经济数学基础课后答案(概率统计第三分册)综述

经济数学基础课后答案(概率统计第三分册)综述
经济数学基础课后答案(概率统计第三分册)综述

习 题 一

写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;

(3) 掷一枚硬币,直到首次出现正面为止;

(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).

解 (1) Ω={正面,反面} △ {正,反}

(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m }

掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,

B =“奇数点”,

C =“点数小于5”,

D =“小于5的偶数点”,讨论上述各事件间的关系.

解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω

A 与

B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,

C ?D.

3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来.

解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务.

313221A A A A A A B ++=

B -

C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =

321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =-

4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来.

解 B A A B A +=+

C B A B A A C B A ++=++

C B A B B AC +=+

BC A C B A C B A AB C ++=-

5.两个事件互不相容与两个事件对立的区别何在,举例说明.

解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.

三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.

7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系

.

图1-1

图1-2

解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有

A =C +F ,C 与F 互不相容,

D ?A ?F ,A ?C.

8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.

解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有

P (A )==Ω

##A 28152

81

315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,

余下同)

9. 计算上题中取到的两个球中有黑球的概率.

解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.

14

9

1)(1)(2825=-==C C B P B P -

10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率. 解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此

4

3

821#1)(1)(=-=Ω-

=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.

解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.

15

8

11)(1)(21027==Ω-=-=C C A A P A P -##

从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较

方便.

12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:

(1)四张花色各异;

(2)四张中只有两种花色.

解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.

,1

13113113113452##C C C C A , C Ω==

+#2

132131133131224C C C C C C B (= 105013##)(452

4.C ΩA A P ===

30006048+74366##)(452

 )

(.C ΩB B P ===

13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,

求总值超过壹角的概率.

解 设事件A 表示“取出的5枚硬币总值超过壹角”.

)+(+C =##2

5231533123822510

C C C C C C A C Ω 

, = 50252

126)(.ΩA A P ==##=

14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下

列事件的概率:

A =“三次都是红球” △ “全红”,

B =“全白”,

C =“全黑”,

D =“无红”,

E =“无白”,

F =“无黑”,

G =“三次颜色全相同”,

H =“颜色全不相同”,

I =“颜色不全相同”.

解 #Ω=33

=27,#A =#B =#C =1,

#D =#E =#F =23=8, #G =#A +#B +#C =3,

#H =3!=6,#I =#Ω-#G =24

271)()()(===C P B P A P 27

8)()()(=

==F P E P D P 9

82724)(,92276)(,91273)(======

I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.

解 设事件A 表示“有4个人的生日在同一个月份”.

#Ω=126,#A =21

124611C C

0073.012

21780

##)(6

==Ω

A A P = 16. 事件A 与

B 互不相容,计算P )(+.

解 由于A 与B 互不相容,有AB =Φ,P (AB )=0

.1)(1)()(=-==+AB P AB P B A P

17. 设事件B ?A ,求证P (B )≥P (A ). 证 ∵B ?A

∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )

18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),

P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有

P (AB )=P (A )-P (A -B )=0.3a

P (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a 19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.

解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本

点数目为#A =3

46C ,因此

P (A )=1-P (A )=1-3

50

3

461C C ΩA

-=##

=0.2255

20. 已知事件B ?A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.

解 因B ?A ,故P (B )≥P (A ),即ln a ≥ln b ,?a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:

1<b ≤a ≤e

21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),

P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解 由于对任何事件A ,B ,均有

AB ?A ?A +B

且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )

22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一

年以365天计算).

解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目

为#A =364100

,而样本空间中样本点总数为

#Ω=365100

,所求概率为

100

100365

3641##1)(1)(-=Ω

-=-=A A P A P = 0.2399

23. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率. 解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.

210

80

##)(4

101

212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P

24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.

解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85

P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )

=0.92+0.08×0.85=0.988

P (A B )=P (A +B )-P (B )=0.988-0.93=0.058

25. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学

成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ). 解 P (A |B )=7.04

.028.0)

()(==B P AB P

P (B |A)=7.0)

()(=A P AB P

P (A +B )=P (A )+P (B )-P (AB )=0.52

26. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,

P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).

