存在一个很宽的禁带,在一般情况下,价带之上的能带没有电子,所以在电场的作用下没有电流产生。

导体——在一系列能带中除了电子填充满的能带(满带)以外,还有只是部分被电子填充的能带,后者起着导电作用。

半导体(Si:14、Ge:32)——从能带结构来看与绝缘体的相似,但半导体禁带宽度较绝缘体的窄,约为以下。所以依靠热激发即可以将满带中的电子激发到导带中,因而具有导电能力,或者通过掺杂使导带填充少量电子或使价带缺少少量电子而形成导电能力。

12.布洛赫定理及其物理意义

答:当势场具有晶格周期性时,V(r) = V(r+Rn) ,其中Rn为晶格矢量波动方程的解有如下的性质Q(r+Rn)= e ikRn Q(r) ,其中k为矢量,即当平移晶格矢量Rn时,波函数只增加一位相因子e ikRn .物理意义:在周期势场的作用下,电子波函数不再是自由电子时的平面波,而是受到周期调幅的平面波。

13.布洛赫函数:Q(r) = e ikRn U(r) 其中U(r)=U(r+Rn) 即是以Rn为周期的函数。

14.费米面

答:在绝对零度下(T=0K),晶体中电子在K空间中占据态与未占据态的分界面。在非零温度下指电子占据几率为1/2的状态所构成的面。

15.朗道能级

答:在垂直于恒定磁场的平面内,电子的圆周运动对应于一种简谐运动,其能量是量子化的

En = (n + 1/2)hw

0(n= 1 ,2,3、、、、、、、) W

=

m

B e

这些量子化的能级称

为朗道能级。

16.有效质量

答:在电子输运准经典模型中引入了有效张量

它把晶体中电子准经典运动的加速度与外力直接联系起来,有效质量与电子重量的最大差别就是,在有效质量中实际包含了周期场的作用。同时表现出和牛顿定律的相似性。

17.布里渊区、第一布里渊区

答:在倒格子空间,以一格点为原点,此格点与其余格点的连线的垂直平分面所围成的的区域称为布里渊区。其中包含原点在内的最小封闭区域为第一布里渊区。与第一布里渊区连通的区域(三维时面连通,二维时线连通)为第二布里渊区。

18.在计算晶格比热是爱因斯坦与德拜模型分别作了哪些近似?

答:爱因斯坦模型假设晶体中的各个原则的振动可以看作是相互独立的,且所有的原子均具有相同的振动频率。德拜模型假设晶体是各向同性的连续介质,把格波视为弹性波。

19.为什么说德拜模型假设解释低温温度关系上会比较成功?

答:德拜模型是弹性波近似,而在低温条件下的格波只有能量低的长波被激发,所以符合德拜模型的要求,故德拜模型能很好的解释晶体低温热容温度的关系。

20.声子

答:晶格振动是量子化的,这种能量量子就是声子。

21.电子的能量态密度

答:单位能量间隔内的电子态数目。

22.有效质量

答:晶体中的电子或空穴除了受到外场的作用力外,还受到晶体中离子和其它电子形成的内场力的影响。在讨论电子受外场作用下运动时,有效质量即是把内场力等价于电子质量部分的结果。有效质量与电子重量的最大差别就是,在有效质量中实际包含了周期场的作用。

23.晶格平移对称性和点对称性

答:晶体平移对称性也就是晶格周期性,是指理想晶格可以通过最小的单元在空间平移填满整个空间。点对称是晶格的宏观对称性,它是指至少保持一点不动的对称性,如选转轴、反演等。

24.解释金属电子论比热随温度的变化关系?

答:金属中电子比热和温度呈线性关系,因为只有费米面附近的电子才能被热激发,对比热才有贡献。

25.为什么有的半导体霍尔系数取正数,有的则取负数?

答:半导体载流子有的是电子,而有的是空穴,所以霍尔系数有正有负。

26.为什么金属电阻率在室温温区随温度升高线性增大?

答:在温度范围,金属电阻率随温度升高线性增大的原因在于电子和声子相互作用所导致的结果。简单模型是弛豫时间的倒数随温度升高线性增大,等等。

27.接触电势产生的原因?

答:

28.在布里渊区边界上,电子的等能面有何特点?

答:电子的等能面与布里渊区正交。

29.请问晶体原胞中的电子数目为奇数时,相应的晶体是金属,半导体,还是绝缘体?为什么?

