任务四电动机点动、连续运行控制

任务四电动机点动、连续运行控制
任务四电动机点动、连续运行控制

任务四电动机点动、连续运行控制

电动机自动快速再起动电路图

电动机知识 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定

转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。 电磁制动器从通电到断电(或从断电到通电) 需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。 防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

最新任务三电动机连续运行控制资料

任务三电动机连续运行控制 2.3.1电动机连续运行控制原理分析 引入策略 上次课我们讲授了三相异步电动机点动控制原理分析。本次课我们将讲授三相异步电动机连续运行控制原理分析。

(a )三相异步电动机连续运行控制电路图 2、三相异步电动机连续运行控制工作原理 自锁:利用电器自己的触头使自己的线圈得电从而保持长期工作的线路环节称为自锁环节 这种触头叫自锁触头。 1) 连续控制是指当电动机起动后,再松开起动按钮 SB1,控制电路仍保持接通,电动机仍 继续运 转工作。连续控制也称自锁。 2)实现连续控制可以将起动按钮、停止按钮与接触器的线圈串联,并在起动按钮两端并联 接触器的常开辅助触点(自锁触点)。 3)连续运行控制工作原理: ① 、启动:按下启动按钮SB ,接触器KM 线圈得电,KM 主触头闭合,接触器KM 常开辅助触 头闭合自锁,电动机M 得电正转启动并连续运转。 ② 、停止:按下停止按钮 SB ,接触器KM 线圈失电,KM 主触头分断,KM 自锁触头分断, 电动机M 失电停转。 L1 L2 L3 U11 V11 |]叽 W1 U12 KMX^ W W1 PE 厂 FU KM 口 V M 3? 3

3、连续运行控制原理应用 这种控制方法常用于普通CA6140型机床控制。 4、三相异步电动机连续运行控制电路的安全保护 在如图(a)所示点动控制线路中安全保护 1)低压断路器QF作电源隔离开关及主电路短路保护和过载保护; 2)熔断器FU1和FU2作主电路和控制电路的短路保护; 3)接触器KM的线圈得电、失电,具有失压保护(零压保护)和欠压保护; 4)在整个线路中还有接地保护。 过载保护: 热继电器FR用于电动机过载时,其在控制电路的常闭触点打开,接触器KM线圈断电, 使电动机M停止工作。排除过载故障后,手动使其复位,控制电路可以重新工作。短路保护:熔断器组FU1用于主电路的短路保护,FU2用于控制电路的短路保护。零压保护: 电路失电复上电,不操作起动按钮,KM线圈不会再次自行通电,电动机不会自行起动。 总结评价 通过本次课的学习我们掌握了三相异步电动机连续运行控制工作原理及应用、控制电 路的安全保护。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/4a6559014.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

任务四电动机点动连续运行控制

任务电动机点动、连续运行控制 2?4. 1电动机点动、连续运行综合控制尿理方析 引入策略 -上次课我们讲授了三相异步电动机连续运行控制实训。本次课我们将讲授三相异步电动机点动、连续运行综合控制原理分析。 学习内容 【学习概要】 电动机点动与连续运转控制电路的比较 二、电动机点动与连续运行综合控制电路应用 三、电动机点动、连续运行综合控制工作原理 四、三相异步电动机点动、连续运行综合控制电路的安全保护 【内容解析】 一、电动机点动与连续运转控制电路的比较 1、点动控制电路 1)点动控制电路,是用较简单的二次电路控制主电路,完成电动机的全压启动。点动控制是指按下按钮,电动机得电运转;松开按钮,电动机失电停转,其工作原理如图(a)所示。 2)点动线路工作原理: 启动:按下启动按钮SB-控制电路得电?接触器线圈KM得电一接触器主触头闭合-主电路接通f 电动机M得电并启动运转。 停止:放开动合按钮SB-控制电路分断-接触器KM线圈失电一接触器主触头分断?主电路分断f 电动机M失电停转。

