数据结构 多项式乘法

数据结构 多项式乘法
数据结构 多项式乘法

实习报告

一、实习题:

请写出计算两个以单链接表表示的多项式相乘的程序。

1.需求分析和说明

两个多项式相乘,可以利用两个多项式的加法来实现,因为乘法运算可以分

解为一系列的加法运算:C(x)=A(x)*B(x)=A(x)*(b1x+b2x2+…+b n x n)=∑

=

n

i

i

i x

b

x

A

1

)

(

先用其中一个多项式去乘以另一个多项式的每一项,得出的若干个多项式按照一定的顺序相加,即幂不同的按照升幂排列,幂相同的将系数相加。

例如:

对于(X->1+2X->2)*(2X->2+4X->3).

X->1*(2X->2+4X->3)=2X->3+4X->4;

2X->2*(2X->2+4X->3)=4X->4+8X->5;

排列结果:2X->3+8X-4+8X->5

2.设计

用两个单链表的存储两个多项式,每个结点包含单项式的系数,幂和指向下一个元素地址的指针。用其中的一个多项式乘以另一个多项式的每一项,随后将所得结果按照升幂顺序排列,最后得到结果。

存储结构:

//单项式结构

struct Term {

float coef; // 系数。

int exp; // 幂指数。

Term( float c, int e) { coef = c; exp = e;}

Term( ) { }

friend int operator == (const Term & L, const Term & T ) { return L.exp == T.exp; }

friend int operator > (const Term & L, const Term & T ) { return L.exp > T.exp; }

friend int operator < (const Term & L, const Term & T ) { return L.exp < T.exp; }

friend Term & operator += ( Term & L, const Term & T )

{ L.coef += T.coef; return L; } //幂指数相同,则系数相加。

friend Term & operator *=(Term &L, const Term &T){ //实现单项式乘法

L.coef*=T.coef;

L.exp+=T.exp;

return L;

}

friend int equal_stop(const Term & L, const Term & T ) //用作输入结束标志,等则结束输入。

{return L.exp==T.exp &&L.coef==T.coef;}

friend istream & operator >> ( istream & is, Term & T );

friend ostream & operator << ( ostream & os, const Term & T );

friend char compare( const Term & P, const Term & T );

friend Is_Empty( const Term & T ){ return !T.coef; } };

//多项式类

template

class Polynomial {

public:

Polynomial (const ElemType &P) {Stop_flag=P;}

Polynomial ( ) { }

~Polynomial ( ){ }

Polynomial & operator = ( const Polynomial & T );

// Polynomial & operator + ( const Polynomial & T);

Polynomial & operator*( const Polynomial &T);

friend istream & operator >> ( istream & is, Polynomial & T );

friend ostream & operator << ( ostream & os, const Polynomial & T );

private:

List poly;

ElemType Stop_flag; // 用于判断多项式输入结束。

};

算法思想:

用两个单链表的存储两个多项式,每个结点包含单项式的系数,幂和指向下一个元素地址的指针。用其中的一个多项式中的每一项乘以另一个多项式,将得到的若干个多项式中的每一项按照幂次的顺序相加。即幂数相等项的系数相加,最后得到结果。

调用关系:

程序有三个文件,list.h, poly.h,main.cpp,文件poly.h调用list.h。文件main.cpp 调用poly.h。

算法实现框架:

声明两个Polynomial

类的多项式

用一个多项式中的每

一个单项式去乘以另

一个多项式,得若干个

多项式。

将得到的若干个多项

式中的每一项按照幂

次的顺序相加。即幂数

相等项的系数相加,然

后升幂排列

得运算结果。

3.用户手册:

运行程序,按照屏幕提示按幂次由低到高的顺序输入两个多项式,以(-1,-1)作为结束标志。两个多项式输入完毕后,程序自动显示两个多项式相乘的结果。

4.调试报告:

时间复杂度分析:

假设两个多项式的单项式个数分别为m和n。先用A多项式去乘以B多项式的每一项时,得到m个项数为n的多项式,完成这一步的时间复杂度为O(m*n)。然后进行相加的步骤,按照时间复杂度的求和定理,整个程序的时间复杂度为O(m*n)。

算法改进思路:

可以参考首项相乘的幂和末项项乘的幂,即最大次幂n和最小次幂m,取m<=i<=n,对i循环,对i的每一个值寻找多项式相乘的幂对应项,最后对所有项求和表示即可。但其时间复杂度要更大,在某些情况下可以参考。5.附录

源程序清单

//poly.h

#include

#include "listdefine.h"

//单项式结构

struct Term {

float coef; // 系数。

int exp; // 幂指数。

Term( float c, int e) { coef = c; exp = e;}

Term( ) { }

friend int operator == (const Term & L, const Term & T ) { return L.exp == T.exp; }

friend int operator > (const Term & L, const Term & T ) { return L.exp > T.exp; }

friend int operator < (const Term & L, const Term & T ) { return L.exp < T.exp; }

friend Term & operator += ( Term & L, const Term & T ) { L.coef += T.coef; return L; } //幂指数相同,则系数相加。

friend Term & operator *=(Term &L, const Term &T){ //实现单项式乘法

L.coef*=T.coef;

L.exp+=T.exp;

return L;

}

friend int equal_stop(const Term & L, const Term & T ) //用作输入结束标志,等则结束输入。

{return L.exp==T.exp &&L.coef==T.coef;}

friend istream & operator >> ( istream & is, Term & T );

friend ostream & operator << ( ostream & os, const Term & T );

friend char compare( const Term & P, const Term & T );

friend Is_Empty( const Term & T ){ return !T.coef; }

};

char compare(const Term &P, const Term &T) {

if (P==T) return '=';

else if (P

else return '>';

}

istream & operator >> ( istream &is, Term &T ) {

cout<< "Create a coefficient and power exponent ! \n";

cout<< "Please input a coefficient ! \n";

is >>T.coef;

cout<< "Please input a power exponent ! \n";

is >>T.exp;

return is;

}

ostream & operator << ( ostream & os, const Term & T ) {

if (T.coef>0) os<< '+';

os << T.coef << "x->"<< T.exp;

return os ;

