梁坤京理论力学动量矩定理课后答案

梁坤京理论力学动量矩定理课后答案
梁坤京理论力学动量矩定理课后答案

动量矩定理

12-1 质量为m 的点在平面Oxy 内运动,其运动方程为:

t

b y t

a x ωω2sin cos ==

式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度

t

b t y v t a t

x

v y x ωωωω2cos 2d d sin d d ==-==

质点对点O 的动量矩为

t

a t

b m t b t a m x

mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v

t mab ωω3

cos 2=

12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。

轮子角速度

R

v A

=

ω 质心C 的速度 )(e R R

v C B v A

C +==ω 轮子的动量

A C mv R

e

R mv p +=

=(方向水平向右) 对B 点动量矩 ω?=B B J L

由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 []

R

v e R m me J L A

A B 22)( ++-= (2)当轮子又滚又滑时由基点法求得C 点速度。

e v v v v A CA A C ω+=+=

轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩

)

( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωω

ωω

12-13 如图所示,有一轮子,轴的直径为50 mm ,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子

对轮心的惯性半径。

解:取轮子为研究对象,轮子受力如图(a )所示,根据刚体平面运动微分方程有

F mg ma C -=θsin (1)

J C α = Fr (2) 因轮子只滚不滑,所以有 a C =αr (3)

将式(3)代入式(1)、(2)消去F 得到 g mr

J mr C 2

sin +==θ?α 上式对时间两次积分,并注意到t = 0时0 ,0==?

? ,则 )

(2sin )(2sin )(2sin 22222222r grt mr m mgrt mr J mgrt C +=

+=+=ρθ

ρθθ? 把 r = 0.025 m 及t = 5 s 时,m 3==?r s 代入上式得

mm 90m 09.013

220sin 58.9025.012sin 2sin 222

2==-???=-=-=

s gt r r grt θ?θρ

12-17 图示均质杆AB 长为l ,放在铅直平面内,杆的一端A 靠在光滑铅

直墙上,另一端B 放在光滑的水平地板上,并与水平面成0?角。此后,令杆由静止状态倒下。求(1)杆在任意位置时的角加速度和角速度;(2)当杆脱离墙时,此杆与水平面所夹的角。 解:(1)取均质杆为研究对象,受力分析及建立坐标系Oxy 如图(a ),杆AB 作平面运动,质心在C 点。 刚体平面运动微分方程为

)

3( sin 2cos 2)2( )

1( N N N N ??αl

F l F J mg F y m F x m A B C B C A C ?-?=-==

由于 ??sin 2

,cos 2l

y l x C C ==

将其对间t 求两次导数,且注意到 α?ω?

-=-= ,,得到 )

5( )sin cos (2

)

4( )cos sin (2

22?ω?α?ω?α+-=-=l y l x C C

将式(4)、(5)代入式(1)、(2)中,得

mg

ml F ml

F B

A ++-=-=)sin cos (2

)cos sin (2

2N 2N ?ω?α?ω?α

再将F N A ,F N B 的表达式代入式(3)中,得

??ω?α???ω?ααsin )cos sin (4cos 2cos )sin cos (4222

2--++-=ml mgl ml J C

即 ?ααcos 242mgl

ml J C +-= 把 122ml J C =代入上式得 ?αcos 23l g

=

而 t

d d ω

α=

分离变量并积分得 ????ωωω

d cos 23d 0

0l g -=??