LI L2 L3 2、具有自锁功能的单向连续运转的控制电路: 1)、连续运转的方法: 对需要较长时间运行的电动机,用点动控制是不方便的。因为一旦放开按钮SB,电动机立即停转。解决的办法就是,在点动电路中的启动按钮SB的两端并联一对交流接触器自身的动合辅助触点,再在控制电路中串接一停止按钮SB1,其工作原理如图(b)所示其他与点动电路一样。 2)、自锁连续运转线路工作原理: 启动:按下启动按钮SB2 —?接触器KM线圈得电一? —T—> KM主触头闭合-------------- 电动机M启动并连续运转 KM常开辅助触头闭合自锁」 停止:按下停止按钮SB1 —?接触器KM线圈失电 > KM主触头分断?电动机M失电停转 KM自锁触头分断

电动机点动控制电路讲解

电动机点动控制电路讲解 控制线路原理图如下所示: 启动:按下起动按钮SB→接触器KM线圈得电→KM主触头闭合→电动机M启动运行。 停止:松开按钮SB→接触器KM线圈失电→KM主触头断开→电动机M失电停转。 这种控制方法常用于电动葫芦的起重电机控制和车床拖板箱快速移动的电机控制。

点动、单向转动控制线路是用按钮接触器来控制电动机运转的最简单的控制线路接线示意图如下图所示。 从图中可以看出点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU 作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止,线路工作原理如下: 当电动机M需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,使衔铁吸合,同时带动接触器KM 的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,衔铁在复位弹簧作用下复位,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

上图中点动正转控制接线示意图是用近似实物接线图的画法表示的,看起来比较直观,初学者易学易懂,但画起来却很麻烦,特别是对一些比较复杂的控制线路,由于所用电器较多,画成接线示意图的形式反而使人觉得繁杂难懂,很不实用。 因此,控制线路通常不画接线示意图,而是采用国家统一规定的电器图形符号和文字符号,画成控制线路原理图。点动正转控制线路原理图,如下。 它是根据实物接线电路绘制的,图中以符号代表电器元件,以线条代表联接导线。用它来表达控制线路的工作原理,故称为原理图。原理图在设计部门和生产现场都得到了广泛的应用。 除了点动控制电路,在工作中,还会用到各种电路,比如:起保停电路、自锁控制电路、正反转控制电路、降压启动控制电路、启停控制电路等等...

电工实训报告——三速电动机控制

电工实训报告——三速电动机控制 一、实训目的: (1)了解三速电动机的结构及原理; (2)掌握三速电动机的接线和用9个灯泡代替三速电机的接线原理; (3)掌握三速电动机控制的动作原理; (4)掌握复杂的控制线路的接线; (5)掌握复杂的控制线路的故障检查方法。 二、实训原理: 1、电路分析: 如图所示: 三速电动机有两套在连接上独立的定子绕组,有三种不同的转速。当接触器KM1、KM2闭合时,电动机的绕组端头U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,作“三角”连接,电动机低速运行;当接触器KM3闭合时,电动机的绕组端头U、V、W接到电源的U、V、W相上,作单“Y”连接,电动机中速运行;当接触器KM4、KM5闭合时,电动机的绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。电动机由“三角”连接变成双“Y”连接的变极原理与双速电动机相同,只是三速电动机时开口三角形,如果接成闭口三角形,那么电动机中速运行时,在闭口三角形中将产生环流,而开口三角形就不会。实训时,如果条件有限,可以采用9个灯泡来代替9个半绕组。 以下是简化图: 2、动作原理:

(1)低速运行: 按下SB1,KM1、KM2、KA得电,U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,单“三角”运行,KA闭合,低速运行。(六个灯泡亮但是较暗) (2)中速运行: 按下SB2 ,KM1、KM2失电,KM3、KT得电,电动机作单“Y”运行,中速运行。(三个灯泡亮) (3)一段时间后,常闭KT断开,常开KT闭合,KM3、KT失电,KM4,KM5得电,绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。(六个灯泡亮) (4)停止:按下SB,KM4、KM5失电,所有触点恢复原来状态,6个灯泡灭。 三、实训步骤: 1、元器件检查: (1)用万用表的“二极管”档位检查接触器的主触点及辅助触点常开、常闭触点,当按下KM时,常开应闭合,常闭应断开。 (2)测量接触器、时间继电器线圈电阻值是否正常,时间继电器的线圈阻值约10KΩ左右。 (3)检查热继电器元件及常闭触头是否处于完好状态。 (4)测量电动机绕组的电阻值和六个灯泡的阻值是否正常。 (5)检查中间继电器的常开、常闭触点是否正常。 (6)检查按钮和复合按钮常开、常闭点,当按下时,常开应闭合,常闭应断开。 (7)检查熔断器两端,以确定其完好。 2、线路接线: (1)主电路接线图:

电气控制线路图

1.单按钮控制电动机起停线路 常规电动机起动、停止需用两个按钮,在多点控制中,则需按钮引线较多。利用一个按钮多点远程控制电动机的起停,则可简化控制线路又节省导线。如图所示,其工作原理是:起动时.按下按钮AN,继电器1J线圈得电吸合,1J常开触点闭合,交流接触器C线圈通电,C吸合并自锁.电动机起动。C的常开辅助触头闭合,常闭辅助肋头断开.这时,继电器2J的线圈因1J的常闭触点已断开而不能通电,所以2J不能吸合。松开按钮AN,因C已自锁,所以交流接触器C仍吸合,电动机继续运转。但这时1J因AN放松而断电释放,其常闭触点复位,为接通2J作好准备。在第二次按下按钮AN,这时继电器1J线圈通路被C常闭触头切断,所以U不会吸合,而2J线圈通电吸合。2J吸合后,其常闭触点断开,切断C 线圈电源,C断电释放,电动机停转。 2.接触器控制电机线路 具有自锁功能的电机控制线路,如图所示,当起动电动机时合上电源开关HK,按下起动按钮酗,接触器C线圈获电,C主触点闭合使电动机M运转;松开QA,由于接触器C常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。停止时,按TA接触器C 线圈断电.C主触点断开,电动机M停转,同时自保持辅助触点分断。具有自锁的正转控制线路的重要特点是它具有欠压与失压(零压)保护作用。 有很多生产机械因负载过大、操作频繁等原因,使电动机定子绕组中长时间流过较大的电流,有时熔断器在这种情况下尚未及时熔断,以致引起定子绕组过热,影响电动机的使用寿命.严重的甚至烧坏电动机。因此,对电动机还必须实行过载保护。本线路具有热继电保护功能,当电动机过载时.主回路热继电器RJ所通过的电流超过额定电流值,使RJ内部

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

三速电机

三速电动机是在双速电动机的基础上发展而来的。在三速电动机的定子槽内安放两套绕组,一套为三角形绕组,另一套是星形绕组。适当变换这两套绕组的联结方法,就可以改变电动机的磁极对数。使电动机具有高速、中速、和低速三种不同的转速。 三速电动机共有十个引出端子,它们的新旧文字符号对照为:U1(D1)、U 2(D4)、U3(D7)、U4(D11)、V1(D2)、V2(D5)、V4(D12)、W1(D3)、W2(D6)、W4(D13)。 一)三速电动机定子绕组的接法 低速、中速、高速,三种速度的电动机定子绕组接线方法,示于图21311中。

由图21311可知,三速电动机的接法为: 1)低速三角形接法是:U1(D1)接L1(A)相;V1(D2)接L2(B)相;W 1(D3)与U3(D7)短接后接L3(C)相;其余端子空着不接。 2)中速星形接法是:U4(D11)接L1(A)相;V4(D12)接L2(B)相;W 4(D13)接L3(C)相;其余端子空着不接。 3)高速双星形接法是:U1(D1)、V1(D2)、W1(D3)、U3(D7),四个接线端子短接起来;U2(D4)接L1(A)相;V2(D5)接L2(B)相、W2(D6)接L3(C)相;剩余的三个端子空着不接。 二)三速电动机的控制线路 三速电动机的新符号控制线路如图21312所示。