}

//多项式类

template

class Polynomial {

public:

Polynomial (const ElemType &P) {Stop_flag=P;}

Polynomial ( ) { }

~Polynomial ( ){ }

Polynomial & operator = ( const Polynomial & T );

// Polynomial & operator + ( const Polynomial & T);

Polynomial & operator*( const Polynomial &T);

friend istream & operator >> ( istream & is, Polynomial & T );

friend ostream & operator << ( ostream & os, const Polynomial & T );

private:

List poly;

ElemType Stop_flag; // 用于判断多项式输入结束。

};

template

istream & operator >>( istream & is, Polynomial & T ) {

ElemType elem;

ListItr Itr(T.poly);

cout << "Create a Polynomial! \n";

cout << "Please input coefficient and power exponent one by one! \n";

while ( is>>elem,!equal_stop(elem,T.Stop_flag)) Itr.Insert(elem);

return is;

}

template

ostream & operator << ( ostream & os, const Polynomial< ElemType > & T ) { if ((T.poly ).IsEmpty( )) os << "Polynomial is Empty!\n";

else for (ListItrItr(T.poly);+Itr;++Itr) os<

return os<<'\n';

}

template

Polynomial& Polynomial::operator =(const Polynomial &T){

if(this==&T)

return *this;

poly.MakeEmpty();

ListItr ItrT(T.poly);

ListItr ItrThis(poly);

for(;+ItrT;++ItrT)

ItrThis.Insert(ItrT());

return *this;

}

template

Polynomial& Polynomial::operator *(const Polynomial &T){

ElemType elemA,elemB;

Polynomial C;

ListItr ItrA(poly);

ListItr ItrB(T.poly);

ListItr ItrC(C.poly);

for(;+ItrA;++ItrA){

ItrB.First();

for(;+ItrB;++ItrB){

elemA=ItrA();

elemB=ItrB();

elemA*=elemB;

if(!(C.poly).IsEmpty())

ItrC.First();

ElemType a;

int k;

for(k=0;(+ItrC)&&(k!=-1);++ItrC)

switch(compare(elemA,ItrC())){

case '>':

{

k++; a=ItrC();

break;

}

case '=':

{

ElemType b=ItrC();

a=ItrC();

b+=elemA;

if(!Is_Empty(b))

ItrC.Insert(b);

ItrC.Remove(a);

k=-1;

break;

}

case '<':

{

ItrC.Zeroth();

for(int i=0;i

++ItrC;

ItrC.Insert(elemA);

k=-1;

break;

}

}

if(!+ItrC&&k!=-1){

if((C.poly).IsEmpty()){

ItrC.Insert(elemA);

}

else{

ItrC.Find(a);

ItrC.Insert(elemA);

}

}

}

}

*this=C;

return *this;

}

//listdefine.h

#include

void Exception(int Condition, const char* ErrorMsg){ if(Condition) {cerr << ErrorMsg << endl; }

}

//单链表节点类

template class AbsListItr;

template

class AbsList{

public:

AbsList(){};

virtual ~AbsList(){};

virtual IsEmpty() const=0;

virtual IsFull() const=0;

virtual void MakeEmpty()=0;

friend class AbsListItr ;

private:

AbsList(const AbsList &){}

};

template

class AbsListItr{

public:

AbsListItr(const AbsList&L){}

AbsListItr(const AbsListItr &);

virtual ~AbsListItr(){}

virtual void Insert(const ElemType &x)=0;

virtual int Remove(const ElemType &x)=0;

virtual int Find(const ElemType &x)=0;

virtual int IsFound(const ElemType &x) const =0;

virtual int operator +()const=0;

virtual const ElemType &operator()()const=0;

virtual void Zeroth()=0;

virtual void First()=0;

virtual void operator ++()=0;

virtual void operator ++(int)=0;

protected:

AbsListItr(){}

};

template class List; // 单链表类的向前说明。template class ListItr; // 单链表迭代器类的向前说明。template class ListNode{

friend class List ;

// 单链表类为其友元类, 便于访问结点类中的私有成员。

friend class ListItr ;

// 单链表迭代器类为其友元类, 便于访问结点类中的私有成员。

private:

ElemType Element; // 结点数据。

ListNode * Next; // 指向下一个结点的指针。

public:

ListNode (const ElemType &E, ListNode *N=NULL):Element(E),Next(N) { }// 构造函数

ListNode * getNext(){return Next;}

ListNode( ) : Next( NULL ) { } // 构造函数

~ListNode ( ) { }; // 析构函数

};

//单链表类

template class ListItr; // 单链表迭代器类的向前说明。template class List : public AbsList {

friend class ListItr ; // 单链表迭代器类为其友元类。

private:

ListNode * head; // 指向头结点的指针。

public:

List( ) { head = new ListNode< ElemType >( ); }

~ List( ) { MakeEmpty( ); delete head; } // 析构函数

const List & operator=(const List &R); // 完成复制功能。

int IsEmpty( ) const {return head->Next == NULL;}

int IsFull( ) const {return 0;}

void MakeEmpty( );

};

template void List ::MakeEmpty(){ ListNode *Ptr;

ListNode *NextNode;

for(Ptr=head->Next;Ptr!=NULL;Ptr=NextNode){

NextNode=Ptr->Next;

delete Ptr;

}

head->Next=NULL;

}

template class ListItr : public AbsListItr { private:

ListNode *const head; // 指向头结点的常指针。

ListNode *Current; // 指向当前结点的指针。

public:

ListItr( const List & L) : head( L.head )

{ Current = L.IsEmpty( ) ? head : head->Next; }

~ ListItr( ) { } // 析构函数

int Find( const ElemType & x );