答:晶体原胞中电子的数目为奇数时,相应的晶体是金属,因为最高的填充能带半满。

30.在位错滑移时,刃位错上原子受的力和螺旋位错上原子受的力各有什么特点?

答:在位错滑移时,刃位错上原子受力方向平行于位错滑移方向,而螺旋位错上的原子受力方向垂直于位错滑移方向。

31.晶体中包含有N个原胞,每个原胞有n个原子,该晶体晶格振动的格波简正模式总数是多少?其中声学波和光学波各有多少?

答:3nN 其中声学波3N ,光学波(3n-3)N

32.晶格中不同简正模的格波之间达到热平衡的物理原因。

答:非谐互相作用将不同格波模耦合在一起,交换能量。

33.什么叫做对称操作群?

答:一个物体全部对称操作的集合,构成对称操作群。

34.什么是物体的对称素?

答:一个物体的旋转轴或旋转-反演轴统称为对称素。

35.什么是物体的N重转轴?

答:若一个物体绕某一转轴转2π/n以及它的倍数不变时,这个轴称为物体的n 重转轴。

36.什么是物体的n重旋转-反演轴?

答:若一个物体对绕某一旋转轴2π/n加上中心反演的联合操作以及其联合操作的倍数不变时,这个轴便称为物体的N重旋转-反演轴。

37.相距为不是晶格常数倍数的两个同种原子, 其最大振幅是否相同?

答:同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.

38.引入玻恩卡门条件的理由是什么?

答:(1) 方便于求解原子运动方程.

由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.

(2) 与实验结果吻合得较好.

对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于

有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.

39.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?

答:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.

简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.

40.长光学支格波与长声学支格波本质上有何差别?

答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.

41.晶体中声子数目是否守恒?

的格波的(平均) 声子数为

答:频率为

即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.

42.你认为简单晶格存在强烈的红外吸收吗?

答:实验已经证实, 离子晶体能强烈吸收远红外光波. 这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.

43.温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?

答:频率为的格波的(平均) 声子数为

比声学波的频率高, ()大于(),

因为光学波的频率

所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目. 44.对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多?

答;:设温度T H>T L, 由于()小于(), 所以温度高时的声子数目多于温度低时的声子数目.

45.高温时, 频率为的格波的声子数目与温度有何关系?

答:温度很高时, , 频率为的格波的(平均) 声子数为

.

可见高温时, 格波的声子数目与温度近似成正比.

46.在甚低温下, 德拜模型为什么与实验相符?

答:在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.

47.在绝对零度时还有格波存在吗? 若存在, 格波间还有能量交换吗?

的格波的振动能为

答:频率为

,其中

是由个声子携带的热振动能, ()是零

点振动能, 声子数

.

的格波的振动能只剩下零点振动能. 格波间

绝对零度时, =0. 频率为

交换能量是靠声子的碰撞实现的. 绝对零度时, 声子消失, 格波间不再交换能量.

时, , 问时, 对于无

48.温度很低时, 声子的自由程很大, 当

限长的晶体, 是否成为热超导材料?

时, 声子数n. 因此,

答:对于电绝缘体, 热传导的载流子是声子. 当

49.石英晶体的热膨胀系数很小, 问它的格林爱森常数有何特点?

与格林爱森常数成正比. 石英

答:由本教科书(3.158)式可知, 热膨胀系数

晶体的热膨胀系数很小, 它的格林爱森常数也很小. 格林爱森常数

为晶格非简谐效应大小的尺度. 石英晶体的格林爱森常数很小, 说明它的非简谐效应很小.

50.爱因斯坦模型在低温下与实验存在偏差的根源是什么?

答:按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.

51.对于光学横波, 对应什么物理图象?

答:格波的频率与成正比. 说明该光学横波对应的恢复力系数

. 时, 恢复力消失, 发生了位移的离子再也回不到原来的平衡位置, 而到达另一平衡位置, 即离子晶体结构发生了改变(称为相变). 在这一新的结构中, 正负离子存在固定的位移偶极矩, 即产生了自发极化, 产生了一个稳定的极化电场.

52.金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等? 对KCl 晶体, 结论又是什么?

