单相、三相整流的输入电流与输出电流的关系

单相、三相整流的输入电流与输出电流的关系
单相、三相整流的输入电流与输出电流的关系

单相桥式整流电路实验

课题单相桥式整流电路执教者教学时间40×2分钟 教学方法启发讲授、项目示范、练习巩固教学用具黑板/粉笔,投影,二极管整流电路示范装置,交流电源调节器,通用双踪示波器,万用表 教学目的通过对单相桥式整流电路原理的理解,能够正确的使用和安装单向桥式整流电路或桥堆(1)根据二极管的单向导电性正确判断桥中二极管的导通、截止状态,并用波形表示;(2)使用示波器分析工作中电路的波形,正确判断桥及桥中二极管的工作情况是否正常;(3)使用万用表对桥的输入、输出电压进行测量、监控,掌握桥的输入、输出关系;(4)根据要求正确地选择二极管或集成的桥堆; (5)正确安装整流桥并接入电路,注意好的职业习惯的培养; 教学重点单向桥式整流电路原理的理解及电路安装 教学难点(1)桥中各桥臂二极管的工作情况分析;(2)整流桥中二极管参数的选择; (3)二极管在整流电路安装时的操作要点。 教学过程 项目内容备注 导入:8min 1、二极管的单向导电性; 2、单向半波、全波整流电路的优劣特点 使用万用表和示波器 对相关内容进行复习。

教学过程( 续) 新 课: 65 min 单相桥式 整流电路 原理 (35min) 1、用不同颜色的发光二极管代替普通的整流二极管组成桥式整流电路,正确接入电 路,演示二极管整流过程。 2、将双踪示波器分别接入相邻、相对两桥臂,观察其变化过程。(1、2共18min) 3、使用万用表对其输入、输出电压进一步跟踪,调节输入电压的大小,测量输出电 压,发现它们之间的数量关系。(14min) 4、师生对上述过程进行分析,探究上述现象形成的原因。(3min) 运用模块式任务导向 教学原理,展开教学, 以突出重点、分化难 点。 器件的选 择与电路 安装 (30min) 1、根据上述原理分析,获得二极管桥式整流电路中二极管上承受最大反压、流过二 极管整流电流值与整流桥交流侧输入电压的关系,从而理解该电路在选择二极管时 所采用的经验式。 2、示范练习并指导学生根据需要选择二极管,并将其正确接入电路。 注意事项 电路安装时,一定要认准交流侧“阴阳-阴阳”串联,直流侧“阴阴-阳阳”并联; 测试桥式整流电路输入、输出电压时要注意万用表使用安全; 测试信号波形时,因测试探头“公共接地”端在测试中的作用,在测试时为了分析方便,当测试扫描一旦确 定,在进行输出、管压降测试时,不要再次调节该参数。 课堂总结及作 业布置(5min) 总结本教学单元的重点,巧妙设置问题考查学生的掌握程度,同时提出思考,为进入滤波电路学习做好铺垫。课堂答疑(2 min)针对本教学单元内的相关问题,课堂上回答学生的疑问,并对比较集中的、非常规性的问题在全班进行解释。教学反思(附后) 2

单相桥式整流电路课程设计报告..

电力电子课程设计报告

目录 一、设计任务说明 (3) 二、设计方案的比较 (4) 三、单元电路的设计和主要元器件说明 (6) 四、主电路的原理分析 (9) 五、各主要元器件的选择: (12) 六、驱动电路设计 (14) 七、保护电路 (16) 八、元器件清单 (21) 九、设计总结 (22) 十、参考文献 (23)

一、设计任务说明 1.设计任务: 1)进行设计方案的比较,并选定设计方案; 2)完成单元电路的设计和主要元器件说明; 3)完成主电路的原理分析,各主要元件的选择; 4)驱动电路的设计,保护电路的设计; 5)利用仿真软件分析电路的工作过程; 2.设计要求: 1)单相桥式相控整流的设计要求为: 负载为感性负载,L=700mH,R=500Ω 2)技术要求: A.电网供电电压为单相220V; B.电网电压波动为5%——10%; C.输出电压为0——100V;