// 查找值为x的结点,查找成功则使其成为当前结点,并返回True。

int IsFound( const ElemType & x ) const; //查找值为x的结点,查找成功返回

// True,否则返回False;不改变指针Current的值。

void Insert( const ElemType & x ); // 插入成功,新结点成为当前结点。

int Remove( const ElemType & x ); // 删除值为x的结点的操作。

int operator + ( ) const { return Current && Current != head; }

// 当前结点非空则返回True。

const ElemType & operator ( ) ( ) const; // 取当前结点的数据值。

void operator ++ ( ); // 使当前结点的直接后继结点成为当前结点。

void operator ++ (int) {operator++( );} // 定义为前缀++运算符。

void Zeroth ( ) {Current=head;} // 当前指针指向头结点。 void First( ); // 当前指针指向首结点。

const ListItr & operator=(const ListItr &);

};

template

int ListItr :: Find( const ElemType & x ) {

ListNode * Ptr = head->Next;

while (Ptr!=NULL && !(Ptr->Element==x)) Ptr=Ptr->Next;

if (Ptr == NULL) return 0;

Current = Ptr;

return 1;

}

template

int ListItr :: IsFound( const ElemType & x ) const {

ListNode * Ptr = head->Next;

while ( Ptr != NULL && !( Ptr->Element == x) ) Ptr = Ptr->Next;

return Ptr != NULL;

}

template

void ListItr :: Insert( const ElemType & x ) { // 插入操作。Exception( Current == NULL, " The location is illegal!" );

ListNode *p;

p = new ListNode ( x,Current->Next);

Current = Current->Next=p;

}

template

int ListItr :: Remove( const ElemType & x ) {

ListNode * Ptr = head;

while ( Ptr->Next != NULL && !( Ptr->Next->Element == x) ) Ptr = Ptr->Next;

if ( Ptr ->Next == NULL ) return 0; // 未找到数据值为x的结点,删除失败。

ListNode * P = Ptr->Next;

Ptr->Next = Ptr->Next->Next;

delete P;

Current = head;

return 1;

}

template

const ElemType & ListItr::operator ()()const{

Exception(Current==head,"The location is not correct!");

return Current->Element;

}

template

void ListItr::operator ++(){

Exception(Current==NULL,"There is not next node!");

Current=Current->Next;

}

template

const ListItr&ListItr::operator =(const ListItr&R){

//符值运算符的实现。

if(this==&R)return*this;

Exception(head!=R.reader,"Reference to another list,it is ERROR!");

Current=R.Current;

return*this;

}

template

const List& List::operator =(const List &R){ //赋值运算符的实现

if(this==&R)

return *this;

MakeEmpty();

ListItr Itr(*this);

for(ListItr Ritr(R);+Ritr;Ritr++)

Itr.Insert(Ritr());

return *this;

}

template

void ListItr::First(){

Exception(head->Next == NULL,"There is not first node!");

Current=head->getNext();

}

//main.cpp

#include "poly.h"

main() {

Term R(-1,-1); // 多项式输入的结束标志。

Polynomial a(R), b(R), c;

cin >> a >> b; // 读入2 个多项式,通过对>> 重载实现。

c = a; // 多项式a 并不破坏,将其值送入c 暂存。

c * b; // 完成多项式c、b相乘,结果保存在多项式c 之中。

cout << c; // 将多项式c 输出。

return 0;

}

测试数据:

(1X->1+3X->2)*(1X->2+2X->4)

预计运行结果:+1x->3+3x->4+2x->5+6x->6

测试及运行结果:

Create a Polynomial!

Please input coefficient and power exponent one by one!

Create a coefficient and power exponent !

Please input a coefficient !

1

Pease input a power exponent !

1

Create a coefficient and power exponent !

Please input a coefficient !

3

Please input a power exponent !

2

Create a coefficient and power exponent !

Please input a coefficient !

-1

Please input a power exponent !

-1

Create a Polynomial!

Please input coefficient and power exponent one by one! Create a coefficient and power exponent !

Please input a coefficient !

1

Please input a power exponent !

2

Create a coefficient and power exponent !

Please input a coefficient !

2

Please input a power exponent !

4

Create a coefficient and power exponent !

Please input a coefficient !

-1

Please input a power exponent !

-1

+1x->3+3x->4+2x->5+6x->6

Press any key to continue

运行结果分析:

运行结果符合预定目标

多项式乘以多项式及乘法公式习题(终审稿)

多项式乘以多项式及乘 法公式习题 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

多项式乘以多项式及乘法公式 副标题 题号一二三总分 得分 一、选择题(本大题共12小题,共36.0分) 1.若(x-1)(x+3)=x2+mx+n,则m+n=()A.-1B.-2C.-3D.2 2.若,则p、q的值为()A.p=-3, q=-10B.p=-3,q=10C.p=7,q=-10D.p=7,q=10 3.若代数式的结果中不含字母x的一次项,那么a的值是 A.0B.2 C. D.- 4.(x-2)(x+3)的运算的结果是() A.x2-6? B.x2+6? C.x2-5x-6? D.x2+x-6 5.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为() A. B.- C.-5 D.5 6.若代数式x2+kxy+9y2是完全平方式,则k的值是() A.3 B.±3 C.6 D.±6 7.9x2-mxy+16y2是一个完全平方式,那么m的值是()A.12B.-12C.±12D.±24 8.下列多项式乘法,能用平方差公式计算的是()A.(-3x-2)(3x+2)B.(-a-b)(-b+a)C.(-3x+2)(2-3x)D.(3x+2)(2x-3)

9.若x2-nx+16是一个完全平方式,则n等于()A.4B.±4C.8D.±8 10.若-ax+x2是一个完全平方式,则常数a的值为() A. B. C.1D.±1 11.已知,,则的值为() A.7 B.5 C.3 D.1 12.下列各式能用平方差公式计算的是() ①② ③④ A.①②B.②③C.①③D.③④ 二、填空题(本大题共7小题,共21.0分) 13.若(x-5)(x+20)=x2+mx+n,则m=______,n=______. 14.已知(x-1)(x+3)=ax2+bx+c,则代数式9a-3b+c的值为 ______. 15.在x+p与x2﹣2x+1的积中不含x,则p的值为. 16.多项式x2-6x+9因式分解的结果为________. 17.(2a-b)(-2a-b)=______;(3x+5y)(______)=25y2-9x2. 18.已知,那么. 19.若是一个完全平方式,则▲. 三、计算题(本大题共7小题,共42.0分) 20.若(x2+mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值. 21. 22.已知(x+y)2=18,(x-y)2=4,求下列各式的值:(1)x2+y2;(2)xy. 23.已知:x+y=6,xy=4,求下列各式的值

