椭圆第二定义

椭圆第二定义
椭圆第二定义

椭圆第二定义

学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.

教学目标

知识目标:椭圆第二定义、准线方程;

能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义;

3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;

情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.

教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。

教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取

的精神.

教学过程: 学生探究过程:复习回顾

1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为

3

2

2,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4

2

27±

=y ). 2.短轴长为8,离心率为

5

3

的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ?的周长为 20 . 引入课题

【习题4(教材P50例6)】椭圆的方程为

116

252

2=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 .

② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗?

解:2

2

)34(||y MF +-=且1162542

02=+y 代入消去2

0y 得5

1325169||==MF

【推广】你能否将椭圆122

22=+b

y a x 上任一点),(y x M 到焦点)0)(0,(>c c F 的距离表示成

点M 横坐标x 的函数吗?

解:

???

??=++-=1

)(||22

222

2b y a

x y c x MF 代入消去

2

y 得

22222

2

2

)(2||a x a c

x a

b b

c cx x MF -=-++-=

||||||2

2c

a x e c a x a c a x a c -=-=-= 问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)

椭圆上的点M 到右焦点)0,(c F 的距离与它到定直线c

a x 2=的距离的比等于离心率a c

问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)

动点M 到定点)0,(c F 的距离与它到定直线c

a x 2

=的距离的比等于常数)(c a a c >的点的

轨迹是椭圆.

【引出课题】椭圆的第二定义

当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=

e a

c

e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.

对于椭圆122

22=+b

y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦

点)0,(c F -'的准线方程是c a x 2-=.对于椭圆12222=+b

x a y 的准线方程是c a y 2

±=.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几

何意义.

由椭圆的第二定义e d

MF =∴

|

|可得:右焦半径公式为ex a c a x e ed MF -=-==||||2右;左焦半径公式为ex a c

a x e ed MF +=--==|)(|||2

典型例题

例1、求椭圆

116

252

2=+y x 的右焦点和右准线;左焦点和左准线;

解:由题意可知右焦点)0,(c F 右准线c a x 2=;左焦点)0,(c F -和左准线c

a x 2

-=

变式:求椭圆81922=+y x 方程的准线方程;

解:椭圆可化为标准方程为:198122=+x y ,故其准线方程为4

2

272±=±=c a y 小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出

例2、椭圆

116

252

2=+y x 上的点M 到左准线的距离是5.2,求M 到左焦点的距离为 . 变式:求M 到右焦点的距离为 .

解:记椭圆的左右焦点分别为21,F F 到左右准线的距离分别为21,d d 由椭圆的第二定义可知:

e d MF =||5

3||11===a c e d MF 5.15.253||11=?==∴ed MF 5.1||1=∴MF 又由椭的第一定义可知:5.8||102||||221=∴==+MF a MF MF

另解:点M 到左准线的距离是2.5,所以点M 到右准线的距离为6

85

253505.222=-=-c a 5.86

85

53||||2222=?==∴=ed MF e d MF

小结:椭圆第二定义的应用和第一定义的应用

例1、 点P 与定点A (2,0)的距离和它到定直线8=x 的距离的比是1:2,求点P 的轨

迹;

解法一:设),(y x P 为所求轨迹上的任一点,则2

1|8|)2(22=-+-x y x 由化简得112162

2=+

y x ,故所的轨迹是椭圆。

解法二:因为定点A (2,0)所以2=c ,定直线8=x 所以82

==c a x 解得4=a ,又因为21==a c e 故所求的轨迹方程为

112

162

2=+y x 变式:点P 与定点A (2,0)的距离和它到定直线5=x 的距离的比是1:2,求点P 的轨迹; 分析:这道题目与刚才的哪道题目可以说是同一种类型的题目,那么能否用上面的两种方法来解呢?

解法一:设),(y x P 为所求轨迹上的任一点,则

2

1

|5|)2(22=-+-x y x 由化简得

094632

2

=-+-y x x 配方得

13

4)1(2

2=+-y x ,故所的轨迹是椭圆,其中心在(1,0) 解法二:因为定点A (2,0)所以2=c ,定直线8=x 所以52

==c

a x 解得102=a ,故所求的轨迹方程为

16

102

2=+y x 问题1:求出椭圆方程

13

422=+y x 和134)1(2

2=+-y x 的长半轴长、短半轴长、半焦距、离心率;