)sin (sin 30??ω-=

l

g

(2)当杆脱离墙时F N A = 0,设此时1??= 则 0)cos sin (2

121N =-=

?ω?αml

F A 将α和ω表达式代入上式解得

01sin 3

2

sin ??=

)sin 3

2arcsin(01??=

12-19 均质实心圆柱体A 和薄铁环B 的质量均为m ,半径都等于r ,两者用杆AB 铰接,无滑动地沿斜面滚下,斜面与水平面的夹角为θ,如图所示如杆的质量忽略不计,求杆AB 的加速度和杆的内力。

解:分别取圆柱A 和薄铁环B 为研究对象,其受力分析如图(a )、(b )所示,A 和B 均作平面运动,杆AB 作平动,由题意知

T T ,,F F a a a B A B A '=====ααα。

对圆柱A 有

)

2( )

1( sin A 11T αθJ r F F F mg ma =--=

对薄铁环B 有

)

4( )3( sin 22αθB J r F F mg T ma =-+'= 联立求解式(1)、(2)、(3)、(4),并将T T 22

,,2

F F mr J r m J B A '===

,以及根据只滚不滑条件得到的a = αr 代入,解得 θ

sin 7

1

T T mg F F ='=(压力)及 θsin 7

4

g a =

12-21 图示均质圆柱体的质量为m ,半径为r ,放在倾角为?60的斜面上。一细绳缠绕在圆柱体上,其一端固定于点A ,此绳与A 相连部分与斜面平

行。若圆柱体与斜面间的摩擦系数为3

1

=f ,试求其中心沿斜面落下的加速度a C 。

解:取均质圆柱为研究对象,其受力如图(a )所示,圆柱作平面运动,则其平面运动微分方程为

)

3( 60sin )2( 60cos 0)

1( )(T N T F F mg ma mg F r F F J C --?=?-=-=α 而 F = fF N (4)

圆柱沿斜面向下滑动,可看作沿AD 绳向下滚动,且只滚不滑,所以有 a C =αr

把上式及3

1

=f 代入式(3)、(4)解方程(1)至(4),得

a C = (方向沿斜面向下)

12-23 均质圆柱体A 和B 的质量均为m ,半径为r ,一绳缠在绕固定轴O 转动的圆柱A 上,绳的另一端绕在圆柱B 上,如图所示。摩擦不计。求:(1)圆柱体B 下落时质心的加速度;(2)若在圆柱体A 上作用一逆时针转向,矩为M 的力偶,试问在什么条件下圆柱体B 的质心加速度将向上。 解:(1)分别取轮A 和B 研究,其受力如图(a )、(b )所示,轮A 定轴转动,轮B 作平面运动。

对轮A 运用刚体绕定轴转动微分方程 r F J A A T =α (1)

对轮B 运用刚体平面运动微分方程有

B ma F mg ='-T (2) r F J B B T '=α (3)

再以C 为基点分析B 点加速度,有

r r a a a B A BC C B ?+?=+=αα (4)

联立求解式(1)、(2)、(3)、(4),并将

T T F F '=及2

2

r m J J A B =

=代入,解得

g a B 5

4=

2)若在A 轮上作用一逆时针转矩M ,则轮A 将作逆时针转动,对A 运用刚体绕定轴转动微分方程有 r F M J A A T -=α (5) 以C 点为基点分析B 点加速度,根据题意,在临界状态有

0t

t =+-=+=r r a a a B A BC C B αα (6)

联立求解式(5)、(6)和(2)、(3)并将T T '=及2

2

r m J J A B ==代入,得

mgr M 2=

习题9-8图 A

α

A

v A

a r

C

T

F g

m

(a)

故当转矩mgr M 2>时轮B 的质心将上升。

9-8 图示圆柱体A 的质量为m ,在其中部绕以细绳,绳的一端B 固定。圆柱体沿绳子解开的而降落,其初速为零。求当圆柱体的轴降落了高度h 时圆柱体中心A 的速度υ和绳子的拉力F T 。

解:法1:图(a ) T F mg ma A -= (1) r F αJ A T = (2)

r αa A = (3)

22

1mr J A =

解得 mg F 31T =(拉) g a A 3

2=(常量)

(4)

由运动学 gh h a v A A 33

2

2=

=

(↓)

法2:由于动瞬心与轮的质心距离保持不变,故可对瞬心C 用动量矩定理:

mgr J C =? (5)

222

3

mr mr J J A C =+=

又 r

a A =?