三速电动机的旧符号控制线路如图21313所示。 三速电动机的控制线路中的KM1与KM3(旧符号中的C1与C3)比较特殊。其中KM1需要具有四个主触头的接触器;而KM3则需要具有六个主触头的接触器。如果买不到多主触头的接触器时,可用两个接触器代替。 图21312三速电动机的控制线路部分的原理非常简单,它实际上就相当于三个正转控制线路的组合。 图21312三速电动机控制线路在各速度之间相互转换时都必须先按停止按钮SB1,然后再按动需转换速度的控制按钮。 二)三速电动机的自动加速控制线路 三速电动机的自动加速控制线路如图21314所示。

电动机连续控制线路图

电动机连续控制线路图讲授人: 张守保 科目:电机与拖动 班级: 06秋(3)班 时间: 2008-04-03 地点:综合楼107 教学课题电动机连续控制线路图 教学目标知识目标1.了解电动机连续控制线路图组成元件和设备2.理解自锁现象 3.理解电动机连续控制线路图的工作原理 能力目标1.提高学生逻辑思维和创造能力 2.提高学生分析问题、解决问题的能力 情感目标培养学生对电动机控制线路的兴趣 教学重点电动机连续控制线路工作原理 教学难点自锁的理解 教学方法讲述法、比较法、分析归纳法 教具PPT课件 教学过程教学内容教师活动学生活动 一 复习回顾 电动机点动控制线路图 点动控制:指需要电动机作短时断续工作时,只要 按下按钮电动机就转,松开按钮电动机 就停止动作的控制。 工作原理: 合上电源开关QS,接通电源。 启动:按下按钮SB KM线圈得电KM主触头 闭合电动机运转 停止:松开按钮SB KM线圈失电KM主触头 断开电动机停转出示点动 控制线路 图 提问 什么是点 动控制? 出示定义 教师领读 提问 点动控制 工作原理 是什么? 出示原理 教师领读 看一看 说一说 指名回答 伴读 指名回答 伴读

二 新课引入引言: 在电动机的控制中,常常需要电动机连续的运 转,那么什么叫连续控制如何才能连续运转今天我 们一起来学习 讲述 出示线路 图 提问 连续控制 线路图与 点动控制 线路图中 元件有什 么不同? 讲述增加 的元件功 能 提问 当合上QS, 按下按钮 SB1时会有 什么现 象? 出示现象 得出总结 提问 当在上述 工作后按 下SB2又会 出现什么 现象? 讲述得出 结论 提问 分析什么 是连续控 制? 观察 指名回答 想一想 自由回答 观察 想一想 自由回答 指名回答 三 新课讲授 电动机连续控制线路 热继电器FR功能:电动机过载保护电器 按钮SB2 :停止按钮 自锁:接触器利用自己的辅助触头保持线圈得电 工作原理: 合上电源开关QS,接通电源 启动:按下SB1 KM线圈得电 KM自锁触头闭合 KM主触头闭合 电动机M运转 停止:按下SB2 KM线圈失电 电动机M停转