二、设计方案的比较 单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。主要方案有三种: 方案一: 采用单相桥式全控整流电路,电路图如下: 对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。 方案二: 采用单相桥式半控整流电路,电路图如下: 相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且

降低了成本,降低了损耗。但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。因此该电路在实际应用中需要加设续流二极管。 综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。因此选择方案一的单相桥式全控整流电路。

单相半控桥整流电路实验报告

目录 一、实验基本内容----------------------------------2 1.实验项目名称-----------------------------------2 2.实验已知条件-----------------------------------2 3.实验完成目标-----------------------------------3 二、实验条件描述-----------------------------------3 1.主要设备仪器-----------------------------------3 2.小组人员分工-----------------------------------3 三、实验过程描述-----------------------------------4 1.实现同步---------------------------------------4 2.半控桥纯阻性负载试验---------------------------4 3.半控桥阻-感性负载(串联L=200mH)实验-----------6 四、实验仿真---------------------------------------9 五、实验数据处理及讨论-----------------------------18 六、实验思考---------------------------------------22

一、实验基本内容 1.实验项目名称:单相半控桥整流电路实验 2.实验已知条件:单相半控桥整流电路如图所示,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。 (1)阻性负载电源电压u2在(0,α),VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周(π,π+α)期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。 (2)感性负载负载电感足够大从而使负载电流连续且为一水平线。电源电压u2的正半周,wt=α时刻触发晶闸管VT1,则VT1,VD4立即导通,电流从电源出来经VT1,负载,VD4流回电源,此时ud=u2。当wt=π时,电源电压u2经零变负,由于电感的存在,VT1将继续导通,此时a点电位较b点电位低,二极管自然换相,从VD4换至VD2,这样电流不再经过变压器绕组,而由VT1,VD2续流,忽略器件导通压降,ud=0,整流电路不会输出负电压。电源电压u2的负半周,wt=π+α时刻触发VT3,则VT3,VD2导通,使VT1承受反向电压关断,电源通过VT3和VD2又向负载供电,ud= -u2。U2从负半周过零变正时,电流从VD2换流至VD4,电感通过VT3,VD4续流,ud又为零。以后,VT1再次触发导通,重复上诉过程。 3. 实验完成目标: (1)实现控制触发脉冲与晶闸管同步。

单相桥式全控整流电路设计_(纯电阻负载)

单相桥式全控整流电路的设计一、 1. 设计方案及原理 1.1 原理方框图 触发电路 驱动电路 整流主电路 负载 1.2 主电路的设计 电阻负载主电路主电路原理图如下: 1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿 b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算 电阻负载的参数计算如下: (1) 整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos ) (1-1) 当α=0时,取得最大值,即= 0.9 ,取=100V则U d =90V,α=180o 时,=0。α角的移相范围为180o。 (2) 负载电流平均值为 I d=U d/R=0.45U2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R (1-3) (4)流过晶闸管电流有效值为 IVT= I2/ (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取和中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍, 以保证电路的工作安全。 晶闸管的额定电压 U TN=(2~3)U TM(2-1) U TM:工作电路中加在管子上的最大瞬时电压

实验二 单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验 一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载及电阻-电感性负载下的工作特性。 3.熟悉NMCL-05锯齿波触发电路的工作。 二.实验线路及原理 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻-电感性负载。 四.实验设备及仪器 1.NMCL-III教学实验台主控制屏 2.NMCL-32主控制屏

3.NMCL-05组件及SMCL-01或NMCL-31 4.MEL-03A组件和NMCL-331多电感组件 5.NMCL-35和NMCL-33组件 6.双踪示波器 7.万用表 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱。 2.负载电阻调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择并且必须与电阻串联,需防止过大的电感造成可控硅不能导通。 4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法 1.将NMCL-05面板左上角的同步电压输入接NMCL-32的U、V输出端,“触发电路选择”拨向“锯齿波”。 2.单相桥式全控整流电路供电给电阻负载 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节U ct ,测量在不同α角(30°、60°、90°) 时整流电路的输出电压U d =f(t),晶闸管的端电压U VT =f(t)的波形,并记录 相应α角时的输出电压U d 和U VT 的波形。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。3.单相桥式全控整流电路供电给电阻-电感性负载 接上电路负载为阻感型,测量在不同控制电压U ct 时的输出电压U d =f(t),负

