应用组合数学第二章答案

应用组合数学第二章答案
应用组合数学第二章答案

组合数学作业答案

第二章作业答案 7. 证明,对任意给定的52个整数,存在两个整数,要么两者的和能被100整除,要么两者的差能被100整除。 证明 用100分别除这52个整数,得到的余数必为0, 1,…, 99这100个数之一。将余数是0的数分为一组,余数是1和99的数分为一组,…,余数是49和51的数分为一组,将余数是50的数分为一组。这样,将这52个整数分成了51组。由鸽巢原理知道,存在两个整数分在了同一组,设它们是a 和b 。若a 和b 被100除余数相同,则b a -能被100整除。若a 和b 被100除余数之和是100,则b a +能被100整除。 11. 一个学生有37天用来准备考试。根据过去的经验,她知道她需要不超过60小时的学习时间。她还希望每天至少学习1小时。证明,无论她如何安排她的学习时间(不过,每天都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13小时。 证明 设从第一天到第i 天她共学习了i a 小时。因为她每天至少学习1小时,所以 3721,,,a a a 和13,,13,133721+++a a a 都是严格单调递增序列。因为总的学习时间 不超过 60 小时,所以6037≤a ,731337≤+a 。3721,,,a a a , 13,,13,133721+++a a a 是1和73之间的74个整数,由鸽巢原理知道,它们中存在相 同的整数,有i a 和13+j a 使得13+=j i a a ,13=-j i a a ,从第1+j 天到第i 天她恰好学习了13小时。 14. 一只袋子装了100个苹果、100个香蕉、100个桔子和100个梨。如果我每分钟从袋子里取出一个水果,那么需要多少时间我就能肯定至少已拿出了1打相同种类的水果? 解 由加强形式的鸽巢原理知道,如果从袋子中取出451)112(4=+-?个水果,则能肯定至少已拿出12个相同种类的水果。因此,需要45分钟。 17. 证明:在一群1>n 个人中,存在两个人,他们在这群人中有相同数目的熟人(假设没有人与他/她自己是熟人)。 证明 因为每个人都不是自己的熟人,所以每个人的熟人的数目是从0到1-n 的整数。若有两个人的熟人的数目分别是0和1-n ,则有人谁都不认识,有人认识所有的人,这是不可能的。因此,这n 个人的熟人的数目是1-n 个整数之一,必有两个人有相同数目的熟人。 第三章作业答案 6. 有多少使下列性质同时成立的大于5400的整数? (a) 各位数字互异。 (b) 数字2和7不出现。 解 因为只能出现数字0, 1, 3, 4, 5, 6, 8, 9,所以整数的位数至多为8。

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

组合数学第二章

课堂中的“空白”艺术 所谓“空白”,就是指空着,没有被填满或没有被利用的部分。在绘画艺术中就有一种美叫做空白美。那么以此为鉴,在课堂教学中也有一种方法称之为——“空白”艺术。现代教育理论认为,数学教学要提供给学生充分体验与交流的机会,使他们真正理解和掌握数学思想和方法。走进新课标,教学的最高宗旨和核心理念是“一切为了每一个学生的发展”。而“发展”是一个生成性的动态过程,作为教师要不断地为学生创设一种“可持续发展”的时间与空间。特别是伴随着新一轮基础教育课程改革的实施和推进,教师的教学行为和学生的学习方式都发生了巨大的改变。在课堂上,教育者要善于适时、适度地巧设“空白”,秉承“学生只有通过自己的真切体验,才能真正对所学内容有所感悟,进而内化为己有,在学习活动实践中逐步学会学习”的课改理念,让学生自主、合作、探究地学习,使他们充分发挥自己的创造性,尽情展示、描绘出属于他们的精彩。 教学内容:北京市21世纪教材九年义务教育教材数学实验本第1册第十一单元《统计初步知识》。 [片段一] 课堂练习1:猜丁克游戏(石头、剪子、布)。 师:大家玩过这个游戏吗?(学生辨认游戏中的手势。)下面请同座位的两个人为一组玩这个游戏,要求统计出你们各自赢的次数填入表格中。 学生一边玩一边用自己喜欢的方式记录如下: 第一种用符号表示:…… 第二种用画图表示:…… 第三种用实物表示:小棒、学具卡片……

