高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析

一、带电粒子在磁场中的运动压轴题

1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度;

(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBL

v m

=;(2)41(1)45m t qB π=+ 【解析】 【详解】

(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:

5sin37o QC L =

15sin37O

OQ

O Q L =

=

在y 轴左侧磁场中做匀速圆周运动,半径为1R ,

11R OQ QC =+

2

1

v qvB m R =

解得:8qBL

v m

=

; (2)由公式2

2

v qvB m R =得:2mv R qB =,解得:24R L =

由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t

5cos37o PC L =

1PC

t v

=

带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t

12m

T qB

π=

21

37360

o

o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t

22·2m m

T q B qB

ππ=

= 3212

t T =

从P 点到再次回到P 点所用的时间为t

12222t t t t =++

联立解得:41145

m

t qB π⎛⎫=+

⎪⎝

2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并

在随后经过了点P ,不计粒子的重力。

(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值

(3)求粒子从出发直至到达P 点经历时间的所有可能取值。

【答案】(120,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0

nmv B qL

=

n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3……或02324a m m

t n n v qB qB

ππ=++ n =1、2、3……。 【解析】 【详解】

(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2

y v a t =

解得:v y =v 0,tan θ=

y v v =1,θ=45°,

粒子穿过O 点时的速度:2

2002v v v v =

+=;

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

2

v qvB m r

= ,

粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0

nmv B qL

=

n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=

2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=

,2m

T qB

π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧,

若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=

1

4

T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1

4T 1+34

T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×

1

4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1

4T 1+2×34

T 2, ………… 则23(1)24m

m

t k k qB

qB

ππ=+- k =1、2、3 (2324)

m

t n

n

qB qB

ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB

ππ=

++ n =1、2、3……;

3.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距3

m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直线上.AF 两点距离为

2

3

m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .

(1)求带电粒子从电场中射出时的速度v 的大小和方向

(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(1)523

10/3m s ⨯;垂直于AB 方向出射.(2)3310

T (3)235T + 【解析】

试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a , 则:U

q

ma d =解得:102310/3

qU a m s md ==⨯ 50

110L

t s v -=

=⨯ 竖直方向的速度为:v y =at =

3

3

×105m/s 射出时速度为:22

5023

10/3

y v v v m s =+=

⨯ 速度v 与水平方向夹角为θ,0

3

tan 3

y v v θ=

=

,故θ=30°,即垂直于AB 方向出射. (2)带电粒子出电场时竖直方向的偏转的位移213262

d y at m ===,即粒子由P 1点垂直AB 射入磁场,

由几何关系知在磁场ABC 区域内做圆周运动的半径为12

cos303

d R m =

=

由2

11

v B qv m R =

知:1133

10

mv B T qR =

= (3)分析知当轨迹与边界GH 相切时,对应磁感应强度B 2最大,运动轨迹如图所示:

由几何关系得:2

21sin 60

R R +

= 故半径2(233)R m =-

又2

22

v B qv m R =

故223

5

B T +=

所以B 2应满足的条件为大于

23

5

T +. 考点:带电粒子在匀强磁场中的运动.

4.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B

(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L

【答案】(1)0mv ed ; (2)02y d ≤≤;(3)9

4

d ; 【解析】

(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d

电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:2

0v ev B m r

=

解得:0

mv B ed

=

(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.

设此时的圆心位置为O ',有:sin 30r

O a '=

3OO d O a ='-'

解得OO d '=

即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==

电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤

设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:

根据运动学公式有:0x v t =

212eE y t m

=

⋅ y eE v t m

=

tan y v v θ=

tan 3L

d x

θ=

- 解得:(32)2L d y y =

即9

8

y d =

时,L 有最大值 解得:94

L d =

当322d y y -=

【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.

5.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x 垂直.粒子速度大小5

0 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:

(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;

(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).

【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】

解:(1) 由带电粒子在匀强磁场中运动可得:20

20v B qv m r

= 解得粒子运动的半径:1r m =

(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t =

竖直方向:212

y at =

Eq a m

=

tan 45v at

︒=

联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =

(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:)12r y R =

+

02v v =

由带电粒子在匀强磁场中运动可得:211

v

B qv m r '=

解得:10.1B T '=

若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:)2222r r y R =

+

由带电粒子在匀强磁场中运动可得:212

v

B qv m r ''=

解得121

0.2410

B T T ''=

≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥

(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:

1114

t T =

102R

T v π= 20

x t v =

3212

t T =

2

22r T v

π=

解得:()

55

1232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯

6.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量

710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成

45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴

时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:

①带电粒子第一次经过x 轴时的横坐标是多少?