电力电子技术—单相半波可控整流电路

电力电子技术—单相半波可 控整流电路 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

整流电路 1、单相半波可控整流电路 电阻负载: 注:电阻负载的特点是电压d u 与电流d i 成正比,两者波形相同。 g u :触发脉冲;α:触发角;θ:导通角 1、直流输出电压平均值: ()()2 145.0122sin 221222ααπωωππαCOS U COS U t td U U d +=+==? 2、相控方式:通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式

阻感负载: 1、流过电感的电流变化时,在其两端产生感应电动势dt di L ,它的极性反过来阻止电流减小。L 的存在使d i 不能突变,d i 从0开始增加。 2、2u 由正变负的过零点处,d i 已经处于减小的过程中,但尚未降到零,因此VT 仍处于通态。 3、2t ω时刻,d i 降至零,VT 关断并立即承受反压。 4、由于电感的存在延迟了VT 的关断时刻,使d u 波形出现负的部分,与带电阻负载时相比其平均值d U 下降。 5、 ()22L R Z ω+=,R L ω?arctan =

6、若?为定值,ɑ角大,θ越小。若ɑ为定值,?越大,θ越大,且平均值 U d 越接近零。 阻感负载(带续流二极管): i连续,且其波形接近一条水平线。 1、若L足够大, d 2、流过晶闸管的电流平均值IdT 和有效值IT 分别为: 续流二极管的电流平均值IdDR 和有效值IDR 分别为:

3、其移相范围为180°,其承受的最大正反向电压均为2u的峰值即 2U。续流 2 二极管承受的电压为-ud ,其最大反向电压为 2U,亦为u2 的峰值。 2

单相桥式整流电路设计..

1 单相桥式整流电路设计 单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。下面分析两种单相桥式整流电路在带电感性负载的工作情况。 单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控式整流电路其输出平均电压是半波整流电路2 倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。 单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。 根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。 1.1 元器件的选择 1.1.1 晶闸管的介绍 晶管又称为晶体闸流管,可控硅整流(Silico n Con trolled Rectifier--SCR ), 开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20 世纪80 年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz 以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件 1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。 晶闸管有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(或称栅极)G三个联接端。 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便

实验二 单相桥式全控整流电路实验 电力电子技术实验

一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。 3.熟悉NMCL—05(E)组件或NMCL—36组件。 二.实验线路及原理 参见图1-3。 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻—电感性负载。 四.实验设备及仪器 1.教学实验台主控制屏; 2.NMCL—33组件; 3.NMCL—05(E)组件或NMCL—36组件; 4.MEL-03(A)组件; 5.NMCL—35组件; 6.双踪示波器(自备); 7.万用表(自备)。 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱(或NMCL—36组件),故NMCL-33的内部脉冲需断,以免造成误触发。 2.电阻R D的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。 4.NMCL-05(E)(或NMCL—36)面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.逆变变压器采用NMCL—35组式变压器,原边为220V,副边为110V。 6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法

图1-3 单相桥式全控整流电路 1.将NMCL—05(E)(或NMCL—36)面板左上角的同步电压输入接NMCL—3 2的U、V输出端),“触发电路选择”拨向“锯齿波”。 2.断开NMCL-35和NMCL-33的连接线,合上主电路电源,此时锯齿波触发电路应处于工作状态。 NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。调节偏移电压电位器RP2,使 =90°。 断开主电源,连接NMCL-35和NMCL-33。 3.单相桥式全控整流电路供电给电阻负载。 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。

单相半波整流电路的设计

单相半波整流电路的设计 摘要 本文主要进行了单相半波整流电路的设计。单相半波整流电流电路的特点是简单,但输出脉动大,变压器二次电流中含有直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心面积,增大了设备的容量。实际上很少应用此种电路。分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。晶闸管不同于整流二极管,它的导通是可控的。可控整流电路的作用就是把交流电变换为电压值可以调节的直流电。在充分理解单相半波整流电路工作原理的基础上,本文设计出了单相半波整流电路带电阻负载、电感负载、阻感负载时的电路原理图,并对其中的相关参数进行了计算,仿真波形对比发现结果正确。 关键词:晶闸管,整流,触发