多项式与多项式相乘同步练习(含答案).doc

第 3 课时多项式与多项式相乘 要点感知多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.( a+b)( p+q)=_____. 预习练习1- 1填空:(1)(a+4)(a+3)=a·a+a·3+4·_____+4×3=_____; (2)(2 x- 5y)(3 x-y)=2 x·3x+2x·_____+(- 5y) ·3x+( -5y) ·_____=_____. 1- 2计算:(x+5)(x-7)=_____;(2x-1)·(5x+2)=_____. 知识点 1直接运用法则计算 1.计算: (1)( m+1)(2 m- 1) ;(2)(2 a- 3b)(3 a+2b) ;(3)(2 x- 3y)(4 x2+6xy +9y2) ;(4)( y+1) 2;(5) a( a-3)+(2 -a)(2+ a). 2. 先化简,再求值:(2 x- 5)(3 x+2) - 6( x+1)( x- 2), 其中x= 1 . 5 知识点 2多项式乘以多项式的应用 3.若一个长方体的长、宽、高分别是3x- 4,2 x- 1 和x,则它的体积是 ( ) - 5x2+4x-11x2+4x-4x2-4x2+x+4 4. 为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为 a 厘米,宽为

3 a 厘米的长方形形状,又精心在四周加上了宽 2 厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 4 _____平方厘米 . 5. 我校操场原来的长是 2x 米,宽比长少 10 米,现在把操场的长与宽都增加了 5 米,则整个操场面积增加了 _____ 平方米 . 知识点 3 ( x +p )( x +q )= x 2+( p +q ) x +pq 6. 下列多项式相乘的结果为 x 2+3x - 18 的是 ( ) A.( x - 2)( x +9) B.( x +2)( x - 9) C.( x +3)( x - 6) D.( x -3)( x +6) 7. 已知 ( x +1)( x - 3)= x 2 +ax +b ,则 a , b 的值分别是 ( ) =2 , b =3 =- 2, b =-3 =- 2, b =3 =2, b =- 3 8. 计算: (1)( x +1)( x +4) (2)( m - 2)( m +3) (3)( y +4)( y +5) (4)( t -3)( t +4). 9. 计算: (1)( - 2 n )( - - ) ; (2)( x 3 - 2)( x 3+3) - ( x 2 ) 3+ 2 · ; m m n x x

(完整word版)初中数学乘法公式

第 1 页 共 16 页 乘法公式 概念总汇 1、平方差公式 平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a +b )(a -b )=a 2 -b 2 说明: (1)几何解释平方差公式 如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。 第一种:用正方形的面积公式计算:a 2-b 2; 第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b ) 结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。 所以:a 2-b 2=(a +b )(a -b )。 (2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式 完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即 (a +b )2 =a 2 +2ab +b 2 ,(a -b )2 =a 2 -2ab +b 2 这两个公式叫做完全平方公式。平方差公式和完全平方公式也叫做乘法公式 说明: (1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2 第二种:把图形分割成由2个正方形和2个相同的

第 2 页 共 16 页 长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以 它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a -b )2 第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ?=2-- 其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a -b ),宽是b ,所以 它的面积就是:()2 2 2 2 22b ab a b b a b a +-=?-?-- 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:()222 2b ab a b a +-=- (3)在进行运算时,防止出现以下错误:(a +b )2=a 2+b 2,(a -b )2=a 2-b 2 。要注意符号的处理,不同的处理方法就有不同的解法,注意完全平方公式的变形的运用。完全平方公式的a 和b ,可以表示任意的数或代数式,因此公式的使用就不必限于两个二项式相乘,而可以扩大到两个多项式相乘,但要注意在表示成完全平方公式的形式才能运用公式,完全平方公式有着广泛的应用,尤其要注意完全平方公式和平方差公式的综合应用 方法引导 1、乘法公式的基本计算 例1 利用平方差公式计算: (1)(3x +5y )(3x -5y ); (2)(0.5b +a )(-0.5b +a ) (3)(-m +n )(-m -n ) 难度等级:A

乘法公式与因式分解

乘法公式、多項式與因式分解 主題一:乘法公式的判別與求值 1. 乘法公式 1.2222)(b ab a b a ++=+(和的平方) 2.2222)(b ab a b a +-=-(差的平方) 3.22))((b a b a b a -=-+ (平方差) 4.(a+b)(c+d)=ac+ad+bc+bd (乘法分配律) 5. ac bc ab c b a c b a 222)(2222+++++=++(三項和的平方) 6.3223333)(b ab b a a b a +++=+(和的立方) 7.3223333)(b ab b a a b a -+-=-(差的立方) 8.3322))((b a b ab a b a +=+-+(立方和) 9.3322))((b a b ab a b a -=++-(立方差) 10.42242222))((b b a a b ab a b ab a ++=+-++ 2. 求值公式: (1) a 2+b 2=(a +b )2-2ab =(a -b )2+2ab 【若已知a +b 及ab ,欲求a -b 時,須先算出(a -b )2,再用平方根來求】 (2) x 2+x 21=(x +x 1)2-2=(x -x 1)2+2 (3) a 2+b 2+c 2+ab +bc +ca = 2 1〔(a +b )2+(b +c )2+(c +a )2〕 (4) (a +b )2=(a -b )2+4ab (5) (a -b )2=(a +b )2-4ab 3.乘法公式的應用與式子的展開: (1)(ax +b )(cx +d )=acx 2++ad x +bcx +bd (2)(ax +b )2=(ax )2+2×ax ×b +b 2=a 2x 2+2abx +b 2 (3)(ax -b )2=(ax )2-2×ax ×b +b 2=a 2x 2-2abx +b 2 (4)(ax +b )(ax -b )=(ax )2-b 2=a 2x 2-b 2 (5)(-ax +b )2=(ax -b )2;(-ax -b )2=(ax +b )2 主題二:多項式 1. 多項式的定義:由數和文字符號x 進行加法和乘法運算所構成的式子。多項式的文字x 不可在分母、指數、根號內與絕對值內,且須為有限項。 例:231 +X ,22-X ,5-X ,.....12+++X X 不是X 的多項式。 2.多項式的次數: (1) 只含一個文字的多項式,以文字的最高次數為此多項式之次數。 (2) 含二個或二個以上文字的多項式,以各項中文字的次數總和的最高次數為此多項式之次數。 (3) 常數多項式,包含零次多項式(只有常數項,且不為0)及零多項式(就是0)。