g a A 3

2=(同式(4))

再由 T F mg ma A -= 得 mg F 3

1T =(拉)

gh h a v A A 33

2

2=

=

(↓)

9-10 图示重物A 的质量为m ,当其下降时,借无重且不可伸长的绳使滚子C 沿水平轨道滚动而不滑动。绳子跨过不计质量的定滑轮D 并绕在滑轮B 上。滑轮B 与滚子C 固结为一体。已知滑轮B 的半径为R ,滚子C 的半径为r ,二者总质量为m ′,其对与图面垂直的轴O 的回转半径为ρ。求:重物A 的加速度。

解:法1:对轮: Fr TR J O -=α (1)

T F a m O -='

(2)

对A :

T mg ma A -=

(3)

又:t

H H A a a a ==绳

以O 为基点:

F 绳

H a H

g

m O

α

T

· E

m ′g

习题9-11图

D

A

B

C

习题9-12图

r

α

D N

F F

a

g

m M

M f

(a)

t

n n t HO HO O H H a a a a a ++=+

ααα)(t

t r R r R a a a O HO H -=-=-=(→) α)(r R a A -=(↓) (4) 由上四式联立,得(注意到2ρm J O '=)

1)()()

()()(2

22

2

2

2

2

+-+?'=

-++'-=

r R r m m g

r R m r m r R mg a A ρρ

法2:对瞬心E 用动量矩定理(本题质心瞬心之距离为常数)

)(r R T J E -=α T

mg ma A -=

又α)(r R a A -=

)(222r m r m J J O E +'='+=ρ

可解得:1)()

(2

22+-+?'=

r R r m m g

a A ρ

9-11 图示匀质圆柱体质量为m ,半径为r ,在力偶作用下沿水平面作纯滚动。若力偶的力偶矩M 为常数,滚动阻碍系数为δ,求圆柱中心O 的加速度及其与地面的静滑动摩擦力。

解:f M M J D -=α (1)

N f F M δ=

mg F =N

223

mr J D =

r

a =α 代入(1),得

mr

mg M a 3)

(2δ-=

又:F ma =

r

mg M F 3)

(2δ-=

9-12 跨过定滑轮D 的细绳,一端缠绕在均质圆柱体A 上,另一端系在光滑水平面上的物体B 上,如图所示。已知圆柱A 的半径为r ,质量为m 1;物块B 的质量为m 2。试求物块B 和圆柱质心C 的加速度以及绳索的拉力。滑轮D 和细绳的质量以及轴承摩擦忽略不计。 解:对轮C : r F J C T =α

T 11F g m a m C -=

对物块B :T 2F a m B =

且:αr a a B C +=;212

1r m J C =

解得:g m m m a B 211

3+=

;g

m m m m a C 212132++= g m m m m F 2

12

1T 3+=

HO

O H

O a

n H a

n HO a

t

H a (b)

A B C

题9-12m 1g m 2g

F T T ′

F N

?

理论力学课后答案(范钦珊)

C (a-2) D R (a-3) (b-1) D R 第1篇 工程静力学基础 第1章 受力分析概述 1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。 习题1-1图 解:(a )图(c ):11 s i n c o s j i F ααF F += 分力:11 cos i F αF x = , 11 s i n j F αF y = 投影:αcos 1F F x = , αs i n 1F F y = 讨论:?= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。 (b )图(d ): 分力:22)cot sin cos (i F ?ααF F x -= ,22sin sin j F ? α F y = 投影:αcos 2F F x = , )cos(2α?-=F F y 讨论:?≠90°时,投影与分量的模不等。 1-2 试画出图a 和b 习题1-2图 比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。 (c ) 2 2 x (d )

1-3 试画出图示各物体的受力图。 习题1-3图 B 或(a-2) B (a-1) (b-1) F (c-1) 或(b-2) (e-1)