第四种用数字表示:1、2、3、…… 第五种用“正”字表示。 学生游戏后,在实物投影上展示自己的记录方式并汇报统计结果。 [评析:这里老师只是提出了学习任务,即“统计出你们各自赢的次数填入表格中”,但对于学习方式即怎样统计、如何记录并没有作出任何要求。因此为学生创设了创新实践的空间,这样的“留白”使学生能够得以彰显其鲜明的个性,并满足其渴望同辈群体认可的价值需求。] [片段二] 课堂练习3:数一数屋里一共有多少个小朋友? 学生提出质疑:屋外的这些鞋摆放得太乱了!不好数,能不能摆整齐再数呀? 师:题目要求是数人,你们为什么想到要数鞋呢? 生:因为有一双鞋就等于有一个人。 师:(数出人数后)你们想对屋里的小朋友说些什么吗? 生1:你们乱放鞋子,出门时容易被鞋子拌倒,不安全。 生2:你们应该做文明的好孩子。 生3:你们要养成把东西摆放整齐的好习惯。 [评析:作为变式统计练习,这里一方面留有学生逻辑推理的空白,即“有一双鞋就等于有一个人”,渗透“透过现象看本质”的辨证思想;另一方面又留有学生情感、态度的空白,即“你们想对屋里的小朋友说些什么吗?”,由题及事,以事为载体,培养学生正确看待问题的态度以及要做文明好孩子的情感。] 以上两个片段,在教师的巧妙布白之中,学生们各抒己见,主动

组合数学习题4(共5章)

第四章 生成函数 1. 求下列数列的生成函数: (1){0,1,16,81,…,n 4,…} 解:G{k 4 }= 235 (11111) 1x x x x x +++-() (2)343,,,333n +?????????? ? ? ????? ???? 解:3n G n +?????? ?????=4 1(1)x - (3){1,0,2,0,3,0,4,0,……} 解:A(x)=1+2x 2+3x 4+4x 6+…=2 1 1x -. (4){1,k ,k 2,k 3,…} 解:A(x)=1+kx+k 2x 2+k 3x 3+…= 1 1kx -. 2. 求下列和式: (1)14+24+…+n 4 解:由上面第一题可知,{n 4}生成函数为 A(x)=235 (11111)1x x x x x +++-()=0 k k k a x ∞=∑, 此处a k =k 4 .令b n =14 +24 +…+n 4 ,则b n =0n k k a =∑,由性质3即得数列{b n }的生 成函数为 B(x)= 0n n n b x ∞ =∑=() 1A x x -=34 125(1111)i i i x x x x x i ∞ =++++?? ??? ∑. 比较等式两边x n 的系数,便得 14+24+…+n 4 =b n =1525354511111234n n n n n n n n -+-+-+-++++----???????? ? ? ? ? ???????? 321 (1)(691)30 n n n n n =+++- (2)1·2+2·3+…+n (n +1) 解:{ n (n +1)}的生成函数为A(x)= 3 2(1)x x -=0 k k k a x ∞ =∑,此处a k = n (n +1). 令b n =1·2+2·3+…+n (n +1),则b n =0 n k k a =∑.由性质3即得数列{b n }的生成 函数为B(x)= n n n b x ∞ =∑= () 1A x x -= 4 2(1)x x -=032n k k k x x k =+?? ?? ?∑. 比较等式两边x n 的系数,便得