乘法公式、指数基本运算与多项式

第 一 章 乘法公式、指數基本運算與多項式 §§乘法公式、指數基本運算與多項式 1.乘法公式: (1)(a+b)2=a 2+2ab+b 2 (2)(a -b)2 =a 2-2ab+b 2 (3)(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ca (4)(a+b)(a -b)=a 2-b 2 (5)(a+b)(a 2-ab+b 2)=a 3+b 3 (6)(a -b)(a 2+ab+b 2)=a 3-b 3 (7)(a+b)3=a 3+3a 2b+3ab 2+b 3= a 3+b 3+3ab(a+b) (8)(a -b)3=a 3-3a 2b+3ab 2-b 3= a 3-b 3-3ab(a -b) (9)(x+a)(x+b)=x 2+(a+b)x+ab (10)(a+b)(c+d)=ac+ad+bc+bd (11)(a+b+c)(a 2+b 2+c 2-ab -bc -ca)=a 3+b 3+c 3-3abc 2.指數律: (1)a m ×a n =a m+n (2)a m ÷a n =a m -n ---a ≠0 (3)(a m )n =a m×n (4)(ab)n =a n b n (5)n n n b a b a =?? ? ??---b ≠0 (6)a ≠0?a 0=1 (7)n n a 1 a =----a ≠0 (8)n n 1 a a =---a>0 (9)n m a =n m a ---a>0

3.求值公式: [型一]已知a+b 和ab 之值: (1)a 2+b 2=(a+b)2-2ab (2)a 3+b 3=(a+b)3-3ab(a+b) (3)a 4+b 4=(a 2+b 2)2-2a 2b 2 (4)(a -b)2=(a+b)2-4ab [型二]已知a -b 和ab 之值: (1)a 2+b 2=(a -b)2+2ab (2)a 3-b 3=(a -b)3+3ab(a -b) (3)(a+b)2=(a -b)2+4ab [型三]分式型,已知x 1x +或x 1 x -之值: (1)2x 1x x 1x 2 22 -??? ? ?+=+ (2)2x 1x x 1x 2 22 +??? ? ?-=+ (3)4x 1x x 1x 2 2-??? ? ? +=??? ??- (4)4x 1x x 1x 2 2+??? ? ? -=??? ??+ (5)??? ??+-??? ??+=+x 1x 3x 1x x 1x 3 33 (6)??? ? ?-+??? ??-=-x 1x 3x 1x x 1x 3 33 4.商高定理(畢氏定理):?A BC 中,∠C=900 ,則2 2AB BC AC =+, 即直角三角形兩股長的平方和等於斜邊的平方。 常見的直角三角形三邊長: (1)四類型:(3,4,5)、(5,12,13)、(7,24,25)、(8,15,17)。 (2)將五類型的三邊按一定比例放大或縮小也可成為直角三角形。例:(3,4,5)→(6,8,10)→(9,12,15)→……。 5.坐標平面上兩點間的距離及中點坐標求法: 設坐標平面上相異兩點A (x 1,y 1)、B(x 2,y 2),O 為原點,則: (1)()()221221y y x x AB -+-= (2)AB 中點M 的坐標為?? ? ??++2y y ,2x x 2121 B C

多项式与多项式相乘同步练习(含答案)

第3课时 多项式与多项式相乘 要点感知 多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.(a +b )(p +q )=_____. 预习练习1-1 填空:(1)(a +4)(a +3)=a · a +a ·3+4·_____+4×3=_____; (2)(2x -5y )(3x -y )=2x ·3x +2x ·_____+(-5y )·3x +(-5y )·_____=_____. 1-2 计算:(x +5)(x -7)=_____;(2x -1)·(5x +2)=_____. 知识点1 直接运用法则计算 1.计算: (1)(m +1)(2m -1); (2)(2a -3b )(3a +2b ); (3)(2x -3y )(4x 2+6xy +9y 2); (4)(y +1)2; (5)a (a -3)+(2-a )(2+a ). 2.先化简,再求值:(2x -5)(3x +2)-6(x +1)(x -2),其中x =51. 知识点2 多项式乘以多项式的应用 3.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( ) -5x 2+4x -11x 2+4x -4x 2 -4x 2+x +4 4.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为43a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是_____平方厘米. 5.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了_____平方米. 知识点3 (x +p )(x +q )=x 2+(p +q )x +pq 6.下列多项式相乘的结果为x 2+3x -18的是( ) A.(x -2)(x +9) B.(x +2)(x -9) C.(x +3)(x -6) D.(x -3)(x +6) 7.已知(x +1)(x -3)=x 2+ax +b ,则a ,b 的值分别是( ) =2,b =3 =-2,b =-3 =-2,b =3 =2,b =-3 8.计算: (1)(x +1)(x +4) (2)(m -2)(m +3) (3)(y +4)(y +5) (4)(t -3)(t +4).