答:长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 电场的方向是阻滞离子的位移, 使得有效恢复力系数变大, 对应的格波的频率变高. 长光学格横波不引起离子的位移, 不产生极化电场, 格波的频率不变. 金刚石不是离子晶体, 其长光学纵波频率与同波矢的长光学格横波频率相等. 而KCl晶体是离子晶体, 它的长光学纵波频率与同波矢的长光学格横波频率不相等, 长光学纵波频率大于同波矢的长光学格横波频率.

53.长声学格波能否导致离子晶体的宏观极化?

答:长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.

54.喇曼散射方法中,光子会不会产生倒逆散射?

晶格振动谱的测定中, 光波的波长与格波的波长越接近, 光波与声波的相互作用才越显著. 喇曼散射中所用的红外光,对晶格振动谱来说, 该波长属于长波长范围. 因此, 喇曼散射是光子与长光学波声子的相互作用. 长光学波声子的波矢很

不大. 而能产生倒逆散射的条件是光的入射波矢与散射波

小, 相应的动量

要大, 散射角也要大. 与大要求波长小, 散射角大要求大(参

见下图), . 但对喇曼散射来说, 这两点都不满足. 即喇曼散射中,光子不会产生倒逆散射.

55.在甚低温下, 不考虑光学波对热容的贡献合理吗?

答:光学波对热容贡献的表达式

.

在甚低温下, 对于光学波, , 上式简化为

.

以上两式中是光学波的模式密度, 在简谐近似下, 它与温度无关. 在

甚低温下, ,

光学波对热容的贡献可以忽略. 也就是说, 在甚低温下, 不考虑光学波对热容的贡献是合理的.

从声子能量来说, 光学波声子的能量很大(大于短声学波声子的能量), 它对应振幅很大的格波的振动, 这种振动只有温度很高时才能得到激发. 因此, 在甚低温下, 晶体中不存在光学波.

56.

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

最新大学固体物理考试题及答案参考

固体物理练习题 1.晶体结构中,面心立方的配位数为 12 。 2.空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。 3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。 4.声子是 格波的能量量子 ,其能量为 ?ωq ,准动量为 ?q 。 5.倒格子基矢与正格子基矢满足 正交归一关系 。 6.玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na 的整数倍。 7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 。 8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。 9.根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。 10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。 11.在绝对零度时,自由电子基态的平均能量为 0F 5 3E 。 12.金属电子的 B m ,23nk C V = 。 13.按照惯例,面心立方原胞的基矢为 ???? ?????+=+=+=)(2)(2) (2321j i a a k i a a k j a a ,体心立方原胞基矢为 ???? ?????-+=+-=++-=)(2)(2) (2321k j i a a k j i a a k j i a a 。 14 .对晶格常数为a 的简单立方晶体,与正格矢k a j a i a R ???22++=正交的倒格子晶面族的面

指数为 122 , 其面间距为 a 32π 。 15.根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子。 16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。 17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。 18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。 19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。 1.固体呈现宏观弹性的微观本质是什么? 原子间存在相互作用力。 2.简述倒格子的性质。 P29~30 3. 根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献而在低温时必须考虑? 4.线缺陷对晶体的性质有何影响?举例说明。 P169 5.简述基本术语基元、格点、布拉菲格子。 基元:P9组成晶体的最小基本单元,整个晶体可以看成是基元的周期性重复排列构成。 格点:P9将基元抽象成一个代表点,该代表点位于各基元中等价的位置。 布拉菲格子:格点在空间周期性重复排列所构成的阵列。 6.为什么许多金属为密积结构?