组合数学作业答案1-2章2016

组合数学作业 第一章引言 Page 13, ex3,4,7,30 ex3. 想象一座有64个囚室组成的监狱,这些囚室被排列成8 8棋盘。所有相邻的囚室间都有门。某角落处意见囚室例的囚犯被告知,如果他能够经过其它每一个囚室正好一次之后,达到对角线上相对的另一间囚室,那么他就可以获释。他能获得自由吗? 解:不能获得自由。 方法一:对64个囚室用黑白两种颜色染色,使得横和竖方向相邻的囚室颜色不同。则对角线上两个囚室颜色为同黑或同白。总共偶数个囚室,若能遍历且不重复,则必然是黑出发白结束,矛盾。 方法二:64个囚室,若要经过每个囚室正好一次,需要走63步,即奇数步。 不妨假设该囚犯在第1行第1列,那么到第8行第8列,横着的方向需要走奇数步,竖着的方向需要走奇数步,即总共需要偶数步。 所以不能恰好经过每个囚室一次到达对角线上的囚室。 ex4. (a) 设f(n)是用多米诺牌(2-牌)对2×n棋盘作完美覆盖的个数。估计一下f(1),f(2),f(3),f(4)和f(5). 试寻找(或证明)这个计数函数f满足的简单关系。利用这个关系计算f(12)。 (b) 设g(n)是用多米诺牌(2-牌)对3×n棋盘作完美覆盖的个数。估计g(1),g(2),…,g(6). 解:(a) f(1)=1, f(2)=2, f(3)=3, f(n+2)=f(n+1)+f(n) f(4)=f(3)+f(2)=5, f(5)=f(4)+f(3)=8 f(6)=f(5)+f(4)=13 f(7)=f(6)+f(5)=21 f(8)=f(7)+f(6)=34 f(9)=f(8)+f(7)=55 f(10)=f(9)+f(8)=89 f(11)=f(10)+f(9)=144 f(12)=f(11)+f(10)=233 (b) g(1)=0, g(2)=3, g(3)=0, g(4)=9+2=11, g(n+4)=4g(n+2)-g(n), g(5)=0, g(6)=41. ex7. 设a和b是正整数,且a是b的因子。证明m×n棋盘有a×b的完美覆盖当且仅当a 既是m又是n的因子,而b是m或n的因子。(提示: 把a×b牌分割成a个1×b牌。) 解:充分性。当a既是m又是n的因子,而b是m或n的因子,则m×n棋盘有a×b的平凡完美覆盖。 必要性。假设m×n棋盘有a×b牌的完美覆盖。则m×n棋盘必有b牌的完美覆盖。根据书中的定理,b是m的因子或n的因子。 下面证明a既是m的因子又是n的因子。 方法一: 因为a是b的因子,所以a×b牌可以分割成b/a个a×a牌。m×n棋盘有a×a的完美覆盖,则必然有a×a牌的完美覆盖。而a×a牌是正方形的,所以只有唯一的一种平凡覆盖方式。从而m是a的倍数,n也是a的倍数。 方法二: 因为a是b的因子,不妨设b=ka。由m×n棋盘有a×b牌的完美覆盖,可任取一个完美覆盖。设第一行的n个方格由p个a×b牌和q个b×a牌盖住,则有n=pb+qa=(pk+q)a,所以n是a的倍数。同理,m也是a的倍数。

组合数学与图论复习题及参考答案

组合数学与图论复习题及答案 1.Show that if n+1 integers are chosen form the set {1,2, …,2n},then there are always two which differ by at most 2. 从{1,2, …,2n}中选出n+1个数,在这n+1个数中,一定存在两个数,其中一个整数能整除另外一个整数。 任何一个数都可以写成2k*L,其中k是非负数,L是正奇数。现在从1到 2n之间只有n个奇数。由于有n+1个数都能表示成2k*L,而L的取值只有n中,所以有鸽子洞原理知道,至少有两个数的L是一样的,于是对应k小的那个就可以整除k大的另一个数。 2.Show that for any given 52 integers there are exist two of them whose sum, or else difference, is divisible 100. 设52个整数a1,a2,…,a52被100除的余数分别是r1,r2,…,r52,而任意一个数被100除余数为0,1,2,…,99,一共100个。他们可以分为51个类{0},{1,99},{2,98},…,{49,51},{50}。将这51个集合视为鸽笼,则将r1,r2,…,r52放入51个笼子中,至少有两个属于同一个笼子,所以要么有ri=rj,要么有ri+rj =100,也就是说ai-aj|100或者ai+aj|100。 3.从1,2,3,…,2n中任选n+1个数,证明在这n+1个数中至少有一对数互质。 鸽子洞原理,必有两个数相邻,相邻的两个数互质 4.Prove that Ramsey number R(p,q)≤R(p,q-1)+R(p-1,q). 令N=R(p,q-1)+R(p-1,q),从N个人中中随意选取一个a,F表示与a相识的人,S表示与a不相识的人。 在剩下的R(p,q-1)+R(p-1,q)-2+1个人中,由鸽子洞原理有,或者F中有 R(p,q-1)人,或者S中有R(p-1,q)人。如果F中有R(p,q-1)人,则与a相识的人为p个;如果S中有R(p-1,q)人,则与a不相识的人有p个。所以有R(p,q)≤ R(p,q-1)+R(p-1,q) 5.There are 10 people, either there are 3 each pair of whom are acquainted, or there are 4 each pair of whom are unacquainted。 从10人中随意选一个人p,F表示与p相识的人,S表示与p不相识的人若F中至少有4人,如果至少有4人不相识,则满足题设;如果有2人相识,则加上p有3人相识,也满足题设。 若F中至多有3人,则S中至少有6人,6人中至少有3人相识,或者不相识。如果相识则满足题设,如果不相识加上p不相识的人就有4个,也满足题设。6.In how many ways can six men and six ladies be seated at round table if the men and ladies to sit in alternate seats? 6个男的先进行圆排列,然后6个女的插入空位。 7.In how many ways can 15 people be seated at round table if B refuses to sit next to A? What if B only refuses to sit on A right?

