灵敏度特异性及计算公式

灵敏度特异性及计算公式
灵敏度特异性及计算公式

灵敏度特异性及计算公

SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

灵敏度=真阳性人数/(真阳性人数+假阴性人数)*100%。正确判断病人的率。特异度=真阴性人数/(真阴性人数+假阳性人数))*100%。正确判断非病人的率。

阳性预测值=真阳性例数/(真阳性例数+假阳性例数)×100%;

阴性预测值=真阴性例数/(真阴性例数+假阴性例数)×100%。

某检测方法

+ -

金 + A B

标 - C D

灵敏度=A/(A+B)

特异度=D/(C+D)

阳性预测值=A/(A+C)

阴性预测值=D/(B+D)

传感器计算题详解

《传感器与传感器技术》计算题 解题指导(供参考) 第1章 传感器的一般特性 1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F ?S )为50~10=40(mV) 可能出现的最大误差为: ?m =40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: %4%10021408.01=??=γ %16%10081 408 .02=??=γ 1-6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 (1) T y dt dy 5105.1330 -?=+ 式中,y 为输出电压,V ;T 为输入温度,℃。 (2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K =1.5?10-5/3=0.5?10-5(V/℃); (2) τ=1.4/4.2=1/3(s), K =9.6/4.2=2.29(μV/Pa)。 1-7 设用一个时间常数τ=0.1s 的一阶传感器检测系统测量输入为x (t )=sin4t +0.2sin40t 的信号,试求其输出y (t )的表达式。设静态灵敏度K =1。 解 根据叠加性,输出y (t )为x 1(t )=sin4t 和x 2(t )= 0.2sin40t 单独作用时响应y 1(t )和y 2(t )的叠加,即y (t )= y 1(t )+ y 2(t )。 由频率响应特性:

GPS接收机灵敏度解析

1 GPS接收机的灵敏度定义 随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。 作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。 GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。 2 GPS接收模块的灵敏度性能分析 从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。 2.1接收机前端电路性能对灵敏度的影响 GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为: (1) 按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为: (2) GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1频段 C/A信号到达地面的强度可能会低于-160dBw。

传感器计算题答案

计算题 1 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 (1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 (2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5′10-5/3=0.5′10-5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 2 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即 x y dt dy dt y d 10 1032 2100.111025.2100.3?=?+?+ 式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。试求其固 有振荡频率ωn 和阻尼比ζ。 解: 由题给微分方程可得 ()()s rad n /105.11/1025.25 10 ?=?= ω 01 .01 1025.22100.310 3 =????= ξ 3 已知某二阶传感器系统的固有频率f 0=10kHz ,阻尼比ζ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。 解:由f 0=10kHz ,根据二阶传感器误差公式,有 ()[]() % n n 31411 2 2 2 2≤-ωωξ+ωω-= γ ()[]() 069 1031411 22 2 2 2..n n =≤ωωξ+ωω- 将ζ=0.1代入,整理得

传感器几个必须掌握的公式

E = 应变 S F = 应力 径向应变 轴向应变: =1 E E 桥: 全 2 电桥: 双臂 电桥: 电桥的输出电压:单臂 2 σ ε σ με ε με ε ε ε - = ? = ? ? = ? = = ? = = ? = - r r L L K R R U K E R R U K E R R U E E , 10 / / 4 / 6 4 ε K R R= ?/

) + - - ( 4 UK = U 电桥的和差特性: 4 3 2 1 0 ε ε ε ε ) ( 4 4 3 2 1 0R R R R R R R R U U ? + ? - ? - ? =