②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.

【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;

②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为

32.110.s -⨯

【解析】 【分析】

(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;

(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】

①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2

v qvB m R

=,

半径0.4mv

R m Bq

=

=, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90, 则第一次经过x 轴时的横坐标为120.420.57x R m m ==≈

②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.

由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v

-=

==⨯ 在沿电场方向上的位移2

2112

s at =

又因22s R = 得722

21

2110/s a m s t =

=⨯ 根据牛顿第二定律Eq a m

= 所以电场强度3110/ma

E V m q

=

=⨯ 粒子从第一次进入电场到再返回磁场的时间422410v

t s a

-=

=⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期

42410m

T s Bq

ππ-=

=⨯ 所以粒子从出发到再回到原点的时间为3

12 2.110t t t T s -=++≈⨯ 【点睛】

本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.

7.右图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里,图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF 方向射入磁场区域,最后从圆形区域边界上的G 点射出,已知弧

所对应的圆心角为.不计重力,求:

(1)离子速度的大小; (2)离子的质量. 【答案】(1) (2)

【解析】 【分析】 【详解】

试题分析:带电粒子在磁场中的运动轨迹分析如图所示

(1)由题设知,离子在平行金属板之间做匀速直线运动,则

又②

由①②式得③

(2)在圆形磁场区域,离子做匀速圆周运动.则

由几何关系有⑤

解得

考点:带电粒子在磁场中的运动

点评:本题是速度选择器和带电粒子在匀强磁场中运动的组合问题,可以列出带电粒子在磁场中做圆周运动洛伦兹力做向心力的表达式求解,根据几何关系求半径是解题关键.

8.如图甲所示,两金属板M、N水平放置组成平行板电容器,在M板中央开有小孔O,再将两个相同的绝缘弹性挡板P、Q对称地放置在M板上方,且与M板夹角均为60°,两挡板的下端在小孔O左右两侧.现在电容器两板间加电压大小为U的直流电压,在M板上方加上如图乙所示的、垂直纸面的交变磁场,以方向垂直纸面向里为磁感应强度的正值,其值为B0,磁感应强度为负值时大小为B x,但B x未知.现有一质量为m、电荷量为q(q>0),不计重力的带电粒子,从N金属板中央A点由静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在t1时刻粒子第一次撞到左挡板P上,紧接着在t1+t2时刻粒子撞到了右挡板Q上,然后粒子又从O点竖直向下返回平行金属板间,接着再返回磁场做前面所述的运动.粒子与挡板碰撞前后电荷量不变,沿板面的分速度不变,垂直于板面的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.图中t1,t2未知,求:

(1)粒子第一次从A 到达O 点时的速度大小; (2) 粒子从O 点第一次撞到左挡板P 的时间t 1的大小; (3)图乙中磁感应强度B x 的大小; (4)两金属板M 和N 之间的距离d . 【答案】(1)v 2Uq m (2)t 1=03m

B q π(3)B x =2B 0(4)d ()035224n Um B q

π+n =0,1,2,3

【解析】【分析】粒子在电场间做匀加速直线运动,由动能定理求出粒子刚进入磁场的速度,在磁场中做圆周运动,由几何关系得圆心角求出运动时间,粒子在整个装置中做周期性的往返运动,由几何关系得半径求出磁感应强度B x 的大小,在t 1~(t 1+t 2)时间内,粒子做匀速圆周运动,由周期关系求出在金属板M 和N 间往返时间,再求出金属板M 和N 间的距离。 解:(1) 21