材料科学概论考点总结

材料科学概论考点总结

1·材料: 材料是人类社会所能接受的、可经济地制造有用物品的物质(Materials is the stuff from which a thing is made for using.) 2·材料的分类及类型: 按服役领域分类:结构材料 (受力,承载),功能材料 (半导体,超导体以及光、电、声、磁等) 按化学组成分:金属材料,无机非金属材料,高分子材料,复合材料 按材料尺寸分:零维材料,一维材料,二维材料,三维材料 按结晶状态分:晶态材料,非晶态材料,准晶态材料 3·材料科学:是一门以实体材料为研究对象,以固体物理,热力学,动力学,量子力学,冶金,化工为理论基础的交叉型应用基础学科。4·材料的发展要素:材料的成分、组织结构、合成加工、性质与使用性能5·材料的力学性能:弹性模量,强度,塑性,断裂韧性,硬度 6·塑性变形:材料在外力作用下产生去除外力后不能恢复原状的永久性变形称为塑性变形。塑性变形具有不可逆性 7·能带:满带,空带,价带,禁带 8·磁性的分类: 磁滞回线: H c :矫顽力 H m :饱和磁场强度 B r :剩余磁感应强度 B s :饱和磁感应强度 9·不同材料的热导率特性:金属材料有很高的热导率,无机陶瓷或其它绝缘材料热导率较低,半导体材料的热传导,高分子材料热导率很 低 10·固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体. 11·断裂韧度:是衡量材料在裂纹存在的情况下抵抗断裂的能力 12·影响断裂失效的因素: (1)材料机械性能的影响 (2)零件几何形状的影响 (3)零件应力状态的影响 (4)加工缺陷的影响 (5)装配、检验产生缺陷的影响 13·穿晶断裂:裂纹在晶粒内部扩展,并穿过晶界进入相邻晶粒继续扩展直至断裂

固体物理学整理要点

固体物理复习要点 第一章,第二章的前三节,第三章的1,2,4节,第五章(第四节除外),第六章的前四节 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。

固体物理期末考试试卷

f)固体物理期末考试试题 物理系——年级班课程名称:固体物理共1页学号:姓名: 填空(20分,每:题2分) 1,对晶格帝数为?的SC晶体,与正格矢R=ai+2aj+2亦正交的倒格子品面践的面指数为(),其面间距为(). 2典型离子晶体的体积为V,最近邻西离子的距离为京晶体的格波数目为(),长光学波的()波会引起离子晶体宏观上的极化, 3. 金刚石晶体的结合类型是典型的()晶体,它有 ()支格波. 4. 当电子道受到某一品面族的强烈反射时,电子平行于档面族的?平均 速 度(:)零,电子波矢的末端处在()边界上. 3.西却不同金属接触后,费米能级高的带()电. 对导噌有贡献 的是()的电子. 二.(泻分) 1. 证明立方晶系的晶列[冲]与晶而族W)正交. 2. 设品格常数为?,求立方晶系密勒指数为W的晶面族的面间即. 三(潟分) 设质量为r的同种顷子纽成的一维双原子分子链,分子内部的力系数为■,分子间相邻原子的力系数为反,分子的两原子的间距为d晶格常数为e 1. 列出原子运动方程一 2. 求出格波的振功谱 四.(30分) 对于晶格常数为?的SC晶体 1. 以紧束缚近似求非筒并s态电了的能带. 2. 画出第一4渊区[”0]方向的能带曲线,求出带宽, 3. 当电子的波矢?时,求导致电了产生布拉格反射的出湎.族的ifli 指数. (试逐而答卷上交) 填空(20分■每题2分) 1. 对晶格常数为“的SC晶体■与正格矢R瑚翎林正交的倒格子晶面族 2-T 的血指数为(122 ),其面间距为(元). 2. 典型离子跚体的体枳为K最近邻阳离了的距离为R,晶体的格波数3V 目为(卞),长光学波的《纵)波会引起离子晶体宏观上的极化. 3. 金刚石品体的结合类型是典型的(共价结合)晶体,它有(6 )支格波. L当电子遭受到某一晶仙破的强烈反射时,电子平行于晶血族的平均速度(不为)零,电子波矢的末端处在(布里渊区)边界上.

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

固体物理习题解答

1. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 2. 在晶体衍射中,为什么不能用可见光? [解答] 晶体中原子间距的数量级为10 10 -米,要使原子晶格成为光波的衍射光栅,光波的波长 应小于10 10-米. 但可见光的波长为7.6?4.07 10-?米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光. 3. 原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么? [解答] 在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离r >0r 时, 吸引力起主导作用; 当相邻原子间的距离r <0r 时, 排斥力起主导作用. 4. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么? [解答] 以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分 r R r R r r r d )()]()([)(* n at s n at N at s s V V J ----=???Ω 的大小又取决于) (r at s ? 与相邻格点的)(n at s R r -?的交迭程度. 紧束缚模型下, 内层电子的 )(r at s ?与)(n at s R r -?交叠程度小, 外层电子的)(r at s ?与)(n at s R r -?交迭程度大. 因此, 紧 束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽. 5. 在布里渊区边界上电子的能带有何特点? [解答] 电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度 )(2n K V E g =, )(n K V 是周期势场的付里叶级数的系数. 不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交. 6. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么? 对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式 λθn sin 2=hkl d 可知, 面间距hkl d 大的晶面, 对应一个小的光的掠射角θ. 面间距hkl d 小的晶面, 对应一个大的光的掠射角θ. θ越大, 光的透射能力就越强, 反射能力就越弱.