多项式乘以多项式及乘法公式习题

多项式乘以多项式及乘法公式 副标题 一、选择题(本大题共12小题,共36.0分) 1.若(x-1)(x+3)=x2+mx+n,则m+n=() A.-1 B.-2 C.-3 D.2 2.若,则p、q的值为() A.p=-3,q=-10 B.p=-3, q=10 C.p=7,q=-10 D.p=7,q=10 3.若代数式的结果中不含字母x的一次项,那么a的值是 A.0 B.2 C. D.- 4.(x-2)(x+3)的运算的结果是() A.x2-6 B.x2+6 C.x2-5x-6 D.x2+x-6 5. 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为() A. B. - C. -5 D. 5 6.若代数式x2+kxy+9y2是完全平方式,则k的值是() A.3 B.±3 C.6 D.±6 7.9x2-mxy+16y2是一个完全平方式,那么m的值是() A.12 B.-12 C.±12 D.±24 8.下列多项式乘法,能用平方差公式计算的是() A.(-3x-2)(3x+2) B.(-a-b)(-b+a) C.(-3x+2)(2-3x) D.(3x+2)(2x-3)

9.若x2-nx+16是一个完全平方式,则n等于( ) A.4 B.±4 C.8 D.±8 10. 若 -ax+x2是一个完全平方式,则常数a的值为() A. B. C. 1 D. ±1 11. 已知,,则的值为() A.7 B.5 C.3 D.1 12. 下列各式能用平方差公式计算的是() ①② ③④ A.①② B.②③ C.①③ D.③④ 二、填空题(本大题共7小题,共21.0分) 13.若(x-5)(x+20)=x2+mx+n,则m= ______ ,n= ______ . 14.已知(x-1)(x+3)=ax2+bx+c,则代数式9a-3b+c的值为 ______ . 15.在x+p与x2﹣2x+1的积中不含x,则p的值为. 16.多项式x2-6x+9因式分解的结果为________. 17.(2a-b)(-2a-b)= ______ ;(3x+5y)( ______ )=25y2-9x2. 18.已知,那么. 19.若是一个完全平方式,则▲ . 三、计算题(本大题共7小题,共42.0分) 20.若(x2+mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值. 21.

新人教部编版八年级数学上册第2课时 多项式与多项式相乘

14.1.4整式的乘法 第2课时多项式与多项式相乘 一、新课导入 1.导入课题: 今天我们继续研究整式的乘法,重点探讨多项式乘以多项式的运算法则. 2.学习目标: (1)能说出多项式与多项式相乘的法则. (2)能灵活地运用法则进行运算. 3.学习重、难点: 重点:多项式与多项式的乘法法则的理解及应用. 难点:多项式乘以多项式时负号的用法. 二、分层学习 1.自学指导: (1)自学内容:探究多项式乘以多项式的运算法则. (2)自学时间:5分钟. (3)自学方法:类比上节课单项式乘以多项式的研究方法来探讨多项式乘以多项式的运算法则. (4)探究提纲: ①如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m 米的长方形绿地,长增加了b米,宽增加了n米.你能用两种方法求出扩大后的绿地面积?看谁能写出来?

方法1:(a+b)(m+n), 方法2:am+an+bm+bn. ②由①你得到的等式为(a+b)(m+n)=am+an+bm+bn. ③在上节课中,我们由等式p(a+b+c)=pa+pb+pc得到单项式乘以多项式的运算法则,那么由②的等式你得到什么运算法则?并用文字表述此法则. 多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. ④试一试(x+y)(2x+y)=2x2+3xy+y2. 2.自学:学生结合探究提纲进行自学. 3.助学: (1)师助生: ①明了学情:通过看、问、查的方式了解学生的探究过程和结果是否正确. ②差异指导:关注学困生在多项式乘以多项式中出现漏乘的问题. (2)生助生:学生之间相互交流帮助. 4.强化: (1)总结交流:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.例如:(a+b)(m+n)= am+an+bm+bn. (2)计算:①(x+2)(x-3)②(3x-1)(2x+1) =x2-x-6 =6x2+x-1

201x版七年级数学下册 第9章 从面积到乘法公式 9.3 多项式乘多项式教案 苏科版

2019版七年级数学下册 第9章 从面积到乘法公式 9.3 多项式乘多项式教案 (新版)苏科版 教学目标: 1.理解多项式乘多项式运算的算理,会进行多项式乘多项式的运算(仅指一次式之间以及一次式与二次式之间相乘); 2.经历探究多项式乘多项式运算法则的过程,感悟数与形的关系,体验转化思想,知道使用符号可 以进行运算和推理,得到的结论具有一般性. 教学重点:多项式乘多项式的运算法则. 教学难点:利用单项式乘多项式的运算法则来推导多项式乘多项式的运算法则. 教学方法: 教学过程: 一.【情景创设】 提问:前面已经学习了单项式乘单项式,单项式乘多项式,那多项式乘多项式如:))((d c b a ++应该如何计算? 二.【问题探究】 活动一.(1)请计算下图的面积,你有哪些不同的方法?并把你的算法与同学交流. (2)将学生汇报的四个式子进行组合,得到下面两个式子: )((d c b a ++)()(d c b d c a +++= bd bc ad ac +++. ))((d c b a ++)()(b a d b a c +++= bd ad bc ac +++=. a c b d

提问:观察两个等式,对于))((d c b a ++的计算有何新的想法? 活动二.(1)引导学生发现运算过程,也可以表示为: ))((d c b a ++bd b c a d ac +++= (2)思考:多项式乘多项式应该如何计算? (3)得出法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 问题1 计算.(1))3)(2(-+x x (2))2)(13(--x x 问题2计算.(1))2)(3(n m n m -+; (2))2)(1(++n n n 问题3填空. (1)若n mx x x x ++=+-2)7)(4(,则____,==n m . (2)若2,1-==-ab b a ,则________)1)(1(=-+b a . 三【变式拓展】 问题4问题4计算:2)(b a + 问题5(2)若)3)(8(22q x x px x +-++的乘积中不含x 2与x 3的项,求p 、q 的值.

多项式乘以多项式教学设计

《多项式乘以多项式》教学设计 朱宾琪教学目标: 知识与技能: 1、探索多项式与多项式相乘的乘法法则。 2. 能灵活地进行整式的乘法运算。 过程与方法: 1、经历探索多项式与多项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想; 2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力; 情感、态度与价值观 体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。 教学重点:多项式的乘法法则及其应用。 教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。关键:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步转化为单项式的乘法,紧紧扣住这一线索。 教学方法:小组合作,自主学习 教学过程: 一、课前提问 师:1、多项式与多项式相乘的法则是什么?