Uq=mv -02

解得2v=

Uq

m

(2)由2

qvB=mv r 得

00r =

mv

B q

01022T =

=

r m

v B q

ππ 1101t =T =

63m

B q

π (3)由2qvB=mv r 得,粒子做匀速圆周运动的半径00r =mv B q , x x r =mv B q

粒子在整个装置中做周期性的往返运动,运动轨迹如图所示

由图易知: 0=2x r r 解得 0=2x B B

(4)在t 1~(t 1+t 2)时间内,粒子做匀速圆周运动的周期

202T =

=

x m m

B q B q

ππ 2201t =T =

22m

B q

π 设粒子在金属板M 和N 间往返时间为t ,有

0+d=

22

v t ⨯ 且满足: ()2120,1,2,3t t n t t n ⋯⋯=++,= 联立可得金属板M 和N 间的距离:

23+5=0,1,2,324m

U n d n B q

π(),=

9.如图所示,y ,N 为水平放置的平行金属板,板长和板间距均为2d .在金属板左侧板间中点处有电子源S ,能水平发射初速为V 0的电子,电子的质量为m ,电荷量为e .金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽 度均为d .磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d 处有一个荧光屏.过电子源S 作荧光屏的垂线,垂足为O .以O 为原点,竖直向下为正方向,建立y 轴.现在y ,N 两板间加上图示电压,使电子沿SO 方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)

(1)电子进人磁场时的速度v ;

(2)改变磁感应强度B 的大小,使电子能打到荧光屏上,求

①磁场的磁感应强度口大小的范围; ②电子打到荧光屏上位置坐标的范围. 【答案】(1)02v ,方向与水平方向成45° (2)①()0

12mv

B ed

+<,②4224d d d -→

【解析】

试题分析:(1)电子在MN 间只受电场力作用,从金属板的右侧下边沿射出,有

(1分) (1分) (1分)

(1分)

解得(1分)

速度偏向角

(1分)

(1分)

(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值0B ,此时电子在磁场中作圆周运动的半径为R

(2分) 又有2

0mv qvB R

=(2分)

由⑦⑧解得:00(12)m

B +=

(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m

B v ed

<时电子能打

在荧光屏上(得0(12)m

B v ed

不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,

即. (1分)

出射点位置到SO 连线的垂直距离

12sin 45y d R =-︒(1分)

电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标

021tan 45y y d =+(1分)

解得2422y d d =-(1分)

当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标为0

33tan 454y d d d =+=(1分)

电子穿出磁场后打在荧光民屏上的位置坐标范围为:

422d d -到4d (2分)

考点:带电粒子在磁场中受力运动.

10.平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y 轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等.不计粒子重力,问:

(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比.

【答案】02v ,与x 轴正方向成45°角斜向上 (2)0

2

v 【解析】 【分析】

【详解】

(1)粒子运动轨迹如图:

粒子在电场中由Q 到O 做类平抛运动,设O 点速度v 与x 方向夹角为α,Q 点到x 轴的距离为L ,到y 轴的距离为2L ,粒子的加速度为a ,运动时间为t ,根据平抛运动的规律有: x 方向:02L v t = y 方向:212

L at =

粒子到达O 点时沿y 轴方向的分速度:

y v at =,

tan y x

v v α=

解得tan 1α=,即45α=︒,

粒子到达O 点时的夹角为450解斜向上,粒子到达O 点时的速度大小为

02cos 45v v v ︒

=

=;

(2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为F ,粒子在电场中运动的加速度:

qE a m

=

, 设磁感应强度大小为B ,粒子做匀速圆周运动的半径为R ,洛伦兹力提供向心力,有:

2

v qvB m R

=,

根据几何关系可知:

2R L =

解得:

2

v E B =

高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为 510/q C kg m =的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求: (1)两金属极板间的电压U 是多大? (2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置. (3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件. 【答案】(1)100V (2)t=5210s π-?,射出点在AB 间离O 点0.042m (3)5010s 3 T π -

可能从AB 间射出 如图,由几何关系可得临界时 要不从AB 边界射出,应满足 得 考点:本题考查带电粒子在磁场中的运动 2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e. (1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ; (2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收) (3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU v v m =+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】 (1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据= ne I t 求解

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度; (2)粒子从P 点射出到再次回到P 点所用的时间。 【答案】(1)8qBL v m =;(2)41(1)45m t qB π=+ 【解析】 【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得: 5sin37o QC L = 15sin37O OQ O Q L = = 在y 轴左侧磁场中做匀速圆周运动,半径为1R , 11R OQ QC =+