固体物理期末套试题

1. S i 晶体是复式格子,由两个面心立方结构的子晶格沿体对角线位移1/4 套构而成;其固体物理学原胞包含8个原子,其固体物理学原胞基矢可 表示)(21k j a a ,)(22k i a a , )(23j i a a 。假设其结晶学原胞的体积 为a 3,则其固体物理学原胞体积为341a 。 2. 由完全相同的一种原子构成的格子,每个格点周围环境相同称为布拉菲格子; 倒格子基矢与正格子基矢满足)(2)(0{2j i j i ij j i b a ,由倒格子基矢 332211b l b l b l K h (l 1, l 2, l 3为整数),构成的格子,是正格子的傅里叶变 换,称为倒格子格子;由若干个布拉菲格子套构而成的格子称为复式格子。最常见的两种原胞是固体物理学原胞和结晶学原胞。 3.声子是格波的能量量子,其能量为? ,动量为?q 。 二.问答题(共30分,每题6分) 1.晶体有哪几种结合类型?简述晶体结合的一般性质。 答:离子晶体,共价晶体,金属晶体,分子晶体及氢键晶体。 晶体中两个粒子之间的相互作用力或相互作用势与两个粒子的距离之间遵从相同的定性规律。 2.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别? 答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能;原子的动能与原子间的相互作用势能之和为晶体的内能;在0K 时,原子还存在零点振动能,但它与原子间的相互作用势能的绝对值相比小很多,所以,在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能。

3.什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。 答:在点缺陷中,有一类点缺陷,其产生和平衡浓度都与温度有关,这一类点缺陷称为热缺陷,热缺陷总是在不断地产生和复合,在一定地温度下热缺陷具有一定地平衡浓度。肖特基缺陷是晶体内部格点上的原子(或离子)通过接力运动到表面格点的位置后在晶体内留下空位;弗仑克尔缺陷是格点上的原子移到格点的间隙位置形成间隙原子,同时在原来的格点位置留下空位,二者成对出现。 4.简述空穴的概念及其性质. 答:对于状态K空着的近满带,其总电流就如同一个具有正电荷e的粒子,以空状态K的电子速度所产生的,这个空的状态称为空穴;空穴具有正有效质量,位于满带顶附近,空穴是准粒子。 5.根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献在低温时必须考虑? 答:在量子理论中,大多数电子的能量远远低于费米能量E F ,由于受到泡 利不相容原理的限制,不能参与热激发,只有在E F 附近约 K B T范围内电子 参与热激发,对金属的比热有贡献。C V e= T 在高温时C V e相对C V l 来说很小可忽略不计;在低温时,晶格振动的比热 按温度三次方趋近于零,而电子的比热与温度一次方正比,随温度下降变化缓慢,此时电子的比热可以和晶格振动的比热相比较,不能忽略。 1、晶格常数为的面心立方晶格,原胞体积等于 D 。 A. B. C. D. 2、体心立方密集的致密度是 C 。 A. B. C. D. 3、描述晶体宏观对称性的基本对称元素有 A 。 A. 8个 B. 48个个个

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理考题及答案三

一、 填空题 (共20分,每空2分) 目的:考核基本知识。 1、金刚石晶体的结合类型是典型的 共价结合 晶体, 它有 6 支格波。 2、晶格常数为a 的体心立方晶格,原胞体积Ω为 23a 。 3、晶体的对称性可由 32 点群表征,晶体的排列可分为 14 种布喇菲格子,其中六角密积结构 不是 布喇菲格子。 4、两种不同金属接触后,费米能级高的带 正 电,对导电有贡献的是 费米面附近 的电子。 5、固体能带论的三个基本近似:绝热近似 、_单电子近似_、_周期场近似_。 二、 判断题 (共10分,每小题2分) 目的:考核基本知识。 1、解理面是面指数高的晶面。 (×) 2、面心立方晶格的致密度为π61 ( ×) 3、二维自由电子气的能态密度()1~E E N 。 (×) 4、晶格振动的能量量子称为声子。 ( √) 5、 长声学波不能导致离子晶体的宏观极化。 ( √) 三、 简答题(共20分,每小题5分) 1、波矢空间与倒格空间(或倒易空间)有何关系? 为什么说波矢空间内的状态点是准连续的? 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为, 而波矢空间的基矢分别为, N1、N2、N3分别是沿正格子基矢方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 , 波矢空间中一个波矢点对应的体积为 , 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。 也就是说,波矢点在倒格空间看是极其稠密的。因此, 在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。 2、在甚低温下, 德拜模型为什么与实验相符? 在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 321 b b b 、、 32N N / / /321b b b 、、 1N 321 a a a 、、*321) (Ω=??b b b N N b N b N b * 332211)(Ω=??