依据是什么? 2、多项式与多项式相乘,结果的项数与原多项式的项数有何关系? 3、积的每一项的符号由谁决定? 计算: )32(3)4() 53(2)3() 35(4)2() 32(7)1(23322222xy xy y x b a a ax a ax b ab a +---- 生:交流答案 师:同学们看这道题怎样做?())()5(b n a m ++(多媒体展示)他和我们以前所学的有何不同? 生:现在是多项式乘多项式 师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 二、 学习目标(多媒体) 师:看到这个课题你想学习哪些知识呢? 生:交流 师:(多媒体呈现) 1、探究并了解多项式与多项式相乘的法则 2、熟练的运用法则进行运算 三、探求新知 问题助学一: 文文帮爸爸把原长为m 米,宽为b 米的菜地加长了n 米,拓宽了a 米,聪明的你能迅速表示出这块菜地现在的总面积吗? 你还能用更多的方法表示吗? (学生活动)小组内展评作品,推选出最优秀的同学的作品给全班学生展示。

多项式与多项式相乘习题

多项式与多项式相乘习题 一、选择题 1.计算(2a-3b)(2a+3b)的正确结果是( ) A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为( ) A.a+b B.-a-b C.a-b D.b-a 3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( ) A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则( ) A.p=q B.p=±q C.p=-q D.无法确定 5.若0<x<1,那么代数式(1-x)(2+x)的值是( ) A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2) B.2(a2-2) C.2a3D.2a6 7.方程(x+4)(x-5)=x2-20的解是( ) A.x=0 B.x=-4 C.x=5 D.x=40 8.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( ) A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 9.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于( ) A.36 B.15 C.19 D.21 10.(x+1)(x-1)与(x4+x2+1)的积是( )

A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1.(3x-1)(4x+5)=__________. 2.(-4x-y)(-5x+2y)=__________. 3.(x+3)(x+4)-(x-1)(x-2)=__________. 4.(y-1)(y-2)(y-3)=__________. 5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________. 6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________. 7.若a2+a+1=2,则(5-a)(6+a)=__________. 8.当k=__________时,多项式x-1与2-kx的乘积不含一次项. 9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______. 10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________. 三、解答题 1、计算下列各式 (1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1) (3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y) 2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001. 3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-5 2 y),其中x=-1,y=2. 4、解方程组

多项式乘以多项式

多项式的乘法 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础. 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算 时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到 然后再次运用单项式与多项式相乘的法则,得到: 2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等 于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有 3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如 积的项数应是,即六项: 当然,如有同类项则应合并,得出最简结果. 4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.

5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”. 三、教法建议 教学时,应注意以下几点: (1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如 , 积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果. (2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号. (3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数. (4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的 , 等等,能够直接写出结果. 教学设计示例 一、教学目标 1.理解和掌握单项式与多项式乘法法则及其推导过程. 2.熟练运用法则进行单项式与多项式的乘法计算.

多项式与多项式相乘经典练习题

【基础知识】多项式与多项式的乘法法则 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 【题型1】多项式乘多项式 计算 (1)(2x -5y)(3x -y) (2)(x +5)(2x -7) (3)(4x +2y)(2x -7y) (4)(2x -y)(5x +2y-1) (5) ))((22y xy x y x ++- (4)(2x -y+2)(5x +2y-1) 【变式训练】 1.下列计算正确的是( ) A.473)4)(132-+=-+x x x x ( B.222)(b a b a +=+ C.22))(b a b a b a +=-+( D.2 2232)2)(2(y xy x y x y x --=-+ 2.若(x +2)(x -1)=x 2+mx +n ,则m +n = . 3.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 4.计算 (1)(m +1)(2m -1) (2)(2a -3b)(3a +2b) (3)(3m -2n)(-m -n)

(4)(ab-b)(5ab+2b) (5)(a2b-b2)(5ab2+2b) (6)(-7x2-8y2)(-x2+3y2) (7)(y+2)2 (8) (x+2y)2 (9) (3x-2y)2 (10)(x+1)(x2-x+1) (11)(2x+y)(x2-xy+y) (12)(2xy+y)(x2-xy+y2) (13)(2a+3b)(3a+ab-2b) (14)(a-3b)(3ab+a2-2b2) (15)(5xy+2x-1)(xy+2) (16)(x3-2)(x3+3)-(x2)3+x2.x (17)(3x-2y)(y-3x)-(2x-y)(3x+y) 5.先化简,再求值(x-5)(x+2)-(x+1)(x-2),其中x=-4.

《多项式与多项式相乘》同步练习题

第2课时 多项式与多项式相乘 一、选择题(每小题2分,共20分) 1.1.化简2)2()2(a a a --?-的结果是( ) A .0 B .22a C .26a - D .24a - 2.下列计算中,正确的是( ) A .ab b a 532=+ B .33a a a =? C .a a a =-56 D .222)(b a ab =- 3.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( ) A .0 B .5 C .-5 D .-5或5 4.下列各式中,从左到右的变形是因式分解的是( ) A .a a a a +=+2)1( B .b a b a b a b a b a -+-+=-+-))((22 B .)4)(4(422y x y x y x -+=- D .))((222a bc a bc c b a -+=+- 5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为( A .2c ac ab bc ++- B .2c ac bc ab +-- C .ac bc ab a -++2 D .ab a bc b -+-22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43- B .k k 883- C .k k -34 D .k k 283- 7.如果7)(2=+b a ,3)(2=-b a ,那么ab 的值是( ) A .2 B .-8 C .1 D .-1 8.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( ) A .2 B .±2 C .4 D .±4 9.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >b C .a <b <c D .b >c >a 10.多项式251244522+++-x y xy x 的最小值为( ) A .4 B .5 C .16 D .25 二、填空题(每小题2分,共20分) 11.已知23-=a ,则6a = . 12.计算:3222)()3(xy y x -?-= . 13.计算:)13 12)(3(22+--y x y xy = . 14.计算:)32)(23(+-x x = . 15.计算:22)2()2(+-x x = . 16.+24x ( 2)32(9)-=+x . 17.分解因式:23123xy x -= .