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

电动机点动控制连续控制

学习情境2电动机点动和连续控制线路的组装和调试 一、导入(2分) 上次课我们进行了电动机直接启动线路的组装,也就是用闸刀开关开直接控制电动机的通断,(直接启动控制线路演示)我们知道,只有一些小型的工厂才会用闸刀开关启停电动机,因为人与电动机的三相动力电路近距离接触,具有一定的危险性,一般的设备都是用按钮来启动电动机,这次课我来进行电动机点动和连续控制线路的组装和调试。 二、新课 1.首先请大家看任务单,了解本次课的知识目标和技能目标。(2分) 一、知识目标: 1.了解交流接触器和按钮的构造,原理,图形及文字符号。 2.掌握电动机点动和连续(自锁)控制的控制原理。 二、技能目标: 1.会组装电动机点动和连续(自锁)控制线路。 2.会进行线路故障的诊断与调试。 2.引入点动控制(1分) (电动机点动控制线路实物图)这是电动机点动控制线路,所谓电动机的点动控制,就是按下按钮,电动机运转,松开按钮,电动机停转,这种控制一般用于短时间控制电动机的运转,如机床进给的位置调整,起重机起吊重物都需要对电动机进行点动控制。 3.交流接触器和按钮构造原理,符号的研究 电动机点动控制线路中有两个重要元件,一个是交流接触器,一个是按钮,下面大家根据接触器实物和教材,任务单,研究一下接触器和按钮的构造,原理及图形和文字符号。 (学生研究,讨论)5分钟 下面请同学们说说你通过研究,对交流接触器有哪些了解。 (学生讲解:交流接触器主要的结构是线圈和触点,一共有五个触点,三个主触点,两个辅助触点,线圈通电,产生电磁吸力,主触点吸合,两个常开辅助触点也闭合,文字符号是KM) 教师讲解(3分) 交流接触器由线圈和触点组成,135三个触点是主触点,连接在主电路(参照实物图),24是辅助触点,连接在控制线路,自锁控制,正反转控制都要用到这两个触点,按下按钮,控制线路通电,接触器线圈得电,在电磁力吸引下主触点闭合,电动机得电运转,松开按钮,线圈断电,磁力消失,主触点断开,电动机断电停转。 (参照原理图)这是点动控制线路的原理图,为了分析方便,我们将接触器的线圈和触点分开画,主触点画在主电路,线圈画在控制线路,而KM就是交流接触器的文字符号,图形符号就是(参照图)SB就是按钮的文字符号,图形符号就是(参照图),从图形符号可以看出,交流接触器,按钮实质都属于开关,只是按钮用手来控制通断,而接触器是通过通电断电来控制通断。 4.组装点动控制线路 下面同学们来完成下一个任务,就是根据点动控制的原理图来组装电动机的点动控制线路,并学会分析控制原理。 (学生组装,教师指导,7分) 请一组同学到演示台组装 组装完请同学讲解组装方法和控制原理。一名结合实物,一名结合控制原理图分析原理。

三相异步电动机单向连续运行的PLC控制(教案)

三相异步电动机单向连续运行的PLC控制 宜都职教中心蔡鹏 授课内容:三相异步电动机的单向连续运行的PLC控制 授课班级:12级电子班授课时间:2013年10月11日第3、4节学生人数:40人授课地点:PLC实训室 授课使用教材:《可编程序控制器技术与应用(西门子系列)》 丛书主编:程周主编:常辉电子工业出版社 教学目的及要求: 知识目标: 1、深入理解输入继电器I及输出继电器Q; 2、掌握PLC启保停形式的梯形图; 能力目标: 1、培养学习能力和对知识的应用能力。 2、培养学生动手能力和实践能力。 过程与方法目标: 1、体验PLC控制系统设计的基本步骤; 2、学会硬件连接的方法; 3、熟悉STEP 7-MICRO/WIN编程软件; 4、初步学会用梯形图语言编写应用程序; 5、体验“做中学”、“学中做”的学习方法。 德育渗透目标: (1)、培养协作精神和团队意识 (2)、培养认真细致的工作态度 课程类型:实验课 教学方法:观察法、演示法、讲授法、实习法。 教学重点及难点 1、输入继电器I和输出继电器Q; 2、硬件连接; 3、启保停形式的梯形图; 教学过程: 【复习】 输入继电器I (如: 输出继电器Q (如:) 接触器 (硬元件) 组成