目录 摘要 .................................................................... 1课题背景............................................... 错误!未指定书签。 1.1选题背景 (1) 1.2参数选择 (1) 2单相半波整流电路的设计................................. 错误!未指定书签。 2.1单相半波整流电路(电阻负载) ..................... 错误!未指定书签。 2.1.1工作原理和电路特点(电阻负载).............. 错误!未指定书签。 2.1.2电路原理图(电阻负载)...................... 错误!未指定书签。 2.1.3参数计算(电阻负载)........................ 错误!未指定书签。 2.1.4仿真波形(电阻负载)........................ 错误!未指定书签。 2.1.5结论(电阻负载)............................ 错误!未指定书签。 2.2单相半波整流电路(电感负载) ..................... 错误!未指定书签。 2.2.1工作原理(电感负载)........................ 错误!未指定书签。 2.2.3仿真波形(电感负载)........................ 错误!未指定书签。 2.3单相半波整流电路(阻感负载) ..................... 错误!未指定书签。 2.3.1工作原理(阻感负载)........................ 错误!未指定书签。 2.3.2电路原理图(阻感负载)...................... 错误!未指定书签。 2.3.3参数计算(阻感负载)........................ 错误!未指定书签。 2.3.4仿真波形(阻感负载)........................ 错误!未指定书签。致谢 .................................................... 错误!未指定书签。参考文献 ................................................ 错误!未指定书签。

单相全波可控整流电路单相桥式半控整流电路[1]

单相全波可控整流电路、单相桥式半控整流电路 一.单相全波可控整流电路 单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。 图1 单相全波可控整流电路及波形 单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。变压器不存在直流磁化的问题。单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。因此,单相全波电路有利于在低输出电压的场合应用 1.电路结构 图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形 单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。如此即成为单相桥式半控整流电路(先不考虑VDR)。单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt) 2.电阻负载 半控电路与全控电路在电阻负载时的工作情况相同。其工作过程如下: a)在u2正半周,u2经VT1和VD4向负载供电。 b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。 c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。 d)u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,u d又为零。 3.续流二极管的作用 1)避免可能发生的失控现象。2)若无续流二极管,则当a突然增大至180 或触发脉冲 丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。3)有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。4)续流期间导电回路中只有一个管压降,有利于降低损耗。 4.单相桥式半控整流电路的另一种接法

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

单相全波整流电路的设计电力电子

单相全波整流电路的设计 摘要 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景。 电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。 关键词:电力电子,整流电路

目录 1设计任务 (4) 1.1设计目的 (4) 1.2设计内容 (4) 1.3 设计要求 (4) 2 设计内容 (5) 2.1 基本原理介绍 (5) 2.2电路设计的经济性论证 (6) 2.3主电路设计 (6) 2.3.1 触发电路 (6) 2.3.2 形成与脉冲放大环节 (8) 2.3.2 锯齿波形成与脉冲移相环节 (8) 2.3.3驱动电路 (9) 2.3.4保护电路 (9) 3参数设定 (12) 3.1180°调压 (12) 3.2 移相调压 (14) 4 参数计算 .............................................. 错误!未定义书签。 4.1 计算公式 (16) 4.2 参数选择: (16) 4.3计算:T=1/f=1/50=0.02s (17) 5仿真 (18) 5.1触发角为30度 (18) 5.2触发角为90度 (19) 5.3触发角为120度 (20) 6波形分析 (21) 心得体会 (22) 参考文献 (23)

单相半波可控整流电路仿真实验指导书样本

单相半波可控整流电路仿真实验 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法, 会设置各个模块的参数。 二、原理图 单相半波可控整流电流( 电阻性负载) 原理图, 晶闸管作为开关元件, 变压器t器变换电压和隔离的作用, 用u1和u2分别表示一次和二次电压瞬时值, 二次电压u2为50hz正弦波波形如图所示, 其有效值为u2, 如图1-1。

图1-1 三、实验模型和参数设置 2.参数设置 仿真参数, 算法( solver) ode15s, 相对误差( relativetolerance) 1e-3, 开始时间0结束时间0.05s, 如图1-3。

图1-3 脉冲发生器: Amplitude=5, period=0.02, Pulse Width=2, 时相延迟( 1/50) x( n/360) s, 如图1-4