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

李凡长版组合数学课后习题标准答案习题

第二章 容斥原理与鸽巢原理 1、1到10000之间(不含两端)不能被4,5和7整除的整数有多少个? 解 令A={1,2,3,…,10000},则 |A|=10000. 记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除的整数集合,则有: |A 1| = L 10000/4」=2500, |A 2| = L 10000/5」=2000, |A 3| = L 10000/7」=1428, 于是A 1∩A 2 表示A 中能被4和5整除的数,即能被20 整除的数,其个数为 | A 1∩A 2|=L 10000/20」=500; 同理, | A 1∩A 3|=L 10000/28」=357, | A 2∩A 3|=L 10000/35」=285, A 1 ∩A 2 ∩ A 3 表示A 中能同时被4,5,7整除的数,即A 中能被4,5,7的最小公倍数lcm(4,5,6)=140整除的数,其个数为 | A 1∩A 2∩A 3|=L 10000/140」= 71. 由容斥原理知,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - (|A 1| + |A 2| +|A 3|) + (|A 1∩A 2| + |A 1∩A 3| +|A 3∩A 2|) - |A 1∩A 2∩A 3| = 5143 2、1到10000之间(不含两端)不能被4或5或7整除的整数有多少个? 解 令A={1,2,3,…,10000},记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除 的整数集合,A 中不能被4,5,7整除的整数个数为 ||321A A A ?? = |A| - ||321A A A ?? - 2 = 10000 - L 10000/140」- 2 = 9927 3、1到10000之间(不含两端)能被4和5整除,但不能被7整除的整数有多 少个? 解 令A 1表示在1与10000之间能被4和5整除的整数集,A 2表示4和5整除, 也能被7整除的整数集。则: |A 1| = L 10000/20」= 500, |A 2| = L 10000/140」= 71, 所以1与10000之间能被4和5整除但不能被7整除的整数的个数为:500-71=429。 4、计算集合{2·a, 3·b, 2·c, 4·d }的5组合数. 解 令S ∞={∞·a, ∞·b,∞·c,∞·d},则S 的5组合数为()1455 -+ = 56 设集合A 是S ∞的5组合全体,则|A|=56,现在要求在5组合中的a 的个数小于等 于2,b 的个数小于等于3,c 的个数小于等于2,d 的个数小于等于4的组合数. 定义性质集合P={P 1,P 2,P 3,P 4},其中: P 1:5组合中a 的个数大于等于3; P 2:5组合中b 的个数大于等于4; P 3:5组合中c 的个数大于等于3; P 4:5组合中d 的个数大于等于5. 将满足性质P i 的5组合全体记为A i (1≤i ≤4). 那么,A 1中的元素可以看作是由 S ∞的5-3=2组合再拼上3个a 构成的,所以|A 1| =()142 2 -+ = 10.