问题2:求出椭圆方程

13422=+y x 和134)1(2

2=+-y x 长轴顶点、焦点、准线方程; 解:因为把椭圆

13

422=+y x 向右平移一个单位即可以得到椭圆134)1(2

2=+-y x 所以问题1中的所有问题均不变,均为2

1

,1,3,3==

==

=a c e c b a 13

42

2=+y x 长轴顶点、焦点、准线方程分别为:)0,2(±,)0,1(±4±=x ; 13

4)1(2

2=+-y x 长轴顶点、焦点、准线方程分别为:)0,12(+±,)0,11(+±14+±=x ; 反思:由于是标准方程,故只要有两上独立的条件就可以确定一个椭圆,而题目中有三个条件,所以我们必须进行检验,又因为10

2

==

a c e 另一方面离心率就等于21这是两上矛盾

的结果,所以所求方程是错误的。又由解法一可知,所求得的椭圆不是标准方程。

小结:以后有涉及到“动点到定点的距离和它到定直线的距离的比是常数时”最好的方法是采用求轨迹方程的思路,但是这种方法计算量比较大;

解法二运算量比较小,但应注意到会不会是标准方程,即如果三个数据可以符合课本例4的关系的话,那么其方程就是标准方程,否则非标准方程,则只能用解法一的思维来解。 例4、设AB 是过椭圆右焦点的弦,那么以AB 为直径的圆必与椭圆的右准线( ) A.相切 B.相离 C.相交 D.相交或相切 分析:如何判断直线与圆的位置关系呢?

解:设AB 的中点为M ,则M 即为圆心,直径是|AB|;记椭圆的右焦点为F ,右准线为l ;

过点A 、B 、M 分别作出准线l 的垂线,分别记为d d d ,,21由梯形的中位线可知2

2

1d d d +=

又由椭圆的第二定义可知

e d AF =1||e d BF =2

|

|即)(||||21d d e BF AF +=+ 又2

2|

|||2||21d d e BF AF AB +?=+=

且10<∴故直线与圆相离

例5、已知点M 为椭圆

116252

2=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||3

5

||1MF MA +的最小值

分析:应如何把||3

5

1MF 表示出来

解:左准线1l :3

25

2-=-=c a x ,作1l MD ⊥于点D ,记||MD d = 由第二定义可知:

5

3

||1===a c e d MF ? d MF 53||1= ? ||351MF d =

故有||||||||3

5

||1MD MA d MA MF MA +=+=+

所以有当A 、M 、D 三点共线时,|MA|+|MD|有最小值:3

251+ 即||3

5||1MF MA +

的最小值是328

变式1:||5||31MF MA +的最小值; 解:283

28

3)||35||(3||5||311=?=+=+MF MA MF MA 变式2:

||||53

1MF MA +的最小值; 解:5

28

32853|)|35|(|53||||5311=?=+=+MF MA MF MA

巩固练习

1.已知 是椭圆 上一点,若 到椭圆右准线的距离是 ,则 到左焦

点的距离为_______.

2.若椭圆 的离心率为 ,则它的长半轴长是___________.

答案:1. 2.1或2

教学反思

1.椭圆第二定义、焦半径公式、准线方程; 2.椭圆定义的简单运用;

3.离心率的求法以及焦半径公式的应用; 课后作业

1.例题5的两个变式;

2. 已知 , 为椭圆 上的两点, 是椭圆的右焦点.若

, 的中点到椭圆左准线的距离是

,试确定椭圆的方程.

解:由椭圆方程可知 、两准线间距离为 .设 , 到右准线距离分别为 ,

,由椭圆定义有

,所以

,则

中点

到右准线距离为

,于是

到左准线距离为

,所求椭圆方程为

思考:

1.方程|2|)1()1(22

2++=-+-y x y x 表示什么曲线?

解:2

22

|2|)1()1(22=++-+-y x y x 122

< ;即方程表示到定点的距离与到定直线的距离的比

常数(且该常数小于1)∴方程表示椭圆 例Ⅱ、(06四川高考15)如图把椭圆的长轴AB 分成8等分,过每个等分点作x 轴的垂线交椭圆的上半部分于721,P P P 七个点,F 是椭圆的一个焦点,则

||||||721F P F P F P +++ =

解法一:53==

a c e ,设i P 的横坐标为i x ,则i x i 4

5

5+-=不妨设其焦点为左焦点 由53||===a c e d F P i 得i i ex a c a x e F P i i i 432)455(535)(||2+=+-?+=+=+= 35)721(4