图1-4 电源参数, 频率50hz, 电压220v, 如图1-5

图1-5 晶闸管: Ron=1e-3,Lon=1e-5,Vf=0.8,Ic=0,Rs=500, Cs=250e-9如图1-6

图1-6 晶闸管: Ron=1e-3,Lon=1e-5,Vf=0.8,Ic=0,Rs=500, Cs=250e-9. 电源: Up=220, f=50Hz. 脉冲发生器: Amplitude=5, period=0.02, Pulse Width=2 情况一: R=1Ω,L=10mH; a=0°、30°、90°、120°、150°情况二: L=10mH; a=0°、30°、90°、120°、150°

单相桥式半空整流电路MATLAB仿真实验报告

一、单相桥式半控整流电路(电阻性负载)1.电路结构与工作原理 (1)电路结构 T u1 u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 u R 2.建模 3.仿真结果分析 α=30°单相桥式半控整流电路(电阻性负载)

α=60°单相桥式半控整流电路(电阻性负载) α=90°单相桥式半控整流电路(电阻性负载) 4.小结 尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。 二、单相桥式半控整流电路(阻-感性负载、不带续流二极管) 1.电路结构与工作原理

(1)电路结构 L (2)工作原理 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。 2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L →R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(u d=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 2.建模

3.仿真结果分析 α=30°单相桥式半控整流电路(阻感性负载) α=60°单相桥式半控整流电路(阻感性负载)

α=90°单相桥式半控整流电路(阻感性负载) 4.小结 电路具有自续流能力,但实用中还需要加设续流二极管VD,以避免可能发生的失控现象。 三、单相桥式半控整流电路(带续流二极管) 1.电路结构与工作原理 (1)电路结构 T u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 R u R L ul id VD ud (2)工作原理

单相全波整流电路的设计(1)

《电力电子技术》课程设计之 单相全波整流电路的设计 姓名 学号 年级 专业 系(院) 指导教师 2012/8/21

目录 第一章设计任务书 1.1 设计目的 (2) 1.2 设计要求 (2) 1.3 设计内容 (2) 1.4设计题目 (2) 第二章设计内容 2.1 方案的论证与选择 (3) 2.1.1主电路的方案论证 (3) 2.2 主电路的设计 (5) 2.2.1 带阻感负载的单相桥式全控整流电路 (5) 2.2.2 原理图分析 (6) 2.3 电路方案说明 (7) 第三章触发电路 3.1 同步触发电路 (7) 3. 2 晶闸管的触发条件 (7) 3.3 晶闸管的分类 (13) 3.4 同步环节 (13) 3.5 脉冲形成环节 (14) 3.6双窄脉冲形成环节 (14) 3.7 同步变压器 (15) 第四章保护电路的设计 4.1 过电流保护 (16) 4.2 过电压保护 (17) 第五章元器件的选用 (20) 第六章参数的计算 (26) 第七章心得体会 (27)

第八章参考文献 (28) 第一章设计任务书 1.1 设计目的: 《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理; 2:重点理解移相电路的功能、结构、工作原理; 3:理解同步变压器的功能。 1.2 设计要求: 1:根据课题正确选择电路形式; 2:绘制完整电气原理图(包括主要电气控制部分); 3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值; 4:编制使用说明书,介绍适用范围和使用注意事项; 说明:负载形式及参数可自行选择 1.3设计内容: 单相全波整流电路的设计。 1:主电路方案论证 2:电路方框图 3:整流电路方框图 4:电路方案说明 单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。 单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。 单相桥式全控桥整流电路与半波整流电路相比较: (1)a的移相范围相等,均为0~180。 (2)输出电压平均值Ud是半波整流电路的2倍。 (3)相同的负载功率下,流过晶闸管的平均电流减小一半。 (4)功率因数提高了1.414倍。

单相半波可控整流电路实验

单相半波可控整流电路实验

————————————————————————————————作者:————————————————————————————————日期:

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相半波可控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别2015级2班开出学期2016-2017下期 学生姓名袁志军学号201507144228 实验教师谢辉成绩 2017 年 4 月 30 日