组合数学练习题_带答案

组合数学练习题 第一章排列组合 1, 在1到10000之间,有多少个每位上数字全不相同而且由偶数构成的整数? 本题分为四种情况: 1位整数有4个: 2, 4, 6, 8 2位整数有4*4种方案, 有16个 3位整数有4*4*3种方案, 有48个 4位整数有4*4*3*2种方案, 有96个 总共有4+16+48+96=164个这样的整数. 2, 一教室有两排,每排9个坐位,今有14名学生,问按下列不同的方式入座,各有多少种坐法?(1) 规定某5人总坐在前排,某4人总在后排,但每人具体坐位不指定;(2) 要求前排至少坐5人,后排至少坐4人。 (1)本问中, 第一排和第二排各有5名和4名同学被确定, 那么14名同学中还有5名同学 没有固定在哪一排, 所以可以根据这5名同学的不同排列来计算, 分5种情况考虑; 1) 从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另 外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3 名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名 同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加 起来就是结果. C(5,4)*P(9,9)*P(9,5)+C(5,3)*P(9,8)*P(9,6)+C(5,2)*P(9,7)*P(9,7)+ C(5,1)*P(9,6)*P(9,8)+P(9,5)*P(9,9) (2)本问中, 第一排和第二排所坐的同学的数量被确定, 分别是5名和4名, 那么要从14 名同学中把省下的5名同学选出来, 然后再按照坐在不同排的情况进行计算, 同样分5 种情况考虑; 1) 从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学 进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5 名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名 同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐 法安排数全部加起来再乘以从14名同学中任选出5名同学方法的数就是结果. C(14,5)*[P(9,9)*P(9,5)+P(9,8)*P(9,6)+P(9,7)*P(9,7)+P(9,6)*P(9,8)+ P(9,5)*P(9,9)] 3, n对夫妇,要求排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下, 又有多少种不同的方案?围一圆桌而坐且要求每对夫妇坐在一起,又有多少种方案? (1)本问中, 男女各有n名, 分别进行全排列各有n!种方案, 将他们交叉排列就有(n!)2种 方案, 同时男在女前或女在男前又是不同的方案, 所以要乘以2, 所以 方案数为--- 2 (n!)2 (2)本问较第一问要去掉变为圆周排列后的重复度, 总的人数为2n, 用第一问的方案数 除以2n, 所以 方案数为--- (n!)2/n (3)本问中, 每对夫妇交换位置坐的方案数为2n, 再把每对夫妇看成单个元素进行圆周 全排列, 方案为n!/n, 最后把两种方案数相乘, 所以 方案数为--- 2n n!/n 4, 有16名选手,其中6名只能打后卫,8名只能打前锋,2名能打前锋或后卫,今欲选出11人组成一支球队,而且需要7人打前锋,4人打后卫,试问有多少种选法? 根据2名既能打前锋也能打后卫选手的不同情况来计算方案

组合数学+卢开澄版++答案第二章

2.1 求序列{0,1,8,27,…3n …}的母函数。 解:()() ++++++=++++++=n n n x n x x x x G x a x a x a x a a x G 3323322102780 ()0464143213 13 =+-+--==-----n n n n n n n a a a a a n a n a 左右同乘再连加: 0464:0 464:0 464:0464: 4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x 母函数:()()42 162036-+-=x x x x G 2.2 已知序列()()3433{,,……()33,,n +……},求母函数。 解:1(1) n x -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1) x - 2.3 已知母函数G (X )= 25431783x x x --+,求序列{ n a } 解:G (X )=)61)(91(783x x x +-+=) 61()91(x B x A ++- 从而有: ???-==????=-=+4 778963B A B A B A G (X )=) 61(4)91(7x x +-+- G (X )=7)999x (13322 ++++x x - 4))6((-6)(-6)x (13322 +-+++x x

n a =7*n )6(*49n -- 2.4.已知母函数239156x x x ---,求对应的序列{}n a 。 解:母函数为239()156x G x x x -= --39(17)(18)x x x -=+- A B G(x)17x 18x A(18x)B(17x)39x = ++--++=-令 A B 38A+7B=9+=??--? 解得:A=2 B=1 所以 i i i 0i 0 21G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑ n n n a 2*(7)8=-+ 2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。证明:0321=+---n n n G G G , n =2,3,4…。求},,,{210 G G G 的母函数。 解:设 ++++=332210)(x G x G x G G x H ,则 44332210)(x G x G x G x G G x H ++++= ……① ++++=43322103333)(3x G x G x G x G x xH ……② +++=4231202)(x G x G x G x H x ……③ ①-②+③,得: ()x G x G G x H x x 01023)(31-+=+- 又已知 n n F G 2=,则 000==F G ,121==F G 所以,)2 53)(253(31)(2x x x x x x x H ---+=+-= 设x B x A x H --+-+=253253)(,则可列出方程组:

组合数学习题解答

1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。 解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。 1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。 1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有 10!10 种方式。 两人坐在一起的方式数为9!92? ,故两人不坐在一起的方式数为:9!-2*8!。 1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=??? ? ??-+=515456

x1+x2+x3+x4=4 的非负整数解,其个数为F(4,4)=35 x1+x2+x3+x4=3 的非负整数解,其个数为F(4,3)=20 x1+x2+x3+x4=2 的非负整数解,其个数为F(4,2)=10 x1+x2+x3+x4=1 的非负整数解,其个数为F(4,1)=4 x1+x2+x3+x4=0 的非负整数解,其个数为F(4,0)=1 将它们相加即得, F(4,4)+F(4,3)+F(4,2)+F(4,1)+F(4,0)=70。 第二章: 2.3. 在边长为1的正三角形内任意放置5个点,则其中至少有两个点的距离≤1/2。解:将边为1的正三角形分成边是为1/2的四个小正三角形,将5个点放入四个小正三角形中,由鸽笼原理知,至少有一个小正三角形中放有2个点,而这两点的距离≤1/2。 1/2 1/2 1/2 2.5. 在图中,每个方格着红色或蓝色,证明至少存在两列有相同的着色。 ?=种,现有5列,由鸽笼原理知,至少有二列着色方式解:每列着色的方式只可能有224

第二章课后习题答案

第二章 容斥原理课后习题答案 1、某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇4次,每四人各相遇3次,每五人各相遇2次,每六人各相遇1次,一人也没有遇见的有5次,问某甲共参加了几次会议? 解:设A i 为甲与i 个朋友相遇的会议集合,i =1, 2, …, 6,根据题意,|A 1|=12?C (6, 1),|A 2|=6?C (6, 2),|A 3|=4?C (6, 3),|A 4|=3?C (6, 4),|A 5|=2?C (6, 5),|A 6|=1?C (6, 6),根据容斥原理,甲在会上至少遇见一位朋友的会议次数为||||||||||||12345628A A A A A A -+-+-=。 甲在会上一人也没有遇见的有5次,根据加法法则,甲共参加会议次数为28+5=33。 2、求从1到500的整数中被3和5整除但不被7整除的数的个数。 解:令A 3为1到500的整数中被3整除的数的集合,A 5为1到500的整数中被5整除的数的集合,A 7为1到500的整数中被7整除的数的集合。根据题意,所求的整数个数为 357353575005003342935357A A A A A A A A ???? =-=-=-=??????????? 3、A 、B 、C 三种材料用作产品I 、II 、III 的原料,但要求I 禁止用B 、C 作原料,II 不能用B 作原料,III 不允许用A 作原料,问有多少种安排方案?(假定每种材料只做一种产品的原料) 解:按题意可得如下的带禁区的棋盘,其中有阴影的表示禁区。 棋盘多项式为 R )= R R =(1+x )(1+3x +x 2)=1+4x +4x 2+x 3 故方案数=3!-4×2!+4×1!-1×0!=1 4、在由a, a, a, b, b, b, c, c, c 组成的排列中,求满足下列条件的排列数。 (a) 不存在相邻3元素相同; (b) 相邻两元素不相同。 解:(a) 设T 为a, a, a, b, b, b, c, c, c 设A 1:出现3个相邻a 的排列的集合 A 2:出现3个相邻b 的排列的集合 A 3:出现3个相邻c 的排列的集合 根据容斥原理,所求的排列数为 ||1239!7!5! 333!13143!3!3!3!3!3! A A A = -?+?-= (b) 设T 为重集B ={3*a, 3*b, 3*c}的排列全体集合,则||9! 16803!3!3! T = =。 设A 1为重集B 1={a, X , 3*b, 3*c}的排列全体集合,A 2为重集B 2={3*a, b, Y , 3*c}的排列全体集合,A 3为重集B 3={3*a, 3*b, c, Z }的排列全体集合,其中X ='aa',Y ='bb',Z ='cc',则 ||||||1238!7! 9803!3!3!3!A A A ===-= I II