3

72||||||721=++++

?=+++ F P F P F P 解法二:由题意可知1P 和7P 关于y 轴对称,又由椭圆的对称性及其第一定义可知

a F P F P 2||||71=+,同理可知a F P F P 2||||62=+,a F P F P 2||||53=+,a F P =||4

故357||||||721==+++a F P F P F P

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质 一、知识要点 椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数 )10(<<= e a c e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义. e d MF =| |∴ 准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2 =.根据对 称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆122 22=+b x a y 的准线方程是c a y 2 ±=. 焦半径公式: 由椭圆的第二定义可得: 右焦半径公式为ex a c a x e ed MF -|-|||2 ===右; 左焦半径公式为ex a c a x e ed MF +===|)-(-|||2 左 二、典型例题 例1、求椭圆 116 252 2=+y x 的右焦点和右准线;左焦点和左准线; 练习:椭圆8192 2 =+y x 的长轴长为_________,短轴长为_________,半焦距为_________,

离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________. 例2、已知椭圆方程136 1002 2=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF , 求P 到右准线的距离. 例3、已知点M 为椭圆116 252 2=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求 ||3 5 ||1MF MA +的最小值. 变式、若椭圆:3 \* MERGEFORMAT 13 42 2=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMAT MF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

椭圆的第二定义(含解析)教学内容

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c = -=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==??????| c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22 221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2 a x c =.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2 a x c =-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)822 2=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( )

第10讲椭圆及双曲线的第二定义讲解学习

第10讲 椭圆及双曲线的第二定义 一. 椭圆 1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (01),则动点M 的轨迹叫做双曲线。 定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c a 2 x :l ±=),常数e 是双曲线的离心率。 2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径 设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则0201-a ,a ex PF ex PF +=+=。

椭圆的第二定义(比值定义)的应用(精)

椭圆的第二定义(比值定义)的应用 陈文 教学目标:1椭圆的比值定义,准线的定义 2、使学生理解椭圆的比值定义,并掌握基本应用方法 3、对学生进行对应统一的教育 教学重点:椭圆的比值定义的应用 教学难点:随圆的准线方程的应用 教学方法:学导式 教学过程: 一、复习 前节我们学习了随圆的第二定义(比值定义): 若则M的轨迹是以F为焦点,L为准线的椭圆。

注:①其中F为定点,F(C,0),d为M到定直线L:的距离 ②F与L是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知的右焦点,点M为椭圆的动点,求的最小值,并求出此时点M的坐标。 分析:此题主要在于的转化,由第二定义: ,可得出,即为M到L(右准线)的距离。再求最小值可较快的求出。

解:如图所示,过M作于N,L为右准线:,由第二定义,知:, 要使为最小值,即:为“最小”,由图知: 当A、M、N共线,即:时,为最小;且最小值为A到L的距离=10,此时,可设,代入椭圆方程中,解得: 故:当时,为的最小值为10

[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设为椭圆的一点,离心率为e,P到左焦点F1和右焦点F2的距离分别为r1,r2 求证: 证明如图,由第二定义: 即:

又 注:①上述结论,称为椭圆中的焦半径公式 ②得出 即 当 当

[练习](1)过的左焦点F作倾斜角为300 的直线交椭 圆于A、B两点,则弦AB的长为 2 分析: 只需求(用联立方程后,韦达定理的方法可解)(学生完成) (2)的左、右焦点,P为椭圆上的一点,若则P到左准线的距离为 24 分析:由焦半径公式,设得

圆锥曲线第二定义72673

圆锥曲线的二个定义 (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。比如: ①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A. B. C. D.(答:C); ②方程表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离

与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点及抛物线上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) 一、求焦点弦长 例 1 过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若 6x x 21=+,求|AB|的长。 解:设AB 的中点为E ,点A 、E 、B 在抛物线准线l :1x -=上的射影分别为G 、H 、M 。由第二定义知: 8)1(2 x x 2 |EH |2|BM ||AG ||BF ||AF ||AB |2 1=--+==+=+=。 二、求离心率 例2 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴 的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。 解:如图,AB 是过F 1垂直于x 轴的弦,|C F |1为F 1到准线l 1的距离,AD ⊥l 1于D ,则

椭圆的第二定义应用

班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M = <<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距离为( ) A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100x + 236 y =1上的点,P 到右准线的距离是,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253 ,的距离之比是35,则动

点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +2 16 y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、?一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。 10、已知A,B 是椭圆19252222=+a y a x 上的两点,2F 是右焦点,若a BF AF 5 822=+,AB 的中点P 到左准线的距离为23,求椭圆的方程。

相关文档
最新文档