填写说明 1、基本内容 (1)实验序号、名称(实验一:xxx);(2)实验目的;(3)实验原理;(4)主要仪器设备器件、药品、材料;(5)实验内容; (6)实验方法及步骤(7)数据处理或分析讨论 2、要求: (1)用钢笔书写(绘图用铅笔) (2)凡需用坐标纸作图的应使用坐标纸进行规范作图 实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 型号备注 序 号 1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个 模块。 2 DJK02 晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。 3 DJK03-1 晶闸管触发 该挂件包含“单结晶体管触发电路”模块。 电路 4 DJK06 给定及实验器 该挂件包含“二极管”等几个模块。 件 5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 四、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

220V/50A单相全波可控整流电路

辽宁工业大学 电力电子技术课程设计(论文)题目:220V/50A单相全波可控整流电路 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):工程技术学院教研室:电气教研室

摘要 本设计采用单相全波可控整流,从而实现为1台额定电压220V、功率为10kW 的直流电动机提供直流可调电源,以实现直流电动机的调速。将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。整流电路的种类有很多,有单相半波整流电路、单相全波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。本设计采用单相全波可控整流,以便于低压输出。 关键词:整流电路;变压器;晶闸管;触发电路;MATLAB。

目录 第1章绪论 (1) 1.1电力电子技术概括............................ 错误!未定义书签。 1.2本文研究内容 (2) 1.3方案论证 (3) 1.3.1 单相桥式全控整流电路 (3) 1.3.2 单相全波可控整流电路 (4) 第2章单相全波可控整流电路设计 (5) 2.1单相全波可控整流电路总体设计框图 (5) 2.2具体电路设计 (6) 2.2.1 单相全波可控整流电路设计 (6) 2.2.2 由KJ004构成的控制电路设计 (7) 2.2.3 保护电路的设计 (9) 2.3总电路原理图 (10) 2.4元器件型号选择 (11) 2.5MATLAB仿真实验 (12) 第3章课程设计总结 (15) 参考文献 (16)

实验三单相桥式全控整流电路实验

实验三单相桥式全控整流电路实验 一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载时的工作。 二.实验线路及原理 参见图1。 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻—电感性负载。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.NMCL—35组件 6.NMCL—41组件 7.双踪示波器 五.注意事项 1.负载电阻R D的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 2.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通 3.NMCL—05E面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 4.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 5. 本实验中用示波器观察主电路中电压波形时需用到衰减探头,为防止短路事故,在观察各主电路电压时同时只允许用一个探头观察信号。不要两路一起用。 六.实验方法 1.触发电路的调试 ①将NMCL—05E面板左上角的“同步电压输入~220V”接交流电源电压输出的 U、V输出端(旧:A1,B1),找出锯齿波触发电路。

②将给定电压Ug(新:NMCL-41;旧:DJK06,注意DJK06的地信号须与NMCL—05E的地信号相连)调至零电压,并将其接入“锯齿波触发电路”中的“Uct”,此时Uct=0V。按下电源启动按钮(即合上主电源),用示波器同时观察“锯齿波触发电路”中“1”和“5”孔电压波形,调节偏移电压电位器RP2,使α=90° 2.断开主电源,将NMCL-33中“脉冲观察及通断控制”处的开关打在“脉冲断”的位置。按图接线。 3.单相桥式全控整流电路供电给电阻负载。 短接平波电抗器L,调节电阻负载至最大,合上主电路电源,调节U ct,记录在不同α 角(30°、60°、90°)时整流电路的输出电压U d=f(t)的波形,晶闸管的端电压U VT=f(t)的波形(注意:观察电压波形时需用带衰减探头),并记录相应α时的U d和交流输入电 压U2(变压器副边电压)值。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。 4.单相桥式全控整流电路供电给电阻—电感性负载。 断开平波电抗器L短接线,观察α=30°时的输出电压U d波形、晶闸管端电压U VT波 形及负载电流id波形(id波形可通过观察负载电阻两端的电压获得) 注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载 电流不能超过0.8A,U ct从零起调。 七.实验报告 1.绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当α=60°,90°时的 U d、U VT波形,并加以分析。 2.绘出单相桥式晶闸管全控整流电路供电给电阻—电感性负载情况下,当α=90°时 的U d、i d、U VT波形,并加以分析。 3.实验心得体会。

相关文档
最新文档