初一数学乘法公式

乘法公式 一、平方差公式:(a+b)(a-b)=a2-b2 要注意等式的特点: (1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数; (2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方. 值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具. 例1下列各式中不能用平方差公式计算的是(). A.(a-b)(-a-b)B.(a2-b2)(a2+b2) C.(a+b)(-a-b)D.(b2-a2)(-a2-b2) 解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算. 例2运用平方差公式计算: (1)(x2-y)(-y-x2); (2)(a-3)(a2+9)(a+3). 解:(1)(x2-y)(-y-x2)

=(-y +x2)(-y-x2) =(-y)2-(x2)2 =y2-x4; (2)(a-3)(a2+9)(a+3) =(a-3)(a+3)(a2+9) =(a2-32)(a 2+9) =(a2-9)(a2+9) =a4-81 . 例3计算: (1)54.52-45.52; (2)(2x2+3x+1)(2x2-3x+1). 分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看做公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算. 解:(1)54.52-45.52 =(54.5+45.5)(54.5-45.5)

多项式的乘法教案

多项式的乘法教案 一、讲课内容:单项式与多项式相乘及多项式与多项式相乘。 二、重点、难点分析: 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式, 是一个多项式,运用单项式与多项式相乘的法则,得到(a+b)(m+n)=a(m+n)+b(m+n),,然后再次运用单项式与多项式相乘的法则,得到::am+an+bm+bn 2.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:。当然,如有同类项则应合并,得出最简结果.。运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即(a+b)(m+n+c)=a(m+n+c)+b(m+n+c)=am+an+ac+bm+bn+bc.3.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 4.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”. 三、教法建议 教学时,应注意以下几点: (1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果. (2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号. 教学设计示例 一、教学目标 1.理解和掌握单项式与多项式乘法法则及其推导过程. 2.熟练运用法则进行单项式与多项式的乘法计算. 3.通过用文字概括法则,提高学生数学表达能力. 4.通过反馈练习,培养学生计算能力和综合运用知识的能力. 5.渗透公式恒等变形的和谐美、简洁美. 二、学法引导 1.教学方法:讨论法、讲练结合法.

多项式的乘法初中一年级教案

一、知识结构 二、重点、难点分析 本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础. 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到 然后再次运用单项式与多项式相乘的法则,得到: 2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有 3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项: 当然,如有同类项则应合并,得出最简结果. 4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即. 5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”. 三、教法建议 教学时,应注意以下几点: (1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,

多项式乘法平方差公式

多项式乘法 例1 计算 (1)(x+y )(a+2b ) (2)(3x-1)(x+3) 例2 先化简,再求值:(2a-3)(3a+1)-6a (a-4),其中a =2/17 例3. 计算: (1)(1-x )(0.6-x ) (2)(2x +y )(x -y ) 基础巩固 1. 计算m 2-(m +1)(m -5)的结果正确的是( ) A .-4m -5 B.4m +5 C.m 2-4m +5 D.m 2+4m -5 2.(1+x )(2x 2+ax +1)的结果中x 2项的系数为-2,则a 的值为( ) A.-2 B.1 C.-4 D.以上都不对 3.一个三项式与一个二项式相乘,在合并同类项之前,积的项数是( ) A.五项 B.六项 C.三项 D.四项 4.(x -4)(x +8)=x 2+mx +n 则m 、n 的值分别是( ) A.4,32 B.4,-32 C.-4,32 D.-4,-32 5. 直接写出下面各式的计算结果: (1)(m +2n )(m -2n )= (2)(2n +5)(n -3) = (3)(x +2y )2= 6. 计算: (1)(1-x )(0.6-x ) (2)(2x +y )(x -y ) (3)(x -y )2 (4)(-2x +3)2 (5)(x +2)(y +3)-(x +1)(y -2) 7. 先化简,再求值:(x -y )(x -2y )-2 1 (2x -3y )(x +2y ),其中x =2,y =5 2.

8. 已知多项式x 2+ax +b 与x 2-2x -3的乘积中不含x 3与x 2项,则a 、b 的值为( ) A .a =2,b =7 B .a =-2,b =-3 C .a =3,b =7 D .a =3,b =4 9.当x =-3时多项式ax 5-bx 3+cx -8的值为8,则当x =3时,它的值为( ) A .8 B .-8 C .24 D .-24 10.如果(x +m )(2x +2 1)的积中不含x 项,则m 等于( ) A.1/4 B.-1/4 C. 1/2 D.-1/2 11.下列等式①x (x -y )-y (3y -2x )=x 2-3xy -3y 2 ②-2 1ab 2(b 3-ab 2+2a 3b )=-2 1ab 5+2 1a 2b 4-a 4b 3 ③(a -b )(a +b )=a 2-ab +b 2 ④(2x +y )(4x 2+2xy +y 2)=8x 3+y 3 中,正确的是( ) A.0个 B.1个 C.2个 D.3个 12. 运算(-3x )2-2(x -5)(x -2)= . 13.长方形的一边长3m +2n ,另一边比它大m -n ,则长方形的面积为 . 14. 计算: (1) 5(x -1)(x +3)-2(x -5)(x -2) (2) (3x -2y )(2x -3y ) (3) (a -b )(a 2+ab +b 2) (4) (3y +2)(y -4)-3(y -2)(y -3) 15.解方程:8x 2-(2x -3)(4x +2)=14 16. (2a -3b)2·(2a +3b)2 三、拓展延伸,探索挑战 (1)(a+b )(a 2-ab+b 2) (2)(a+b+c )(c+d+e ) 四、综合探究 1. 计算下列各式,猜想规律: (x -1)(x +1)= . (x -1)(x 2+x +1)= . (x -1)(x 3+x 2+x +1)= . (x -1)(x 4+x 3+x 2+x +1)= .… (x -1)(x n +x n -1+…+x +1)= . 2. 为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长 a 厘米,宽为4 3 a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这 幅摄影作品照片占的面积是多少平方厘米?

相关文档
最新文档