二、几个名词 ?传感器 ?静态特性(线性度、灵敏度、回程误差、稳定性、漂移、重复性、分辨力) ?动态特性 ?电阻应变效应 ?压电效应(正、逆压电效应) ?霍尔效应 ?光电效应(外光电效应、内光电效应(光电导效应、光生伏特效应) ?热电效应三、几个常见物理量的测量方法?位移:电阻式传感器、电感式传感器、电容式传感器、磁电式传感器、霍尔传感器?转速:电容式传感器、磁电式传感器、霍尔传感器、光电式传感器、电涡流传感器?加速度:电阻应变式传感器、差动变压器式传感器、压电式传感器、电容式传感器?力:电阻应变式、压电式传感器、电容式传感器、电感式传感器 ?温度:热电偶、热电阻、热敏电阻 四、几个问题 ?传感器的组成、作用? ?传感器的分类? ?传感器的静态特性指标、动态特性指标? ?改善传感器性能(非线性)的途径有哪些?(差 动连接的原理和作用) ?电阻应变式传感器测力的基本原理? ?电桥电路的特点? ?电感式传感器、电容式传感器的后续测量电路? ?热电偶测温的基本原理、基本定律? ?内外光电效应对应的元器件? 1传感器:国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 2静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。主要包括线性度、灵敏度、迟滞、重复性、漂移等。 (1) 线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。 (2) 灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏. (3) 迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。也就是说,对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。 (4) 重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。 (5) 漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。最常见的漂移是温度漂移,即周围环境温度变化而引起输出量的变化,温度漂移主要表现为温度零点漂移和温度灵敏度漂移。温度漂移通常用传感器工作环境温度偏离标准环境温度(一般为20℃)时的输出值的变化量与温度变化量之比。 (6) 分辨率和阈值(resolution and threshold) 传感器能检测到输入量最小变化量的能力称为分辨力。对于某些传感器,如电位器式传感器,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个“阶梯”所代表的输入量的大小。对于数字式仪表,分辨力就是仪表指示值的最后一位数字所代表的值。当被测量的变化量小于分辨力时,数字式仪表的最后一位数不变,仍指示原值。当分辨力以满量程输出的百分数表示时则称为分辨率。 阈值是指能使传感器的输出端产生可测变化量的最小被测输入量值,即零点附近的分辨力。有的传感器在零位附近有严重的非线性,形成所谓“死区”(dead band),则将死区的大小作为阈值;更多情况下,阈值主要取决于传感器噪声的

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

GPS的接收机灵敏度测试

接收机灵敏度分析 时间:2010-01-19 13:05:49 来源:作者: 1 GPS 接收机的灵敏度定义 随着GPS 应用范围的不断扩展,业界对GPS 接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS 的使用范围。作为GPS 接收机最为重要的性能指标之一,高灵敏度一直是各个GPS 接收模块孜孜以求的目标。对于GPS 接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、捕获灵敏度、初始启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm 以下的接收机,同时,初始启动的灵敏度和捕获灵敏度也分别可以达到-142dBm 和-148dBm 以下。GPS 接收机首先需要完成对卫星信号的捕获,完成捕获所需要的最低信号强度为捕获灵敏度;在捕获之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。为了实现定位,GPS 接收机还需要解调GPS 卫星发送的导航电文,相应的,解调导航电文所需要的最低信号强度为初始启动灵敏度。根据上述定义可知,跟踪灵敏度最高,捕获灵敏度次之,初始启动灵敏度最差。 2 GPS 接收模块的灵敏度性能分析 从系统级的观点来看,GPS 接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕获、跟踪过程所能容忍的最小信噪比。 2.1 接收机前端电路性能对灵敏度的影响 GPS 信号是从距地面20000km 的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1 频段(fL1=1575.42MHz)自由空间衰减为: 按照GPS 系统设计指标,L1 频段的C/A 码信号的发射EIRP(Effective Isotropic RadiatedPower,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS 系统L1 频段C/A 码信号到达地面的强度为: GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS 系L1 频段C/A 码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1 频段C/A 信号到达地面的强度可能会低于-160dBw。 一般GPS 接收机的结构如下图所示: GPS 信号被天线接收下来后,如果天线有源,则经过滤波器和低噪放,再通过电缆接到接收机部分,接收

工程中模态灵敏度的计算方法

工程中模态灵敏度的计算方法 灵敏度即求导信息,它是一种度量,是一种评价由于设计变量或参数的改变而引起结构特性变化的变化程度的方法。系统的灵敏度分析的主要目的是确定设计参数变更时,系统响应、特征值及特征向量等发生的变化率,因此通过灵敏度分析可得到为实现最优化所需要的设计导数。它是当前力学和结构工程领域的主要研究方向之一。例如在结构优化、可靠性评估及结构控制等工程领域,灵敏度信息即是一个主要的先决条件,通常依据灵敏度性态来确定对优化目标及状态变量影响较大的设计参数,利用程序可自动选择灵敏度高的参数进行操作。在结构系统的模型修正时,基于设计参数及矩阵元素的修正算法,可以使用无阻尼实模态的正交归一化条件作为约束求解修正量,目前也有一些文献在使用复模态的正交归一化条件来设计修正算法,这些算法经常使用各种模态参数的灵敏度信息参与修正量的求解。当前,结构安全性检测有时也依赖灵敏度信息来确定结构是否出现损伤、损伤的位置及损伤的严重程度等。 1 阻尼与模态 依据结构阻尼的性质可将振动系统分为无阻尼、比例阻尼及一般粘性阻尼三种情况。在应用灵敏度分析的相关领域中,各种阻尼情况下的模态分析是其重要的基础。 无阻尼情况下的模态被称为实模态或纯模态,特征方程的根比较容易依据方程(λ2M+K)x=0的特征值问题求解,这种问