固体物理期末试卷及参考解答B

固体物理期末试卷及参 考解答B IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课程编号: 课程名称: 固体物理 试卷类型: 、 卷 卷 考试时间: 120 分钟 1.什么是晶面指数什么是方向指数它们有何联系 2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。 3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥 力排斥力的来源是什么 4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常 数。 5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别? 6.温度降到很低时。爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与 实验结果符合的较好。试解释其原因。 7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么费米能与那些因素有 关 8.什么是弱周期场近似按照弱周期场近似,禁带产生的原因是什么 9. 什么是本征载流子什么是杂质导电 10.什么是紧束缚近似按照紧束缚近似,禁带是如何产生的

二、计算题(本大题共5小题,每小题10分,共50分) 1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。 2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于 面心立方格子,i n 的和为偶数。 3. 设一非简并半导体有抛物线型的导带极小,有效质量m m 1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。 4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下, (1)计算晶格振动频谱; (2)证明低温极限下,比热正比于温度T 。 5. 对原子间距为a 的由同种原子构成的二维密堆积结构, (1)画出前三个布里渊区; (2)求出每原子有一个自由电子时的费米波矢; (3)给出第一布里渊区内接圆的半径; (4)求出内接圆为费米圆时每原子的平均自由电子数; (5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。 固体物理B 卷 参考答案 一、简答题(本大题共10小题,每小题5分,共50分) 1.晶面指数:晶面在在坐标轴上的截距的倒数的最简整数比。 方向指数:垂直于晶面的矢量,晶面指数为(hkl ),则方向指数为[hkl] 联系:方向[hkl]垂直于具有相同指数的晶面(hkl).

热统知识点总结

第一类知识点 1. 大量微观粒子的无规则运动称作物质的热运动. 2. 宏观物理量是微观物理量的统计平均值. 3. 熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变. 系统经不可逆绝热过程后熵增加. 孤立系中所发生的不可逆过程总是朝着熵增加的方向进行. 4. 在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和. 5. 在等温等容条件下,系统的自由能永不增加. 在等温等压条件下,系统的吉布斯函数永不增加. 6. 理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 7. V S S p V T ??? ????-=??? ???? 8. V T T p V S ??? ????=??? ???? 9. p S S V P T ??? ????=??? ???? 10. p T T V P S ??? ????-=??? ???? 11. pdV TdS dU -= 12. Vdp TdS dH += 13. pdV SdT dF --= 14. Vdp SdT dG +-= 15. 由pdV TdS dU -=可得,V S U T ??? ????= 16. 由Vdp TdS dH +=可得,S p H V ???? ????= 17. 单元复相系达到平衡所要满足的热平衡条件为各相温度相等. 18. 单元复相系达到平衡所要满足的力学平衡条件为各相压强相等. 19. 单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等. 20. 对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等. 21. 对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.

固体物理_复习重点

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵 晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格 格点:微粒重心所处的位置称为晶格的格点(或结点) 晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称) 密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数 配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数 致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度 固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性 晶胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。 布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样 复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的 声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子 非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导 点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子 布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

固体物理复习题答案完整版

一·简答题 1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。(答案参考教材P7-8) (1)体心立方基矢:123() 2()2() 2 a i j k a i j k a i j k ααα=+-=-++=-+,体积:31 2a ,最近邻格点数:8 (2)面心立方基矢:123() 2()2() 2 a i j a j k a k i ααα=+=+=+,体积:31 4a ,最近邻格点数:12 2.习题、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。 证明: 因为33121323 ,a a a a CA CB h h h h = -=-,112233G h b h b h b =++ 利用2i j ij a b πδ?=,容易证明 12312300 h h h h h h G CA G CB ?=?= 所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