F (a) 1- 4 图a 所示为三角架结构。荷载F 1作用在铰B 上。杆AB 不计自重,杆BC 自重为W 。试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。 习题1-4 图 1- 5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。 解:由受力图1-5a ,1- 5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。 1 (f-1) 'A (f-2) 1 O (f-3) F F'F 1 (d-2) F y B 21 (c-1) F A B 1 B F Dx y (b-2) 1 (b-3) F y B 2 A A B 1 B F 习题1-5图

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学课后题参考答案

1.1 沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为 由题可知示意图如题1.1.1图: { { S S 2 t 1 t 题1.1.1图 设开始计时的时刻 速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有 :()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 1.26一弹性绳上端固定,下端悬有m 及m '两质点。设a 为绳的固有长度,b 为加m 后的 伸长,c 为加m '后的伸长。今将m '任其脱离而下坠,试证质点m 在任一 瞬时离上端O 的距离为 解 以绳顶端为坐标原点.建立如题1.26.1图所示坐标系. 题1.26.1图 设绳的弹性系数为k ,则有 kb mg = ① 当 m '脱离下坠前, m 与m '系统平衡.当m '脱离下坠前,m 在拉力T 作用下上升,之后作简运.运动微分方程为 ()y m a y k mg =-- ② 联立①② 得 b b a g y b g y +=+ ③ 0=+y b g y 齐次方程通解 t b g A t b g A Y sin cos 2 11+= 非齐次方程③的特解 b a Y +=0 所以③的通解b a t b g A t b g A Y +++=sin cos 2 11 代入初始条件:0=t 时,,c b a y ++=得0,21==A c A ; 故有 b a t b g c y ++=cos 即为m 在任一时刻离上端O 的距离. O m m ' T

理论力学课后习题答案

第五章 习题5-2.重为G的物体放在倾角为α的斜面上,摩擦系数为f;问要拉动物体所需拉力T的最小值是多少,这时的角θ多大? 解:(1) 研究重物,受力分析(支承面约束用全反力R表示),画受力图: (2) 由力三角形得 (3) 当T与R垂直时,T取得最小值,此时有:

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m的力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1) 研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2) 由力三角形得: (3) 列平衡方程: 由(2)、(3)得: (4) 求摩擦系数:

习题5-7.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1) 顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之 值。 解:(1) 研究整体,受力分析,画受力图: 列平衡方程 (2) 研究尖劈A,受力分析,画受力图 由力三角形得

(3) 撤去P力后要保持自锁,则全反力与N A成一对平衡力 由图知 习题5-8.图示为轧机的两个轧辊,其直径为d=500mm,辊面间开度为a=5mm,两轧辊的转向相反,已知烧红的钢板与轧辊间的摩擦系数为f=0.1;试 问能轧制的钢板厚度b是多少? 解:(1) 研究钢块,处于临界平衡时,画受力图: (2) 由图示几何关系:

习题5-10.攀登电线杆用的脚套钩如图所示,设电线杆的直径d=30cm,A、B间的垂直距离b=10cm,若套钩与电线杆间的摩擦系数 f=0.5;试问踏 脚处至电线杆间的距离l为多少才能保证安全操作? 解:(1) 研究脚套钩,受力分析(A、B处用全反力表示),画受力图: (2) 由图示几何关系: 习题5-12.梯子重G、长为l,上端靠在光滑的墙上,底端与水平面间的摩擦系数为f;求:(1)已知梯子倾角α,为使梯子保持静止,问重为P 的人的活动范围多大?(2)倾角α多大时,不论人在什么位置梯 子都保持静止。 解:(1) 研究AB杆,受力分析(A处约束用全反力表示),画受力图:

理论力学1课后习题答案

一、判断题(共268小题) 1、试题编号:200510701005310,答案:RetEncryption(A)。 质点是这样一种物体:它具有一定的质量,但它的大小和形状在所讨论的问题中可忽略不计。() 2、试题编号:200510701005410,答案:RetEncryption(A)。 所谓刚体,就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。()3、试题编号:200510701005510,答案:RetEncryption(B)。 在研究飞机的平衡、飞行规律以及机翼等零部件的变形时,都是把飞机看作刚体。()4、试题编号:200510701005610,答案:RetEncryption(B)。 力对物体的作用,是不会在产生外效应的同时产生内效应的。() 5、试题编号:200510701005710,答案:RetEncryption(A)。 力学上完全可以在某一点上用一个带箭头的有向线段显示出力的三要素。() 6、试题编号:200510701005810,答案:RetEncryption(B)。 若两个力大小相等,则这两个力就等效。()7、试题编号:200510701005910,答案:RetEncryption(B)。 凡是受二力作用的直杆就是二力杆。() 8、试题编号:200510701006010,答案:RetEncryption(A)。 若刚体受到不平行的三力作用而平衡,则此三力的作用线必汇交于一点。() 9、试题编号:200510701006110,答案:RetEncryption(A)。 在任意一个已知力系中加上或减去一个平衡力系,会改变原力系对变形体的作用效果。() 10、试题编号:200510701006210,答案:RetEncryption(A)。 绳索在受到等值、反向、沿绳索的二力作用时,并非一定是平衡的。() 11、试题编号:200510701006310,答案:RetEncryption(A)。 若两个力系只相差一个或几个平衡力系,则它们对刚体的作用是相同的,故可以相互等效替换。() 12、试题编号:200510701006410,答案:RetEncryption(B)。 作用与反作用定律只适用于刚体。() 13、试题编号:200510701006510,答案:RetEncryption(A)。 力沿其作用线移动后不会改变力对物体的外效应,但会改变力对物体的内效应。()14、试题编号:200510701006610,答案:RetEncryption(B)。 固定在基座上的电动机静止不动,正是因为电动机的重力与地球对电动机吸引力等值、反向、共线,所以这两个力是一对平衡力。()15、试题编号:200510701006710,答案:RetEncryption(B)。 皮带传动中,通常认为皮带轮轮缘处的受力总沿着轮缘切线方向,其指向与每个轮的转动的方向一致。() 16、试题编号:200510701006810,答案:RetEncryption(A)。 两个零件用圆柱销构成的铰链连接只能限制两个零件的相对移动,而不能限制两个零件的相对传动。() 17、试题编号:200510701006910,答案:RetEncryption(A)。当力作用于一物体时,若将此力沿其中作用线滑动一段距离,则不会改变力对某一点的力矩。() 18、试题编号:200510701007010,答案:RetEncryption(A)。 作用在同一刚体上的两个力F1、F2,若有 2 1 F F- =,,则该二力是一对平衡的力,或者组成一个偶。() 19、试题编号:200510701007110,答案:RetEncryption(A)。 力对于一点的矩不因为沿其作用线移动而改变。() 20、试题编号:200510701007210,答案:RetEncryption(A)。 力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。()21、试题编号:200510701007310,答案:RetEncryption(A)。 在理论力学中只研究力的外效应。()22、试题编号:200510701007410,答案:RetEncryption(B)。 两端用光滑铰链连接的构件是二力构件。() 23、试题编号:200510702004710,答案:RetEncryption(A)。 论平面汇交力系所含汇交力的数目是多小,都可用力多边形法则求其合力。() 24、试题编号:200510702004810,答案:RetEncryption(A)。 用力多边形法则求合力时,若按不同顺序画各分力矢,最后所形成的力多边形形状将是不同的。() 25、试题编号:200510702004910,答案:RetEncryption(B)。 用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。() 26、试题编号:200510702005010,答案:RetEncryption(B)。 平面汇交力系用几何法合成时,所得合矢量与几何相加时所取分矢量的次序有关。()27、试题编号:200510702005110,答案:RetEncryption(A)。 一个平面汇交力系的力多边形画好后,最后一个力矢的终点,恰好与最初一个力矢的起点重合,表明此力系的合力一定等于零。()28、试题编号:200510702005210,答案:RetEncryption(B)。 用几何法求平面汇交力系的合力时,可依次画出各个力矢,这样将会得到一个分力矢与合力矢首尾相接并自行封闭的力多边形。()29、试题编号:200510702005310,答案:RetEncryption(B)。 一平面力系作用于一刚体,这一平面力系的各力矢首尾相接,构成了一个自行封闭的力多边形,因此可以说该物体一定是处于平衡状态。() 30、试题编号:200510702005410,答案:RetEncryption(B)。 若两个力在同一轴上的投影相等,则这两个力的大小必定相等。() 31、试题编号:200510702005510,答案:RetEncryption(B)。 力在两个坐标轴上的投影与力沿这两个坐标轴方向进行分解得到的分力的意义是相同的。() 32、试题编号:200510702005610,答案:RetEncryption(B)。 用解析法求解平面汇交力系的平衡问题时,所取两投影轴必须相互垂直。() 33、试题编号:200510702005710,答案:RetEncryption(A)。