组合数学 试题及答案06

组合数学试题 共 6 页 ,第 1 页 电子科技大学研究生试卷 (考试时间: 14:30 至 16:30 ,共 2 小时) 课程名称 组合数学 教师 学时 40 学分 2 教学方式 讲授 考核日期 2006 年 12 月 2 日 成绩 考核方式: (学生填写) 一.填空题(每空2分,共22分) 1.食品店有三种不同的月饼(同种月饼不加区分),第一种有5个,第二种有6个,第三种有7个, (1) 从中取出4个装成一盒(盒内无序),则不同的装法数有 种 ; (2) 从中取出6个装成一盒(盒内无序),则不同的装法数有 种 ; (3)若将所有的月饼排在一个货架上,则排法数有 种(给出表达式,不必算出数值结果)。 (4)若将所有的月饼装在三个不同的盒子中,盒内有序(即盒内作线排列),盒子不空,则不同的装法数又有 种(给出表达式,不必算出数值结果)。 2.棋盘C 如图1所示,则棋子多项式 R (C ) = 3.设有足够多的红球、黄球和绿球,同色球不加区分,设从中无序地取出n 个球的方式数为a n ,有序地取出n 个球的方式数为b n ,但均需满足红球的数量为偶,黄球的数量为奇,则 (1) 由组合意义写出的{a n }的普通母函数为 ; 求和后的母函数为 。 学 号 姓 名 学 院 …… … …… …… …密 …… …… … 封 … … … … … 线 … … … … … 以 … … … … … 内 … … … … … 答 … …… … … 题 … …… … … 无 … … … … … 效… … … …… …… 图1

组合数学试题 共 6 页 ,第 2 页 (2)由组合意义写出的{b n }的指数母函数为 ; 求和后的母函数为 。 4.(1) 将6个无区别的球放入3个无区别的盒子中且盒子不空的放法数为 。 (2)将6个有区别的球放入3个无区别的盒子中且盒子不空的放法数为 。(已知将5个有区别的球放入3个无区别的盒子中且盒子不空的放法数为25) 二、(14 分) 给定重集B = {3·A , 3·B , 4·C ,10·D }。求B 的8-组合数。 三、(14分)解下列递归关系 ?????==-=----87,7)1(761021a a a a a n n n n 四、(10分)用三种颜色对下图的小圆点着色,证明必存在两列,其着色完全相同。 五、(16分) 设长为n 的三元序列(即用0,1,2组成序列)中1与2的个数之和为奇的序列个数为a n 。 1.试建立{a n }的递归关系(不要求解出)。 2.用另一方法(即不用解递归关系的方法)求出a n 。 六、(14分)对下图中的7个小方格用红、黄、绿和黑四种颜色着色,问: 着红、黄和绿色的小方格的个数均不为2的着色方案数是多少 ? 七、(共10分) 1.现有7个人,其中恰有一对夫妇。试问从中取出6个人的夫妇不相邻的线排列有多少种? 2.若7个人中有三对夫妇,试问从中取出6个人的夫妇均不相邻的圆排列又有多少种? 学 号 姓 名 学 院 …… … ………… …密 …… …… … 封 … … … … … 线 … … … … … 以 … … … … … 内 … … … … … 答 … …… … … 题 … … … … … 无 …… … … … 效…………………

吉林大学组合数学习题解答

吉林大学组合数学习题解答

————————————————————————————————作者: ————————————————————————————————日期:

第二章 2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n -1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n -1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的 坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 第三章 3.4 教室有两排,每排8个座位。现有学生14人,其中的5个人总坐在前排,4个人总坐在后排,求有多少种方法将学生安排在座位上? 解:前排8个座位,5人固定,共58*5!C 种方法;后排8个座位,4人固定,共4 8*4!C 种方法;前排和后排还剩7个座位,由剩下的5人挑选5个座位,共5 7*5!C 种方法;则一共有545 545887887***5!*5!*4!**28449792000C C C P P P ==种安排方法。 另一种解法:168277386545 5885885888871408! 7!C P P C P P C P P P P P ++=??=??。 3.5 将英文字母表中的26个字母排序,要求任意两个元音字母不能相邻,则有多少种排序方 法? 解:先排21个辅音字母,共有21! 再将5个元音插入到22个空隙中,5 22P 故所求为52155 222122521!P P C P ?= 3.6 有6名先生和6名女士围坐一个圆桌就餐,要求男女交替就坐,则有多少种不同的排坐方式? 解:6男全排列6!;6女全排列6!;6女插入6男的前6个空或者后6个空,即女打头或男打头6!*6!*2;再除以围圈重复得(6!*6!*2)/12=6!*5!= 86400 3.7 15个人围坐一个圆桌开会,如果先生A拒绝和先生B和C 相邻,那么有多少种排坐方式? 解:

相关文档
最新文档