2 1 v qvB m R = 解得:8qBL v m = ; (2)由公式2 2 v qvB m R =得:2mv R qB =,解得:24R L = 由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t 5cos37o PC L = 1PC t v = 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t 12m T qB π= 21 37360 o o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t 22·2m m T q B qB ππ= = 3212 t T = 从P 点到再次回到P 点所用的时间为t 12222t t t t =++ 联立解得:41145 m t qB π⎛⎫=+ ⎪⎝ ⎭ 。 2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并

高考物理带电粒子在磁场中的运动试题(有答案和解析)

高考物理带电粒子在磁场中的运动试题(有答案和解析) 一、带电粒子在磁场中的运动专项训练 1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度; (2)粒子从P 点射出到再次回到P 点所用的时间。 【答案】(1)8qBL v m =;(2)41(1)45m t qB π=+ 【解析】 【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得: 5sin37o QC L = 15sin37O OQ O Q L = = 在y 轴左侧磁场中做匀速圆周运动,半径为1R , 11R O Q QC =+

2 1 v qvB m R = 解得:8qBL v m = ; (2)由公式2 2 v qvB m R =得:2mv R qB =,解得:24R L = 由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t 5cos37o PC L = 1PC t v = 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t 12m T qB π= 21 37360 o o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t 22·2m m T q B qB ππ= = 3212 t T = 从P 点到再次回到P 点所用的时间为t 12222t t t t =++ 联立解得:41145 m t qB π??=+ ?? ? 。 2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷 q m =1.0×108C/kg 的带正电

高考物理带电粒子在磁场中的运动真题汇编(含答案)含解析

高考物理带电粒子在磁场中的运动真题汇编(含答案)含解析 一、带电粒子在磁场中的运动专项训练 1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为 26qB L m ;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A 发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点. (1)求碰撞后A 球的速度大小; (2)若A 从ed 边离开磁场,求k 的最大值; (3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =?+(2)1(3)57k =或1 3 k =;32m t qB π= 【解析】 【分析】 【详解】 (1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m = 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222 kmv kmv mv =+ 解得:A 21k qBL v k m = ?+

(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2 A A mv qv B R = 解得:21 k R L k = + 由公式可得R 越大,k 值越大 如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k = (3)令z 点为ed 边的中点,分类讨论如下: (I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有 222()(1.5)2 L R L R =+- 解得:56 L R = 由21k R L k = +可得:5 7 k = (II )由图可知A 球能从z 点离开磁场要满足2 L R ≥ ,则A 球在磁场中还可能经历一次半

高考物理带电粒子在磁场中的运动题20套(带答案)

高考物理带电粒子在磁场中的运动题20套(带答案) 一、带电粒子在磁场中的运动专项训练 1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入 电场,不计粒子重力和空气阻力,P 、O 两点间的距离为 20 2mv qE 。 (1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ; (2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。 【答案】(102v ;20mv qE (2)0 (21)E B v ≥ 【解析】 【详解】 (1)由动能定理有:2 22 0011222 mv qE mv mv qE ⋅ =- 解得:v 2v 0 设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02 2 v v = 解得:θ=45° 根据tan 21x y θ=⋅ =,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20 mv x qE = (2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:

s=R+R sinθ 又: 2 v qvB m R = 解得: (21)E B v + = 故 (21)E B v + ≥ 2.如图,光滑水平桌面上有一个矩形区域abcd,bc长度为2L,cd长度为1.5L,e、f分别为ad、bc的中点.efcd区域存在竖直向下的匀强磁场,磁感应强度为B;质量为m、电荷量为+q的绝缘小球A静止在磁场中f点.abfe区域存在沿bf方向的匀强电场,电场强度为2 6 qB L m ;质量为km的不带电绝缘小球P,以大小为 qBL m 的初速度沿bf方向运动.P与A 发生弹性正碰,A的电量保持不变,P、A均可视为质点. (1)求碰撞后A球的速度大小; (2)若A从ed边离开磁场,求k的最大值; (3)若A从ed边中点离开磁场,求k的可能值和A在磁场中运动的最长时间. 【答案】(1) A 2 1 k qBL v k m =⋅ + (2)1(3) 5 7 k=或 1 3 k=; 3 2 m t qB π = 【解析】 【分析】 【详解】 (1)设P、A碰后的速度分别为v P和v A,P碰前的速度为 qBL v m =