(编程时不使 用) 对应的 I/O点 开关量输入点开关量输出点在存 储器中的 位地址 线圈驱动来源外部开关信号 程序执行的结 果 辅助控制电路 功能接受外部开关 信号 驱动外部负载 主触点开闭电 路,辅助触点开闭 控制回路。 触点使 用次数 无数次无数次有限 是通过输入继电器I来获得的。输入继电器I是专门用来获取PLC外部开关信号的元件。PLC通过输入单元电路将外部输入信号的状态(接通时为“1”,断开时为“0”)读入并存储到输入映像寄存器对应的位中。 ②输出继电器Q是如何驱动PLC外部的负载的 输出继电器Q由程序执行的结果驱动,其线圈的状态(接通时为“1”,断开时为“0”)传送给输出单元电路,由输出单元电路接通或断开PLC外部的负载。 ③PLC的软元件与继电控制元件有哪些相似之处 PLC的软元件具有继电控制特性,在编程时可以替代继电控制元件(硬元件)。 2、复习由纯继电控制元件所构成的电机单向连续运行电路。 ①请指出这个电路图的哪一部分为主电路哪一部分为辅助电路 ②在辅助电路中含有哪些元件这些元件其功能是什么是如何连接的 热继电器FR常闭触点(过载保护)、按钮SB1(停止)、按钮SB2(启动)、接触器KM常开辅助触点(自锁)串联 【引入】 如果用PLC来对三相异步电动机进行单向连续运行控制,我们应该怎么做 【实验】 一、分析系统控制要求 (1)分析实验所需元件及设备:(需要哪些元件及设备) 启动按钮、停止按钮、热继电器、接触器、PLC (2)选择实验元件及设备(为硬件连接作准备) 按钮SB2(绿色)、按钮SB3(红色)、接触器KM1、热继电器FR、西门子PLC(226CN) (3)明确系统控制要求:(有哪些控制要求) 给启动信号,电机连续运转; 给停止信号,电机停止运转; 给过载信号,电机停止运转; 概括为启保停。

三速电动机控制电路

三速电动机的启动 YD系列变级多速三相异步电动机是全国统一设计的产品,主要用于要求多种转速的机械设备装置。它利用改变电动机定子绕组的接线以改变其极数的方法变速.具有随负载-的不同要求而有级地变化功率和转速的特性,从而达到功率的合理匹配和简化变速系统。电动机的转速有双速、三速、四速三种。当机械设备的合理转速为中低速时,由于电动机功率相应较小,所以可以有效节约电能。本文介绍三速电动机的启动控制电路。 YD系列多速电动机的功率容量最小的不到1kW,最大的70kW~80kW。启动时先从低速挡开始,然后根据设备对转速的要求,依次启动中速挡和高速挡。因低速启动时电动机功率较小,所以启动电流较小。因电动机已具有一定转速,后启动中、高速档时。启动电流也不是特别大。因此通常情况下,各挡启动电路无须采用降压限流启动方式。 YD系列三速电动机有9个接线端子,图是三相电源与电动机接线端子在不同转速时的连接关系,图中L1、L2和L3是三相380V电源,没有连线的端子在各自的转速状态下被悬空。图2和图3分别是启动电路的一次、二次电路图。启动前,绿灯HG点亮,指示控制电路正常。启动时,先按下低速启动按钮SB2,接触器KM1吸合动作.其主触点将三相电源接至电动机的U1、V1、W1端,由图1可见,电

动机在8极低速下启动运行。辅助触点KM1-1进行自保持:KM1-2接通中间继电器lKA的线圈回路,并由1KA一2对其自保持。1KA 的触点1KA-4切断绿灯HG电源,绿灯熄灭;触点1KA一1闭合.白灯HW点亮,指示电动机在8极低速下运行:触点1KA-3闭合.是允许电动机中速启动的信号。 如果低转速不能满足设备要求。可接着启动中速挡。按一下中速启动按钮SB3(SB3是具有动合和动断双触点的按钮),接触器KMl线圈断电释放,接触器KM2得电吸合,并由KM2-1保持。KM2的主触点将电源接至电动机的U2、V2、W2端,电动机在6极中速下启动运行。KM2-2接通中间继电器2KA的线圈回路,并由2KA-2对其自保持。2KA的触点2KA-5切断白灯HW电源,白灯熄灭;触点2KA -1闭合,黄灯HY点亮,指示电动机在6极中速下运行:触点2KA -3闭合,是允许电动机高速启动的信号。 如果需要更高的转速,可接着按压按钮SB4(SB4也是具有动合和动断双触点的按钮),之后接触器KM2线圈断电释放,接触器KM3、KM4同时得电吸合,并由KM3-2保持。KM3的主触点将电源接至电动机的U3、V3、W3端,KM4.的主触点将U1、V1、Wl端短接,这种接线效果如同图l中4极高速状态。KM3的辅助触点KM3-3使黄灯熄灭,KM3-1使红灯点亮,指示电动机在4极高速下启动运行。