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:23t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,= ??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4) 4(R W 412222,+= ?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → → → →?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

理论力学课后答案第五章

第五章思考题 5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点? 5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲? 5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比a q &更富有意义? 5.4既然 a q T &??是广义动量,那么根据动量定理,???? ????αq T dt d &是否应等于广义力a θ?为什么 在拉格朗日方程()14.3.5式中多出了a q T ??项?你能说出它的物理意义和所代表的物理量吗? 5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式 ()14.3.5? 5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的? 5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动? 5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程? 5.9 dL 和L d 有何区别? a q L ??和a q L ??有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么? 5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况? 5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何? 5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号?能否这样? 5.14正则变换的目的及功用何在?又正则变换的关键何在? 5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤. 5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者? 5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?

梁坤京理论力学动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v t mab ωω3 cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 轮子角速度 R v A = ω 质心C 的速度 )(e R R v C B v A C +==ω 轮子的动量 A C mv R e R mv p += =(方向水平向右) 对B 点动量矩 ω?=B B J L 由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 [] R v e R m me J L A A B 22)( ++-= (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωω ωω 12-13 如图所示,有一轮子,轴的直径为50 mm ,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子

理论力学课后习题答案

《理论力学》课后答案 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是:

向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。 习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核:

结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

理论力学课后习题答案第9章动量矩定理及其应用)

O ω R r A B θ 习题9-2图 习题20-3图 Ox F Oy F g m D d α 习题20-3解图 第9章 动量矩定理及其应用 9-1 计算下列情形下系统的动量矩。 1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。 2. 图示质量为m 的偏心轮在水平面上作平面运动。轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。 解:1、2 s m L O ω=(逆) 2、(1) )1()(R e mv e v m mv p A A C +=+==ω(逆) R v me J R e R mv J e R mv L A A A C C B )()()(22 -++=++=ω (2))(e v m mv p A C ω+== ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++= 9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。 解: ω)(22r m R m J L B A O O ++= 9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。不计铰链摩擦。 解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6 565== =l OD d 刚体作定轴转动,初瞬时ω=0 l mg l mg J O ?+?=22 α 222232)2(212 1 31 ml ml l m ml J O =+??+ = 即mgl ml 2 532=α 2rad/s 17.865==g l α g l a D 36 256 5t =?=α 由质心运动定理: Oy D F mg a m -=?33t 4491211 362533==-=mg g m mg F Oy N (↑) 0=ω,0n =D a , 0=Ox F (a) O M v ω ω A B C R v A (b) 习题9-1图

清华大学理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

理论力学(机械工业出版社)第十一章动量矩定理习题解答.