证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1

∴P ( A |B )=P (A |B )

)(1)

()()

()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]

整理可得

P (AB )=P ( A ) P ( B )

27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )

? 0.7=0.4+0.6P ( B )

?

P ( B )=0.5 28. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为

什么?

解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.

29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.

解 设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8

P ( A )=[][])()(3)(12131A P A P A P +

=0.83+3×0.82×0.2 =0.896

30. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别

为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.

解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.

P (A )=(1-0.3)(1-0.2)(1-0.2)=0.448

31. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二

者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则

P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436 P (A m )=0.58m -1 × 0.42

32. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼

镜,求每个人都没有拿到自己眼镜的概率.

解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=4

1,设事件B

表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.

P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4

1

4

14

14321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<

P (A i A j )=P (A i )P (A j |A i )

=)41(12

1

3

141≤≤=

?j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )

=4

1×31×21=24

1(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)

×P (A 4|A 1A 2A 3)

=2411213141=

???

8

5241241121414)(3

424=-?+?-?=C C B P

8

3

)(1)(=-=B P B P

33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整

除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3). 解 依题意P (A 2)=2

1,P (A 3)=3

1

P (A 2A 3)=P (A 6)=6

1

P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)

=3

26

13

12

1=-+

P (A 2-A 3)=P (A 2)-P (A 2A 3)=3

16

12

1=-

34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,

0.7,0.6,计算下列事件的概率: (1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.

解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,

)()()()()(0P P P P A P ==

=0.2×0.3×0.4×=0.024

P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C ) =0.8×0.7×0.6=0.336

P (A 2)=P (AB C )+P (A B C )+P (A BC )

=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)

=1-0.024-0.452-0.336=0.188

(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.976

35. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问

谁先投中的概率较大,为什么?

解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.

?+++=)()()()(543213211A B A B A P A B A P A P A P

?????=+++0.40.5)(0.60.40.50.60.42

7

4

3.01

4.0=-=

计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.

36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生

中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率. 解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有

P (B )=P (A )P (B |A )+P (A )P (B |A )

=0.3×0.8+0.7×0.95=0.905

37. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.

解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:

P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,

P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005

=∑=3

1

)|()(i i i A B P A P

= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005 =0.0035

38. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A

时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.

解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.

)|()()|()()(A B P A P A B P A P B P += 37.03

24.03

13.0=?+?=

39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号

球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?

解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.

4

1

)()(,2

1)(321===A P A P A P

41

)|()|(,21)|(131211===A B P A B P A B P

4

1

)|()|(,21)|(232221=

==A B P A B P A B P

6

1

)|(,31)|(,21)|(333231===A B P A B P A B P

应用全概率公式∑==31

)|()()(i i j i j A B P A P B P 可以依次计算出48

11

)(,4813)(,

2

1)(321=

=

=B P B P B P . 因此第二次取到1号球的概率最大.

40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个

甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率. 解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式

)

|()()|()()

|()()|(A B P A P A B P A P A B P A P B A P +=

01

.09965.095.00035.095

.00035.0???=

25.0=

41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比

为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.

解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有

∑==31

111)

|()()

|()()|(i i i A B P A P A B P A P B A P

7

3

05020+1030+06.05.006.05.0=????=

....

7

4

)|(1)|(11=-=B A P B A P

42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,

15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率. 解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.

∑=

=4

1222)

|()()|()()|(i i i A B P A P A B P A P B A P

1

.05.04.03.03.015.0005.03

.015.0?+?+?+??=

=0.209

43. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率. 解 39题计算知P (B 1)=21,应用贝叶斯公式

2

1

2

12121)()|()()|(111111=?

==B P A B P A P B A P 44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随

机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已

知该箱产品已通过验收,求其中确实没有次品的概率.

解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )

∑++?===20

10100

1098101001099)1(3

1

)|()()(i i i C C C C A B P A P B P

37.0)

(31

)|(0==

B P B A P 45. 设一条昆虫生产n 个卵的概率为

λλ-=

e !

n p n

n n =0, 1, 2, …

其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少? 解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意

λ

λ-==e !

)(n p A P n n n

???

≤≤=-n

k q

p C n k A B P k

n k k n n k 00)|(>

其中q =1-p . 应用全概率公式有

∑∑∞

=∞

===k

n n k n n n k n k A B P A P A B P A P B P )|()()|()()(0

∑∞=-λ

--λ

=l

n k n k n

q p k n k n n !