三速电动机变极调速控制设备电气说明书

三速电动机变极调速控制设备电气说明书 三速电动机变极调速控制设备电气说明书 目录 一、拖动方案的确定()二、电动机的选择()三、电气控制原理图的设计()四、电器元件的选择()五、电器元件明细表()六、电器布置图的设计()七、电器接线图的设计().八、设计小结()(此标准答案仅供参考,图) 1 课题:《三速电动机变极调速控制设备设计》一、拖动方案的确定 从设计任务1书中内容可知,要求我们设计的控制设备的控制对象为—纺织车间的轴流风机,其全年的送风量是不均匀的,可划分为三个时间段,即夏季、春秋季和冬季。由风机的特性可知,当风机转速从n变到n’时,风量Q和轴功率P的变化关系式如下:?n’?Q’?Q?? ?n??n’?P’?P?? ?n?从已知技术数据,春秋季的风景为夏季的66%,冬季的风量为夏季风量的50%,我们知道拖动风机的电动机需要调速控制。由于经设计达到夏季风量所需电动机功率为11.6kw,转速为1457r/min,亦即我们所选电动机的最大功率和转速只要满足大于等11.6kw

和1457r/min,控制设备能实现对该电动机实行调速即可满足设计的技术要求。 对电动机实行调速控制的方案比较多:有调压调速、电磁调速电动机调速、串级调速、变频调速和变极对数调速等。前几种调速方案都可实现对电动机的无级调速,但实现调速的控制设备和控制方案都比较复杂,经济投入较大。只有变极对数调速为有级调速,控制设备相对较简单,经济投入较少。而根据设计的技术数据,纺织车间全年要求的风量变化并不要求连续,只分为三段,在每一段内的风量我们可视作不变(因风量略有变化引起的温、湿度变化是不会超出允许的温、湿度要求范围的),这样由式 ?n’?Q’?Q?? ?n?3可知,拖动风机的电动机转速实际上全年中只要有三个变化点即可满足要求,只需有级调速控制。因此,我们可采用变极对数调速的控制方案。 二、电动机的选择 出确定的拖动方案可知,我们选用变极三速电动机可实现对风机的控制。 在纺织车间内空气中含有棉絮等杂物,这就要求电动机密封性要好,而车间内电动机—般在地面平装,因而我们可选用电动机的外壳防护等级为IP44,结构和安装型式为IMB3。 设风机在夏季、春秋季和冬季的风量分别为Ql、Q2、Q3,转速分别为n1、n2、n3,轴功串分别为P1、P2、P3。由已知条件即得:

任务一 三相异步电动机连续运行控制电路

任务一三相异步电动机连续运 行控制电路 教学目的、要求: 1、通过实际应用例子的学习,熟悉常用指令 2、使学生了解该门技术的实际应用范围 3、熟悉相关的编程软件的使用 教学重点、难点: 1、应用程序的讲解 2、现场下载监控、数据传输。 授课方法: 启发式教学、现场教学、实验教学

三相异步电动机连续运行控制电路 一、任务提出 如图3-1是三相异步电动机继电器-接触器控制的连续运行电路,本任务研究用PLC来实现其控制功能。 图3-1 三相异步电动机连续运行电路 二、原理分析 为了将图3-1b的控制电路用PLC控制器来实现,PLC需要3个输入点,1个输出点,输入输出点分配见表3-1。

表3-1 输入输出点分配表 1.PLC控制系统中的触点类型沿用继电器控制系统中的触点类型

2. PLC 控制系统中的所有输入触点类型全部采用常开触点 PLC实现三相异步电动机连续运行电路方案二 3. 为了节省PLC的输入点,将过载保护的常闭触点接在输出端

三、知识链接 1.指令 (1)触点串联指令(AND/ANI/ANDP/ ANDF) AND 与指令。完成逻辑“与”运算。 ANI 与非指令。完成逻辑“与非”运算。 ANDP 上升沿与指令。受该类触点驱动的线圈只在触点的上升沿接通一个扫描周期。 ANDF下降沿与指令。受该类触点驱动的线圈只在触点的下降沿接通一个扫描周期。 上升沿与指令