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ2202sin 32d )sin (2ml x x l m J l z ==? 杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω2 3 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 写出约束在铅直平面内的光滑摆线 上运动的质点的微 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s 为质点沿摆线运动时的路程,取 =0时,s=0 S= = 4 a (1 ) X Y

设 为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正, 即切线斜率 = 受力分析得: 则 ,此即为质点的运动微分方程。 该质点在平衡位置附近作振动时,振动周期与振幅无关,为. 1.3 证明:设一质量为m 的小球做任一角度0θ的单摆运动 运动微分方程为θθθ F r r m =+)2(&&&& θθ sin mg mr =&& ① 给①式两边同时乘以d θ θθθθ d g d r sin =&& 对上式两边关于θ&积分得 c g r +=θθcos 2 12& ② 利用初始条件0θθ=时0=θ &故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ -?=l g & 上式可化为dt d l g =?-?θθθ0cos cos 2-

两边同时积分可得θθθθθθθθd g l d g l t ??--- =-- =0 2 02 2 200 2 sin 12 sin 1001 2cos cos 12 进一步化简可得θθθθd g l t ?-= 0002 222sin sin 1 2 1 由于上面算的过程只占整个周期的1/4故 ?-==0 2 2 2 sin 2 sin 12 4T θθθ θd g l t 由?θθsin 2 sin /2sin 0= 两边分别对θ?微分可得??θ θθd d cos 2 sin 2cos 0= ?θθ 20 2 sin 2 sin 12 cos -= 故?? θ? θθd d 20 2 sin 2 sin 1cos 2 sin 2 -= 由于00θθ≤≤故对应的2 0π ?≤≤ 故?? θ ? θ?θθ θθπ θd g l d g l T ??-=-=20 20 2 2 cos 2 sin sin 2 sin 1/cos 2 sin 4 2 sin 2 sin 2 故?-=2 022sin 14π??K d g l T 其中2 sin 022θ=K 通过进一步计算可得 g l π 2T =])2642)12(531()4231()21(1[224222ΛΛΛΛ+????-????++??++n K n n K K 1.5

理论力学课后习题及答案解析..

第一章 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力 偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是: 取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且:

如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是: 向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。校核: 结果正确。(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组:

反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。 解:(1) 研究整体,受力分析(BC是二力杆),画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。

理论力学课后习题答案第9章动量矩定理及其应用)

第9章动量矩定理及其应用 9— 1计算下列情形下系统的动量矩。 1. 圆盘以 3的角速度绕 0轴转动,质量为 m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时 小球以相对于圆盘的速度 v r 运动到0M = s 处(图a );求小球对 0点的动量矩。 2. 图示质量为 m 的偏心轮在水平面上作平面运动。轮心为 A ,质心为 C ,且AC = e ;轮子半 b )o ( 1)当轮子只滚不滑 (2)当轮子又滚又滑时,若 V A 、3已知,求轮 V A 、 R R 径为R ,对轮心A 的转动惯量为 时,若V A 已知,求轮子的动量和对 J A ; C 、A 、B 三点在同一铅垂线上(图 B 点的动量矩; 习题9 — 1图 (2) p 二 mv C =m (v A 亠: 2) 2 L B =mv c (R 亠e )亠J c . =m (V A 亠?:、e )( R 亠 e )亠(J A —me ) . = m ( R 亠e )v A 亠(J A 亠 meR )■. 9 — 2图示系统中,已知鼓轮以 3的角速度绕0轴转动, 其大、小半径分别为 R 、r ,对0轴的转动惯量为 J O ;物块 A 、B 的质量分别为 m A 和m s ;试求系统对 0轴的动量矩。 解: 2 2 L 0 = (J 0 ■ m A R - m s r )■ ■ 习题9— 2图 9 — 3图示匀质细杆0A 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位 置由静止状态释放,计算刚释放时,杆的角加速度及铰链 O 处的约束力。不计铰链摩擦。 解:令 m = m °A = 50 kg ,贝V m Ec = 2m 质心D 位置:(设I = 1 m ) 5 5 d = OD = —l = — m 6 6 刚体作定轴转动,初瞬时 3 =0 1 ■— ■ 2 mg l 2 J O =mg 2 1 2 2 2m (2l )亠2 ml 3 ml 12 习题20-3图 即 3ml 2 ?. -5 mgl 2 5 g 6l = 8.17 rad/? t 5 a ° 二—l 6 由质心运动定理: t 3m a D 25 g 36 =3mg -F °y F °y 二 3mg 25 11 -3m ——g = — mg =449 36 12 (f ) n ? =o , a D T , F ox =o