题在数学意义上称为广义特征问题,得到实频率-ω2r=λ2r及相对应的实模态。当比例阻尼矩阵满足方程C=αM+βK (α,β 为实常数)时,比例阻尼系统具有复频率λ2r,并满足【1】 且与无阻尼系统具有相等的实模态向量。可见比例阻尼系统的数值计算量远低于一般的粘性阻尼系统。当系统的阻尼近似为一般粘性阻尼时,系统的极点与模态都是复值的,系统的特征问题为(λ2M+λC+K)x=0。这不是一般意义上的特征问题,为了将系统特征问题转化为数学意义上的特征问题,即实值矩阵的一般特征问题,常将系统方程转入状态空间形式,第一种常见的状态方程形式为Ay+By=0,其中【2】 这种类型的状态矩阵总也不是对称的,导致它的右状态向量系总也不是内部正交的,还必须要求M-1存在。但是,它的优点是振动系统的特征问题转化为一般矩阵 A 的特征问题,而不是第一种的广义特征问题。在使用两种状态方程的状态向量正交关系时,必须格外注意它们与系统的左右模态之间的关系,以及考虑系统性质矩阵是否对称等,否则极易得到错误的结论。讨论状态向量的正交性及灵敏度问题的意义在于2N 维状态向量的前N 维恰为原振动系统的模

《传感器与检测技术》第二版部分计算题解答

第一章 传感器与检测技术概论 作业与思考题 1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由减至,求该仪器的灵敏度。 依题意: 已知X 1=4.5mm ; X 2=5.5mm ; Y 1=; Y 2= 求:S ; 解:根据式(1-3) 有:15 .45.55.35.21212-=--=--=??=X X Y Y X Y S V/mm 答:该仪器的灵敏度为-1V/mm 。 2.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:Ω/℃;电桥:Ω;放大器:100(放大倍数);笔式记录仪:0.1cm/V 求:(1)测温系统的总灵敏度;(2)纪录仪笔尖位移4cm 时。所对应的温度变化值。 依题意: 已知S 1=Ω/℃; S 2=Ω; S 3=100; S 4=0.1cm/V ; ΔT=4cm 求:S ;ΔT 解:检测系统的方框图如下: (3分) (1)S=S 1×S 2×S 3×S 4=××100×=(cm/℃) (2)因为:T L S ??= 所以:29.114035.04==?=?S L T (℃) 答:该测温系统总的灵敏度为0.035cm/℃;记录笔尖位移4cm 时,对应温度变化114.29℃。 3.有三台测温仪表,量程均为0_600℃,引用误差分别为%、%和%,现要测量500℃的温度,要求相对误差不超过%,选哪台仪表合理 依题意, 已知:R=600℃; δ1=%; δ2=%; δ3=%; L=500℃; γM =% 求:γM1 γM2 γM3 解:

(1)根据公式(1-21)%100??=R δ 这三台仪表的最大绝对误差为: 0.15%5.26001=?=?m ℃ 0.12%0.26002=?=?m ℃ 0.9%5.16003=?=?m ℃ (2)根据公式(1-19)%100L 0 ??=γ 该三台仪表在500℃时的最大相对误差为: %75.2%10050015%10011=?=??= L m m γ %4.2%100500 12%10012=?=??=L m m γ %25.2%1005009%10013=?=??= L m m γ 可见,使用级的仪表最合理。 原因是,即满足了仪表误差要求,又不浪费精度指标。 答:使用级的仪表最合理。原因是,即满足了仪表误差要求,有不浪费精度指标。 第二章 电阻式传感器技术 作业与思考题 5.电阻应变片阻值为100Ω,灵敏系数K =2,沿纵向粘贴于直径为0.05m 的圆形钢柱 表面,钢材的E=2X1011N/m 2,μ=。求钢柱受10t 拉力作用时,应变片的相对变化量。又若 应变片沿钢柱圆周方向粘贴、受同样拉力作用时,应变片电阻的相对变化量为多少 依题意: 已知:F=10*103kgf ; E=2X1011N/m 2; R=100Ω; K=2; μ=; r=0.05m 求:ΔL/L ,ΔR/R 。 解: 1)由于圆形钢柱截面积为: 23221085.705.014.3m r S -?=?==π 2)所以钢柱受10t 拉力作用时,其拉应变为:

灵敏度表示与计算

灵敏度表示与计算 灵敏度表示与计算 灵敏度是表征电声换能能力的一个指标,其定义是在单位声压作用下的输出电压或电功率。可见,随着单位和负载的不同,可能有多种不同的表示方法。常见的有开路灵敏度和有载灵敏度两种。所谓开路灵敏度系指在单位声压作用下输出的电动势。换句话说,当话筒(MIC 微音器传声器)的输出端处与开路状态时,若作用在振膜上的声压为P,测得的电压为V,则开路灵敏度。 E=V/P 常用的单位为豪伏/微巴。如果以分贝(dB)表示,开路灵敏度:E(dB)=20lgV/P-20lgV(0)/P(0)分贝 必须特别加以注意的是,当以分贝表示话筒(麦克风MIC 微音 器传声器)的开路灵敏度时,必须注明其基准值。 有载灵敏度又称灵敏度的功率表示法。它是指在单位声压作用下,在传声器输出端的额定负载上输出的电功率。通常规定额定负载为600欧姆。 在上述定义中,都涉及声压的测量问题。如果采用的是声场中某点的声压值,则称为声场灵敏度;如果取实际作用在话筒(麦克风MIC 微音器传声器)振膜上的声压值,则称为声场灵敏度;如果取实际作

用在传声器振膜上的声压值,得出的则是声压灵敏度。在实际使用中,除非另有说明,通常说明书上给出的是声场灵敏度。 简易远距离无线调频传声器电路 寻求一种发射距离远、拾音灵敏度高、长时间工作不跑频、调试简单易制作,且成本低廉的无线是很多爱好者迫切希望的。本文介绍的单管远距离无线调频传声器即具备以上特点。 由于发射用的环形L1兼作振荡,该天线内流动的是与振荡频率同步谐振的高频电流,所以始终处于最佳发射状态。经实践,在空矿地发射距离大约100~150m(用的是TOLY1781袖珍,该机天线加长至时所能达到的接收距离)。相比之下,在工作电压、工作电流和发射频率同等的情况,L1换成普通螺旋线圈,振荡集电极接上一只5pF电容至长的拉杆天线作发射实验,前后两种发射方式的发射距离几乎相当,证明该内藏式环形天线兼作振荡线圈时的发射效率是相当高的。 内藏式环形天线采用长度160mm,1mm的漆包线制成金属圆环或方框形,嵌入机壳内。调节电容C3,使发射频率落入88~ 108MHz之间,以便用调频收音机接收。当电压在~2V之间变化时,长时间工作,本发射频率稳定不变。电池电压时,整机工作电流约。调试时,手不要靠近环形天线,安放时不要靠近金属物,以免影响振荡频率和发射距离。

传感器计算题目总结答案

传感器计算题目总结答案

传感器计算题目总结 第二章 1 一光电管与5k Ω电阻串联,若光电管的灵敏度为30μA/lm,试计算当输出电压为2V 时的入射光通量。 解:外光电效应所产生的电压为L L o R K IR U ?== R L 负载电阻,I 光电流,?入射光通量。K 光电管的灵敏 度,单位A/lm 。 入射光通量为lm KR U L o 13.135000 10 3026 =??= =-? 2 光敏二极管的光照特性曲线和应用电路如图所示,图 中l 为反相器,R L 为20kΩ,求光照度为多少lx 时U o 为高电平。【DD i V U 2 1 <】 解:当反相器的输入i U 满足翻转条件DD i V U 2 1<时,反相器 翻转,o U 为高电平。现图中标明V U DD 5=,所以i U 必须小于 2.5V ,o U 才能翻转为高电平。由于光敏二极管的伏安特性十分平坦,所以可以近似地用欧姆定律来计算φ I 与o U 的