下降沿与指令 (2)触点并联指令(OR/ORI /ORP/ ORF) OR 或指令。实现逻辑“或”运算。 ORI 或非指令。实现逻辑“或非”运算。 ORP 上升沿或指令。受该类触点驱动的线圈只在触点的上升沿接通一个扫描周期。 ORF 下降沿或指令。受该类触点驱动的线圈只在触点的下降沿接通 一个扫描周期。

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

实验报告 课程名称: 电气原理与应用 指导老师: 成绩:__________________ 实验名称:三相异步电动机点动控制和自锁及正反转互锁控制 实验类型:____同组学生姓名:______ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识; 2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。 3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解; 4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处; 5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。 6. 学会分析、排除继电--接触控制线路故障的方法。 二、实验原理 1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为: (1) 电磁系统─铁心、吸引线圈和短路环; (2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类; (3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧; (4) 接线端子,反作用弹簧等。 2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。 3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。按钮是专供人工操作使用。对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。 4. 在电动机运行过程中,应对可能出现的故障进行保护。采用熔断器作短路保护,当电动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。熔体熔断时间与流过的电流关系称为熔断器的保护特性,这是选择熔体的主要依据。 采用热继电器实现过载保护,使电动机免受长期过载之危害。其主要的技术指标是整定电流值,即电流超过此值的20%时,其动断触头应能在一定时间内断开,切断控制回路,动作后只能由人工进行复位。 5. 在电气控制线路中,最常见的故障发生在接触器上。接触器线圈的电压等级通常有220V 和380V 等,使用时必须认清,切勿疏忽,否则,电压过高易烧坏线圈,电压过低,吸力不够,不易吸合或吸合频繁,这不但会产生很大的噪声,也因磁路气隙增大,致使电流过大,也易烧坏线圈。此外,在接触器铁心的部专业: 姓名: 学号: 日期: 地点:

三相异步电动机单方向连续运转控制电路的安装

任务二:三相异步电动机单方向连续运转控制电路的安装 一、任务目标: 1、熟悉三相异步电动机单方向连续运转控制电路的安装步骤和工艺要求。 2、掌握三相异步电动机单方向连续运转控制电路的电路安装、调试及维修方 法。 二、任务描述: 在某些生产机械中,例如:CA6140普通车床,在需要主轴旋转时,只要按下起动按钮,主轴连续转动;按下停止按钮,主轴停止转动。要完成本功能需通过电动机单方向连续运转控制电路来完成。本任务通过应用于CA6140普通车床的电动机连续控制电路作为载体对低压电器原理图、基本知识进行讲解,使学生能够认识常用低压电器实物图形及文字符号,掌握电气原理图的工作原理。使学生能够进行电器原理图分析、绘制电器元件布置图和接线图,能够根据接线图进行正确接线并通电试车检验正确性。 三、任务分析 要完成此任务,需要了解熔断器、接触器、按钮、热继电器等几种常用低压电器的工作原理及使用方法,掌握电动机单方向连续运转控制电路的工作原理、接线方法和工艺,从而掌握此电路在生产实际中的应用。 四、知识链接 (一)接触器 1、交流接触器 接触器的符号

KM 常开辅助 触点 常闭辅助 触点 线圈 KM 主触点 KM KM (二)按钮 1.按钮的功能 按钮是一种用人体某一部分所施加力而操作、并具有弹簧储能复位的控制开关。 2.钮的结构原理与符号 SB 常闭触电常开触点 SB (三)热继电器 1.热继电器是利用流过继电器的电流所产生的热效应而反时限动作的自动保护电器,用作电动机的过载保护、断相保护、电流不平衡运行的保护。 2.工作原理 当电动机过载时,流过电阻丝的电流超过热继电器的整定电流,电阻丝发热增多,温度升高,由于两块金属片的热膨胀程度不同而使主双金属片向右弯曲,通过传动机构推动常闭触头断开,分断控制电路。 3.热继电器的选用 例1-3 某机床电动机的型号为Y132M1-6,定子绕组为△接法,额定功率为4kW,额定电流为9.4A,额定电压为380V,要对该电动机进行过载保护,试选用热继电器的型号、规格。

相关文档
最新文档