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解 析 一、带电粒子在磁场中的运动专项训练 1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度; (2)粒子从P点射出到再次回到P点所用的时间。 【答案】(1) 8qBL v m =;(2) 41 (1) 45 m t qB π =+ 【解析】 【详解】 (1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得: 5sin37o QC L = 1 5 sin37O OQ O Q L == 在y轴左侧磁场中做匀速圆周运动,半径为1R,

11R O Q QC =+ 2 1 v qvB m R = 解得:8qBL v m = ; (2)由公式2 2 v qvB m R =得:2mv R qB =,解得:24R L = 由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t 5cos37o PC L = 1PC t v = 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t 12m T qB π= 2137360o o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t 22·2m m T q B qB ππ= = 3212 t T = 从P 点到再次回到P 点所用的时间为t 12222t t t t =++ 联立解得:41145 m t qB π⎛⎫=+ ⎪⎝ ⎭ 。 2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8). (1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1; (2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是); (3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E . 【答案】(1)01 52 mv B ql = (2)2 058mv l Q kq = (3)0253mv B ql π= 2 20(23)9mv E ql ππ-= 【解析】 【分析】 【详解】 (1)粒子从P 到A 的轨迹如图所示: 粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25 r l l α= = 由洛伦兹力提供向心力可得2 011 v qv B m r =

解得: 0 1 5 2 mv B ql = (2)粒子从P到A的轨迹如图所示: 粒子绕负点电荷Q做匀速圆周运动,设半径为r2 由几何关系得 2 5 2cos8 l r l α == 由库仑力提供向心力得 2 2 22 v Qq k m r r = 解得: 2 5 8 mv l Q kq = (3)粒子从P到A的轨迹如图所示: 粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间 00 sin3 5 l l t v v α == 根据题意得,粒子在磁场中运动时间也为t,则 2 T t= 又 2 2m T qB π = 解得0 2 5 3 mv B ql π = 设粒子在磁场中做圆周运动的半径为r,则0v t r π =

物理带电粒子在磁场中的运动题20套(带答案)及解析

物理带电粒子在磁场中的运动题20套(带答案)及解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为 510/q C kg m =的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求: (1)两金属极板间的电压U 是多大? (2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置. (3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件. 【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3 T π -<⨯ 【解析】 试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度 代入数据得U=100V (2) 粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间 射出点在AB 间离O 点 (3)粒子运动周期 ,粒子在t=0、 ….时刻射入时,粒子最

可能从AB间射出 如图,由几何关系可得临界时 要不从AB边界射出,应满足 得 考点:本题考查带电粒子在磁场中的运动 2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子质量为m,电量为e;加速极板 AB、A′B′间电压均为U0,且满足eU0=3 2 mv02。两磁场磁感应强度相同,半径均为R,圆心 O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7 2 R;整个装置处 于真空中,忽略粒子间的相互作用及相对论效应。 (1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B;

高考物理带电粒子在磁场中的运动压轴难题综合题及答案

高考物理带电粒子在磁场中的运动压轴难题综合题及答案 一、带电粒子在磁场中的运动压轴题 1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为 2 L ()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回. (1)求粒子到达O 点时速度的大小; (2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23 能打到MN 板上,求所加磁感应强度的大小; (3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L φ = ,若从AB 圆弧面收集到的某粒子经 O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m ϕ =2)12m B L q ϕ=3)060α∴= ;22m L q ϕ 【解析】 【分析】 【详解】 试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2 102 qU mv =- 2U ϕϕϕ=-=2q v m ϕ=

(2)从AB 圆弧面收集到的粒子有 2 3 能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=. 根据几何关系,粒子圆周运动的半径:2R L = 由洛伦兹力提供向心力得:2 v qBv m R = 联合解得:12m B L q ϕ = (3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标. 2 12qE L t m = 222mL m t L qE q ϕ = =22x Eq qEL q v t m m m ϕ = == 若速度与x 轴方向的夹角为α角