理论力学课后答案4

第四章 习题4-1.用图示三脚架ABCD和绞车E从矿井中吊起重30kN的30的重物,△ABC为等边三角形,三脚架的三只脚及绳索DE均与水平面成60o角, 不记架重;求当重物被匀速吊起时各叫所受的力。 解:铰链D为研究对象,坐标系如图示,受力分析为一空间汇交力系,O为D 在水平面上的投影。 平衡方程为:

习题4-2.重物M放在光滑的斜面上,用沿斜面的绳AM与BM拉住。已知物重W=1000N,斜面的倾角α=60o,绳与铅垂面的夹角分别为β=30o和γ =60o。如物体尺寸忽略不记,求重物对于斜面的压力和两绳的拉力。 解:重物M为研究对象,坐标系如图示,受力分析为一空间汇交力系,平衡方程为: 习题4-3.起重机装在三轮小车ABC上,机身重G=100kN,重力作用线在平面LMNF之内,至机身轴线MN的距离为;已知AD=DB=1m,CD=,CM=1m; 求当载重P=30kN,起重机的平面LMN平行于AB时,车轮对轨迹的压 力。 解:起重机为研究对象,坐标系如图示,受力为一空间平行力系,平衡方程为:

习题4-4.水平轴上装有两个凸轮,凸轮上分别作用已知P力=800N和未知力F; 如轴平衡,求力F和轴承反力。 解:取凸轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为: 习题4-5.水平轴上装有两个带轮C和D,轮的半径r1=20cm,r2=25cm,轮C的胶带是水平的,共拉力T1=2t1=5000N,轮D的胶带与铅垂线成角α=30o, 其拉力T2=2t2;不计轮、轴的重量,求在平衡情况下拉力T2和t2的大 小及轴承反力。

解:取带轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为: 习题4-6.手摇钻由支点B、钻头A和一个弯曲手柄组成,当在B处施力P并在手柄上加力F后,即可带动钻头绕轴转动而切削(支点B不动)。已 知力P的垂直分量Pn=50N, F =150N,求材料对钻头的阻抗作用力及 力P在轴x和y方向的分量Px、Py之值。

理论力学之动力学习题答案 北航

动力学 (MADE BY 水水) 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将030=θ代入得 34cos cos 22lk lk l y v = ===θθθ 938cos sin 22 32lk lk y a = -==θ θ 1-6 证明:质点做曲线运动, 所以质点的加速度为:n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?=3 v ρ 证毕 1- 10 x o y

解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x 0 -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2002v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有: g F F a m m N ++= 将该式在y x ,轴上投影可得直角坐标形式的运动微分方程: N F F y m F mg x m +-=-=θθsin cos 其中: 2 22 2sin ,cos l x l l x x += += θθ0,32 20=-=y x l v x 将其代入直角坐标形式的运动微分方程可得: 2 3220)(1)(x l x l v g m F ++= 1-11 o v o v F N F g m y θ

理论力学习题册答案

第一章 静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。 ( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。 ( ) 4、凡是受两个力作用的刚体都是二力构件。 ( ) 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有 ( ) ①二力平衡公理 ②力的平行四边形法则 ③加减平衡力系公理 ④力的可传性原理 ⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a (球A )b (杆AB

)c(杆AB、CD、整体) d(杆AB、CD、整体 )e(杆AC、CB、整体)f(杆AC、CD、整体 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame ) a(杆AB、BC、整体) b(杆AB、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体

相关文档
最新文档