3.习题、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足: 22222()d a h k l =++,其中a 为立方边长; 解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π ?=??,3121232a a b a a a π?=??,123123 2a a b a a a π?=?? 倒格子基矢:123222,,b i b j b k a a a πππ = == 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a a πππ =++ 晶面族()hkl 的面间距:2d G π= 2221 ()()()h k l a a a = ++ 4.习题、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。 解:(111) (1)、(111)面与(100)面的交线的AB ,AB 平移,A 与O 点重合,B 点位矢:B R aj ak =-+, (111)面与(100)面的交线的晶向AB aj ak =-+,晶向指数[011]。 (2)、(111)面与(110)面的交线的AB ,将AB 平移,A 与原点O 重合,B 点位矢:

固体物理期末考试理论题

1. 初基原胞 一个晶格最小的周期性单元 实际上是体积最小的晶胞 2. 惯用原胞 能同时反映晶体周期性与对称特性的重复单元 3. 晶面 通过布拉菲格子的任意三个不共线的格子可做一平面 该平面包含无数多个周期性分布的格点。 4. 晶向指数 晶向再三个坐标轴上投影的互质整数 代表了一簇晶列的取向 5. 晶面指数 是晶面在3个结晶轴上的截距系数的倒数比 当化为最简单的整数比后 所得出的3个整数 6. 螺型位错 一个晶体的某一部分相对于其余部分发生滑移 原子平面沿着一根轴线盘旋上升 每绕轴线一周 原子面上升一个晶面间距。在中央轴线处即为一螺型位错 7.刃型位错 由于某种原因 晶体的一部分相对于另一部分出现一个多余的半原子面 这种线缺陷称为刃型位错 8.弗伦克尔缺陷 弗伦克尔缺陷是指原子离开其平衡位置而进入附近的间隙位置 在原来的位置上留下空位所形成的缺陷。其特点是填隙原子与空位总是成对出现 9.肖特基缺陷 由于晶体表面附近的原子热运动到表面 在原来的原子位置留出空位 然后内部邻近的原子再进入这个空位 这样逐步进行而造成的缺陷。 10.电负性 定义;电负性是元素的原子在化合物中吸引电子能力的标度 11.扩散(系数)与哪些因素有关 a.扩散介质结构的影响 扩散介质结构越紧密 扩散越困难 b.扩散相与扩散介质的性质差异 一般说来 扩散相与扩散介质性质差异越大,扩散系数也越大。 c.结构缺陷的影响 在金属材料和离子晶体中 原子或离子在晶界上扩散远比在晶粒内部扩散的快 d.温度与杂质的影响 12.光电效应在光的照射下,电路中产生电流和电流变化的现象。 13.晶体传统定义:有固定的熔点,有规则的几何外形的固体; 严格定义:内部质点在三维空间呈周期性重复排列的固体,或者说具有格子构造的固体; 14.非晶体传统定义:没有固定的熔点,没有规则的几何外形的固体; 严格定义:不具有长程有序,但具有短程有序的固体; 15.长程有序 晶体内部至少在微米量级范围内原子排列具有周期性,就称为晶体的长程有序。 16.晶带:如果晶棱互相平行,对应的晶面的组合称为晶带。 带轴:互相平行的晶棱的共同方向,称为该晶带的带轴。不同的带轴具有不同的物理性质,体现为晶体的各向异性。 17.解理性 晶体具有容易沿某些确定方位的晶面劈裂的性质,称为晶体的解理性。相应的晶面称为解理面。 18.晶体的对称性 晶体在某几个特定方向上可以异向同性,这种相同的性质在不同的方向上有规律地重复出现,称为晶体的对称性。 19.结点:空间点阵中的点子代表了结构中相同的位置,称为结点。 基元:当晶体由多种原子组成时,通常把由这几种原子构成晶体的基本结构单元称为基元20. 晶格:通过点阵中的结点可以作许多平行的直线族和平行的晶面族,使点阵形成三维网格,这些将结点全部包括在其中的网格称为晶格。 21.怎样判断原胞和晶胞? 原胞的特点是最小的重复单元;只含有一个结点;结点只在顶角;反映晶格的周期性

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

相关文档
最新文档