带电粒子在磁场中的运动压轴题综合题含答案

带电粒子在磁场中的运动压轴题综合题含答案 一、带电粒子在磁场中的运动压轴题 1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求: (1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长. 【答案】(1)12mg E q =,2mg E q =12 2m gd 121626d d gd gd π+ 【解析】 【详解】 (1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mg E q = 微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mg E q = (2)粒子进入磁场区域时满足:2111cos452qE d mv ︒= 2 v qvB m R = 根据几何关系,分析可知:222sin30d R d ==︒ 整理得:12 2m gd B = (3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:

211112a t d = 1tan45mg ma ︒= 2302360R t v π︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯= 2.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应. (1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ; (2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围. 【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458 B d b 【解析】 【详解】

高考物理带电粒子在磁场中的运动习题试卷含答案

高考物理带电粒子在磁场中的运动习题试卷含答案 一、带电粒子在磁场中的运动压轴题 1.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷 4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求: (1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件? (2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大? (3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻. 【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…) 【解析】 【分析】 (1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径; (2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压; (3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻. 【详解】 (1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2 代入数据解得r1=1m 粒子不能进入中间磁场,所以轨道半径r1<1m.

带电粒子在磁场中的运动压轴难题知识归纳总结及答案解析

带电粒子在磁场中的运动压轴难题知识归纳总结及答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入 电场,不计粒子重力和空气阻力,P 、O 两点间的距离为 20 2mv qE 。 (1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ; (2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。 【答案】(102v ;20mv qE (2)0(21)E B +≥【解析】 【详解】 (1)由动能定理有:2 22 0011222 mv qE mv mv qE ⋅ =- 解得:v 20 设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02 2 v v = 解得:θ=45° 根据tan 21x y θ=⋅ =,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20 mv x qE = (2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:

s=R+R sinθ 又: 2 v qvB m R = 解得: (21)E B v + = 故 (21)E B + ≥ 2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计. (1)求两板间磁场的磁感应强度大小B. (2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min. 【答案】(1)0 mv B qL =(2) 22 3 cos 2 d R a R L ≥+=;min (632) 3 L T v π = 【解析】 【分析】 【详解】 (1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则0 1 2 qv B m v R =

高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案

高考物理带电粒子在磁场中的运动压轴难题知识归纳总结附答案 一、带电粒子在磁场中的运动压轴题 1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入 电场,不计粒子重力和空气阻力,P 、O 两点间的距离为 20 2mv qE 。 (1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ; (2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。 【答案】(102v ;20mv qE (2)0(21)E B +≥【解析】 【详解】 (1)由动能定理有:2 22 0011222 mv qE mv mv qE ⋅ =- 解得:v 20 设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02 2 v v = 解得:θ=45° 根据tan 21x y θ=⋅ =,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20 mv x qE = (2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:

s =R +R sinθ 又:2 v qvB m R = 解得:0 (21)E B v += 故0 (21)E B v +≥ 2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为 q m =5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求: (1)电压U 0的大小; (2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =2 3 T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围. 【答案】(1)4 0 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥ 【解析】 【分析】

高中物理带电粒子在磁场中的运动压轴题综合题附答案解析

高中物理带电粒子在磁场中的运动压轴题综合题附答案解析 一、带电粒子在磁场中的运动压轴题 1.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求: (1)求带电粒子在磁场中运动的半径r ; (2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ; (3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为 222x y R +=(3 0.1, 0.120 R m m x m =≤≤) 【解析】 【分析】 【详解】 (1)洛伦兹力充当向心力,根据牛顿第二定律可得2 v qvB m r =,解得0.1r m = (2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场, 粒子在电场中运动的加速度qE a m =

粒子在电场中运动的时间2v t a = 解得43.310t s -=⨯ (3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°, 则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上, 曲线方程为2 2 x y R += 3 0.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭ 【点睛】 带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径 2.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x