关系。 ()DD L DD V R I V 2 1 <- φ mA A R V V I L DD DD 125.010125.010205.252133 =?=?-=->-φ 从图中可以看出光敏二极管的光照特性是线性的,所以根据比例运算得到mA I 125.0=φ 时的光照度0 E 3 .03000 125.00=E 所以lx E 1250125.03 .03000 =?= 即光照度E 必须大于 lx E 12500=时o U 才为高电平。 第四章 1 一热敏电阻在0℃和100℃时,电阻值分别为200kΩ和10kΩ。试计算该热敏电阻在20℃时的电阻值。 2 将一支灵敏度为0.08mv/0C 的热电偶与电压表相连, 电压表接线端处温度为500C ,电压表读数为60 mv ,求热电偶热端温度?

灵敏度

讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[https://www.360docs.net/doc/4a4817665.html,] 问题:我们经常看到某些GPS芯片 商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.360docs.net/doc/4a4817665.html,] 1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 [https://www.360docs.net/doc/4a4817665.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平 [https://www.360docs.net/doc/4a4817665.html,] 3)如何按照信噪比,信号功率设计系统灵敏度 [https://www.360docs.net/doc/4a4817665.html,] [https://www.360docs.net/doc/4a4817665.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2 jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 d Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正)

Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.360docs.net/doc/4a4817665.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解: 1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求 芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗 Arm720: 看来我的发帖晚了一部,多谢jinfoxhe和snow99兄! 不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了! 以下是引用jinfoxhe在2006-4-24 8:56:00的发言: 1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带 宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. 今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这

电阻应变式传感器灵敏度特性的研究

电阻应变式传感器灵敏度特性的研究 实验内容: 1.按下图将金属箔式应变片电阻接成单臂电桥电路,测量灵敏度/S V W =??。 图 (一) 2.按下图将金属箔式应变片电阻接成半桥电桥电路,测量灵敏度/S V W =??。 图(二) 3.按下图将金属箔式应变片电阻接成全桥电桥电路,测量灵敏度/S V W =??。

图(三) 4.比较以上三种电路的灵敏度之间的关系。 实验步骤: 1.检查导线有无断路导线的变化会不会引起电压表示数的变化。 2.对差动放大器进行调零。 3.按图(一)所示接好单臂电桥电路,接通主、副电源。 4.调节W D使电路平衡(输出电压U0=0)。 5.在托盘上逐次增加一个砝码,并记下每次输出电压的读数,直到砝码全部加完。 6.在托盘上逐次减少一个砝码,并记下每次输出电压的读数,直到砝码全部减完。 7.拆掉接线,按图(二)连成半桥电路,重复4、5、6步操作. 8.拆掉接线,按图(三)连成全桥电路,重复4、5、6步操作. 9.9.作V-W关系曲线,计算三种电路的灵敏度S,并比较。 数据处理: 一、单臂电桥:

(1)所测数据如下表: 作输出电压与锁甲中午之间的关系图:

由图可知:v/kg 610.0=增 s ,v/kg 605.0=减s 。 v/kg 608.02 s =+=减增s s 分析:由图可知,砝码增加时的灵敏度比砝码减少时的灵敏度高。在读取减砝码时的数据时发现,砝码越少,数据与加砝码时差别越大,原因可能是由于旧机器使用时间长,设备老化,在拿掉砝码时,应变片的形变没有彻底恢复到放砝码前,仍有较大形变。 二、半桥电路 (1)所测数据如下: (2)作输出电压与锁甲中午之间的关系图:

用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度

%后面的为注释,红色部分代码需要根据实际情况更改 %最小二乘法线性拟合y=ax+b x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量 y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量 xmean=mean(x);ymean=mean(y); sumx2=(x-xmean)*(x-xmean)'; sumxy=(y-ymean)*(x-xmean)'; a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度) b=ymean-a*xmean;%解出直线截距b z=((a*(x(1,10))+b-(y(1,10)))/(y(1,10)));%“10”是自变量的个数,z为非线性误差(即线性度) a b z %作图,先把原始数据点用蓝色"十"字描出来 figure plot(x,y,'+'); hold on % 用红色绘制拟合出的直线 px=linspace(0,6,50);%(linspace语法(从横坐标负轴起点0画到横坐标正轴终点6,50等分精度)) py=a*px+b; plot(px,py,'r'); 运行结果: a =236.9818 b =87.4000 另一种简单一点的方法:

%最小二乘法线性拟合y=ax+b x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量 y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量p=polyfit(x,y,1); p 运行结果: p = 236.9818 87.4000

接收机灵敏度的探讨

无线电接收机诸多的性能当中,「灵敏度」(Sensitivity)无疑是其中最重要的一项,同时,也可能是遭遇最多误解的一项了。 曾经听说过有位OM试着要在天线和接收机的输入端之间,加装一个高增益的前置放大器,以提高灵敏度。这种作法是否正确,有待我们来探讨。 杂讯与讯号杂讯比 直接从字面上的意义,我们了解到,灵敏度是接收微弱讯号的能力。要接收微弱的讯号,一般的想法是设法将讯号储量放大,也就是提高增益(Gain),以接收更微弱的讯号,所以增益高的接收机,其灵敏度一定较高。 这一段话,前半段关於灵敏度定义的部份,基本上是正确的;但後半段,增益与灵敏度关系的推论,跟实际情况却相差了十万八千里,这正是一般人对於灵敏度这项特性最人的误解。 在进入正题之前,且让我们谈谈杂讯(Noise)的问题。 打开接收机,当没有讯号进来时,通常都可以听到细小的「沙沙」声,这就是杂讯的声音。当有讯号进来时,强度够的话,这种「沙沙」声就几乎听不到。可是如果讯号微弱的话,我们会把接收机的音量开大,想更清楚地听到讯号,这一来,「沙沙」声也就相对变大。如果讯号更微弱的话,纵然将接收机的音量开到最大,也只是徒然提高「沙沙」声而已,讯号还是听不清楚。 可见要清楚地接收到微弱讯号,问题并不是在将音量开得多大(提高增益)。如果纯粹想提高增益的话,实在太简单了,了不起再加一级放大器就是。其关键乃是讯号和杂讯相对的强度,是否讯号有足够的强度,不被杂讯所遮盖过去。 这种讯号强度和杂讯强度的对比就叫「讯号杂讯比」(SignaltoNoiseRatio)或者简称S/N比;当然,S/N比在习惯上,也经常以dB来表示。 从接收机声频输出端(如扬声器)所听到的杂讯。可以区分为两类。第一类是伴随着讯号从天线端接收进来的外部杂讯。对於此「天」电杂讯(或称背景杂讯),我们很难有所作为,只好听天由命了。第二类是与外部环境完全无关的内部杂讯,即使将输入端的讯号降低到零,仍可听到的杂讯,这完全是接收机本身所产生的内部杂讯。 对於第二类的内部杂讯,聪明的你,应该已经察觉到跟接收机的灵敏度一定有很密切的关系。 杂讯指数与杂讯系数 描述一个系统(如接收机)内部杂讯大小,可以用杂讯系数(NoiseFact

传感器计算题目总结答案

传感器计算题目总结 第二章 1 一光电管与5k Ω电阻串联,若光电管的灵敏度为30μA/lm ,试计算当输出电压为2V 时的入射光通量。 解:外光电效应所产生的电压为L L o R K IR U ?== R L 负载电阻,I 光电流,?入射光通量。K 光电管的灵敏度,单位A/lm 。 入射光通量为lm KR U L o 13.135000 10302 6 =??== -? 2 光敏二极管的光照特性曲线和应用电路如图所示,图中l 为反相器,R L 为20k Ω, 求光照度为多少lx 时U o 为高电平。【DD i V U 2 1 <】 解:当反相器的输入i U 满足翻转条件DD i V U 2 1<时,反相器翻转,o U 为高电平。现图中标明V U DD 5=,所以i U 必须小于2.5V ,o U 才能翻转为高电平。由于光敏二极管的伏安特性十分平坦,所以可以近似地用欧姆定律来计算φI 与o U 的关系。 从图中可以看出光敏二极管的光照特性是线性的,所以根据比例运算得到 mA I 125.0=φ时的光照度0E 所以lx E 1250125.03 .03000 0=?= 即光照度E 必须大于lx E 12500=时o U 才为高电平。 第四章 1 一热敏电阻在0℃和100℃时,电阻值分别为200kΩ和10kΩ。试计算该热敏电阻在20℃时的电阻值。 2 将一支灵敏度为0.08mv/0C 的热电偶与电压表相连,电压表接线端处温度为 500C ,电压表读数为60 mv ,求热电偶热端温度?