带电粒子在无边界匀强磁场中运动压轴难题知识归纳总结附答案

带电粒子在无边界匀强磁场中运动压轴难题知识归纳总结附答案 一、带电粒子在无边界匀强磁场中运动压轴题 1.如图所示,在屏蔽装置底部中心位置O 点放一医用放射源,可通过细缝沿扇形区域向外辐射速率为v =3.2×106m 的α粒子.已知屏蔽装置宽AB =9cm ,缝长AD =18cm ,α粒子的质量m =6.64×10-27kg ,电量q =3.2×10-19C .若在屏蔽装置右侧条形区域内加一匀强磁场来隔离辐射,磁感应强度B =0.332 T ,方向垂直于纸面向里,整个装置放于真空环境中. (1)若所有的α粒子均不能从条形磁场隔离区的右侧穿出,则磁场的宽度d 至少是多少? (2)若条形磁场的宽度d =20cm ,则射出屏蔽装置的α粒子在磁场中运动的最长时间和最短时间各是多少?(结果保留2位有效数字) 【答案】(1)0.34cm ;(2)72.010s -⨯;86.510s -⨯. 【解析】 【分析】 【详解】 (1)由题意:AB =9cm ,AD =18cm ,可得:∠BAO =∠ODC =45° 所有α粒子在磁场中做匀速圆周运动的半径相同,设为R , 根据牛顿第二定律有2 v qvB m R =,解得R =0.2m =20cm 由题意及几何关系可知:若条形磁场区域的右边界与沿OD 方向进入磁场的α粒子的圆周轨迹相切,则所有α粒子均不能从条形磁场隔离区右侧穿出,如图(1)所示. 设此时磁场宽度为d 0,由几何关系得(045201020.34d R Rcos cm m ︒+≈=+=

(2)设α粒子在磁场内做匀速圆周运动的周期为T ,则62108 m T s qB ππ -= =⨯ 设速度方向垂直于AD 进入磁场区域的α粒子的入射点为E ,如图所示. 因磁场宽度d =20cm

高中物理带电粒子在磁场中的运动压轴题综合题附答案

高中物理带电粒子在磁场中的运动压轴题综合题附答案 一、带电粒子在磁场中的运动压轴题 1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8). (1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1; (2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是); (3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E . 【答案】(1)01 52 mv B ql = (2)2 058mv l Q kq = (3)0253mv B ql π= 2 20(23)9mv E ql ππ-= 【解析】 【分析】 【详解】 (1)粒子从P 到A 的轨迹如图所示: 粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25 r l l α= = 由洛伦兹力提供向心力可得2 011 v qv B m r =

解得: 0 1 5 2 mv B ql = (2)粒子从P到A的轨迹如图所示: 粒子绕负点电荷Q做匀速圆周运动,设半径为r2 由几何关系得 2 5 2cos8 l r l α == 由库仑力提供向心力得 2 2 22 v Qq k m r r = 解得: 2 5 8 mv l Q kq = (3)粒子从P到A的轨迹如图所示: 粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间 00 sin3 5 l l t v v α == 根据题意得,粒子在磁场中运动时间也为t,则 2 T t= 又 2 2m T qB π = 解得0 2 5 3 mv B ql π = 设粒子在磁场中做圆周运动的半径为r,则 v t r π =

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析 一、带电粒子在磁场中的运动专项训练 1.如图,平面直角坐标系中,在,y >0及y <-3 2 L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在- 3 2 L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(3 2L ,0)进入磁场.在磁场中的运转半径R =52 L (不计粒子重力),求: (1)粒子到达P 2点时的速度大小和方向; (2) E B ; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)5 3v 0,与x 成53°角;(2)043 v ;(3)2L ;(4)()04053760L v π+. 【解析】 【详解】 (1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y , 由运动学规律知 3 2 L =v 0t 1, L = 2 y v t 1 可得t 1= 032L v ,v y =4 3 v 0

故粒子在P 2的速度为v =53 v 0 设v 与x 成β角,则tan β= y v v = 4 3 ,即β=53°; (2)粒子从P 1到P 2,根据动能定理知qEL = 12mv 2-1 2 mv 02可得 E =2089mv qL 粒子在磁场中做匀速圆周运动,根据qvB =m 2 v R 解得:B =mv qR =05352 m v q L ⨯⨯=023mv qL 解得: 43 v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3 2 L 直线与Q ′点,可得: P 2O ′= 3253L cos o =5 2 L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =- 32 L 直线从M 点穿出磁场,由几何关系知M 的坐标x = 3 2 L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0 32L v 在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =0 37120L v π 从M 运动到N ,a =qE m =2 89v L 则t 3= v a =0 158L v 则一个周期的时间T =2(t 1+t 2+t 3)= ()0 4053760L v π+. 2.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔

相关主题
相关文档
最新文档