3 用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时的热电动势为29.186mV, 求被测的热端温度大小? 解:Array 29.186+1.612=30.798mV 热端温度为740℃ 第五章 1 图为一直流应变电桥,E = 4V,R1=R2=R3=R4=350Ω,求: ①R1为应变片其余为外接电阻,R1增量为△R1=3.5Ω 时输出U0=?。 ②R1、R2是应变片,感受应变极性大小相同,其余为电阻,电压输出U0=?。 ③R1、R2感受应变极性相反,输出U0=?。 ④R1、R2、R3、R4都是应变片,对臂同性,邻臂异性,电压输出U0=?。 2 如图所示为等强度梁测力系统,R1为电阻应变片,应变片灵敏度系数k = 2.05,未受应变时R1 = 120Ω,当试件受力F 时,应变片承受平均应变ε= 8×10?4,求(1)应变片电阻变化量ΔR1和电阻相对变化量ΔR1/R1。 (2)将电阻应变片置于单臂测量电桥,电桥电源电压为直流3V ,求电桥输出电压是多少。 3 阻值R=120Ω灵敏系数K=2.0的电阻应变片与阻值120Ω的固定电阻组成电桥, 供桥电压为3V,并假定负载电阻为无穷大,当应变片的应变为2με和2000με时,分别求出单臂、双臂差动电桥的输出电压,并比较两种情况下的灵敏度。解: 4 如图所示气隙型电感传感器,衔铁断面积S=4×4mm2,气隙总长度δ=0.8mm,

53350 《传感器与检测技术》第二版部分计算题解答

第一章 传感器与检测技术概论 作业与思考题 1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至2.5V ,求该仪器的灵敏度。 依题意: 已知X 1=4.5mm ; X 2=5.5mm ; Y 1=3.5V ; Y 2=2.5V 求:S ; 解:根据式(1-3) 有:15 .45.55.35.21212-=--=--=??= X X Y Y X Y S V/mm 答:该仪器的灵敏度为-1V/mm 。 2.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:0.35Ω/℃;电桥:0.01V/Ω;放大器:100(放大倍数);笔式记录仪:0.1cm/V 求:(1)测温系统的总灵敏度;(2)纪录仪笔尖位移4cm 时。所对应的温度变化值。 依题意: 已知S 1=0.35Ω/℃; S 2=0.01V/Ω; S 3=100; S 4=0.1cm/V ; ΔT=4cm 求:S ;ΔT 解:检测系统的方框图如下: (3分) (1)S=S 1×S 2×S 3×S 4=0.35×0.01×100×0.1=0.035(cm/℃) (2)因为:T L S ??= 所以:29.114035 .04 ==?=?S L T (℃) 答:该测温系统总的灵敏度为0.035cm/℃;记录笔尖位移4cm 时,对应温度变化 114.29℃。 3.有三台测温仪表,量程均为0_600℃,引用误差分别为2.5%、2.0%和1.5%,现要测量500℃的温度,要求相对误差不超过2.5%,选哪台仪表合理? 依题意, 已知:R=600℃; δ1=2.5%; δ2=2.0%; δ3=1.5%; L=500℃; γM =2.5% 求:γM1 γM2 γM3 解:

计算ASK接收机的灵敏度

计算ASK接收机的灵敏度 RFIC幅移键控(ASK)或者叫做开关键控(OOK)接收机的灵敏度对于远程无线开门系统(RKE)、轮胎压力监视系统(TPM)、家庭自动化系统以及其它应用系统的设计者来说是一项重要的规范。这类接收机一般工作在315MHz或433MHz的频段上,但是其电路对其它载波频率也是适用的。了解这种接收机一些特性在理论上的极限值对RFIC用户和设计者都是很重要的,因为这样就能确定他们在设计上的改进是不是成功的。本篇应用笔记描述了一种在已知系统噪声系数、IF带宽和基带带宽的条件下一步一步的计算ASK接收机灵敏度的方法。结果表明,接收信号强度指示(RSSI)放大器实现的对数幅度检测在输入SNR较低时降低了输出信噪比(SNR) (门限效应),而灵敏度的提高与IF带宽与基带带宽之比的平方根成正比。 大多数现代幅移键控(ASK)接收机利用将调制的RF信号直接的或者经过一次或多次频率变换后通过一个幅度检测器对数据进行检测。幅度检测器基本上就是一个RF或IF放大器和一个RSSI(接收信号强度指示器),RSSI的输出与输入RF或IF信号功率的对数成正比。 因为RSSI检测器是一个非线性的检测器,它将改变输入信号的信噪比(SNR)。ASK 灵敏度计算的关键就在于RSSI检测器的SNR out与SNR in关系曲线。 一旦我们知道了SNR out与SNR in之间的关系,在已知噪声系数、IF带宽和数据速率的条件下可以通过如下步骤找出ASK灵敏度 1. 确定目标BER(在本例中为10-3)所需的Eb/No,然后根据Eb/No用下面的等式计算SNR。 SNR = (Eb/No) * (R/BBW) 其中R是数据速率,BBW是数据滤波器的带宽 2. 将上一步计算出来的SNR减去IF(预检波)BW与数据滤波器BW之比的dB数。例如,如果IF BW为600KHz数据滤波器BW为6kHz,这就意味着要从SNR中减去20dB。得到的结果就是RSSI检测器输出信号的SNR,这一信号还没有被数据滤波器消除其高频噪声(假设这些噪声占据了IF BW)。对于灵敏度来说,这一比例通常是以dB为单位的负值。 3. 用RSSI的SNR out与SNR in关系曲线找出RF或IF放大器和RSSI检测器输入信号的SNR。实际上就是通过这条曲线用第二步计算中得到SNR out“反向”推导SNR in。 4. 使用接收机前端SNR公式找出接收机输入端的信号水平。这就是灵敏度S S = (SNR in) * (kTBIFFS) 其中kT是在290 K的噪声谱密度(-174 dBm/Hz),BIF是IF(预检波)BW,FS是接收机系统(不仅仅是前端)的噪声系数。 因为RSSI检测器是一个对数检测器,输入输出SNR的关系可以用一种封闭的方式表示,尽管可能看起来有点儿乱。一篇发表在IEEE学报上比较老的关于航空与电子系统的文章[1]推导出了其表达式并画出了SNR out与SNR in关系的曲线。这篇文章中的曲线非常小而且没有足够的网格线,但是可以在Excel表格中对表达式进行分析计算并画出更具体的

传感器复习计算题

计算题 1 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 (1) T y dt dy 5105.1330-?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 (2) x y dt dy 6.92.44.1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 2 一压电式加速度传感器的动态特性可以用如下的微分方程来 描述,即 x y dt dy dt y d 1010322100.111025.2100.3?=?+?+ 式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。试求其固有振荡频率ωn 和阻尼比ζ。 3 已知某二阶传感器系统的固有频率f 0=10kHz ,阻尼比ζ=0.1, 若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。

4 设有两只力传感器均可作为二阶系统来处理,其固有振荡频率分别为800Hz和1.2kHz,阻尼比均为0.4。今欲测量频率为400Hz正弦变化的外力,应选用哪一只?并计算将产生多少幅度相对误差和相位差。 5一应变片的电阻R0=120Ω,K=2.05,用作应变为800μm/m的传感元件。(1)求△R与△R/R;(2)若电源电压U i=3V,求其惠斯通测

量电桥的非平衡输出电压U0。 6 如果将120Ω的应变片贴在柱形弹性试件上,该试件的截面积S=0.5×10-4m2,材料弹性模量E=2×101l N/m2。若由5×104N的拉力引起应变片电阻变化为1.2Ω,求该应变片的灵敏系数K。 7 以阻值R=120Ω,灵敏系数K=2.0的电阻应变片与阻值120Ω的固定电阻组成电桥,供桥电压为3V,并假定负载电阻为无穷大,当应变片的应变为2με和2000με时,分别求出单臂、双臂差动电桥的输出电压,并比较两种情况下的灵敏度。 8 一台采用等强度梁的电子称,在梁的上下两面各贴有两片电阻应变片,做成称重传感器,如习题图2—12所示。已知l=10mm,b0=llmm,h=3mm,E=2.1×104N/mm2,K=2,接入直流四臂差动电

相关文档
最新文档