)(!!

e !

∑∞

=-λ

--λλk n k n k

k n q k p !

)()(e !)

( 由于q k n k n k n k n k n q k n q λ∞

=--∞

=-∑∑=-λ=-λe !

)()(!)()(0,所以有 ,2,1,0e )(e e !)()(===--k k

p k p B P p

p q k k λλλλλ

习 题 二

1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布. 解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.

2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.

解 X 可以取0, 1, 2三个值. 由古典概型公式可知

{})2,1,0(2

20

215

5===-m C C C m X P m

m 依次计算得X 的概率分布如下表所示:

3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.

解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有

{}16

94302

=???

??==X P

{}1664341112=

??? ????? ??==C X P

{}16

14122=???

??==X P

4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.

解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均

未取到优质品且第n 次取到优质品,其概率为4

1431

?

??

? ??

-n . 因此X 的概率分布为 {}?=?

?

?

??==-,2,143411

n n X P n

5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;

(2)取到的旧球个数Y .

解 (1)X 可以取1, 2, 3, 4各值.

{}{}44

9

11

91232431=

?====X P X P {}220

9

1091121233=

??==X P

{}220

1

991011121234=

???=

=X P (2) Y 可以取0, 1, 2, 3各值 .

{}{}43

10====X P Y P

{}{}44921====X P Y P {}{}220932====X P Y P {}{}220

143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.

{}220

1

0312

33===C C X P

{}22027

13122

319===C C C X P

{}220108

23

121329===C C C X P {}220

84

331239===C C X P

7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.

解 根据{}∑=∞

=1

1n n X P =, 有

∑-=

=∞

=1

11n n p

p P 解上面关于p 的方程,得p =0.5.

8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.

解 112

26

42=-=?+++p

p p p p 解方程,得p =2±/2

9. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值.

解 ∑=+?++==100

1

5050)10021(1n c c cn =

解得 c =1/5050 . 10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?

解 ,11

21

∑=∑∞=∞=n n n n

c p 由于级数∑∞=1

21n n

收敛, 若记∑∞

=1

21n n =a ,只要取a

c 1=, 则有∑∞=1

n n p =1, 且

p n >0. 所以它可以是一个离散型概率分布.

11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等

并又组成等差数列,求X 的概率分布.

解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =3

1, 但是a -d 与a +d 均需大于零,

因此|d |<3

1, X 的概率分布为

其中d 应满足条件:0<|d |<3

12. 已知{}λ-==e !

m c λm X P m

,m =1, 2, …, 且

λ>0, 求常数c .

{}∑∑∞

=-∞

====1

1e

!1m m m m c m X p λ

λ

由于∑

∑∞

=∞

==+=1

0e !

1!

m m

m m

m m λ

λλ

, 所以有

∑∞

=---=-=-=11)e 1(e )1e (e !

m m c c m c λλλλ

λ 解得 λ--=e

11c

13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人

投篮的命中率分别为0.4及0.5,求: (1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.

解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.

(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4

= 0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---==

=0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, … (2) {}{}12223211---==n n n A B A B A p n X P

{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1?+?=-n ,2,13.07.01=?=-n n (3) {}4.0)(01===A P Y P

{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1?+???=-n ,2,13.042.01=?=-n n

14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经

过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解 X 可以取0, 1, 2, 3, 4 .

P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.1296 15.

??

?∈=.

,

0],[,sin )(其他,b a x x x f

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

同济大学概率统计试卷

概率统计试卷二 一、(10分)已知随机变量X 服从参数为1的泊松分布,记事件{}2,X A =≥ {}1,X B =<求()()() ,,.P P P A B A -B B A 二、(10分)对以往数据分析结果表明,当机器运转正常时,产品的合格率为90%;而当机器发生故障时其合格率为30%,机器开动时,机器运转正常的概率为75%,试求已知某日首件产品是合格品时,机器运转正常的概率。 三、(12分)设(X ,Y )为二维离散型随机变量,X ,Y 的边缘概率函数分别为 且()01,P XY ==试求: (1)(X ,Y )的联合概率函数;(2)X ,Y 是否相互独立?为什么? (3)X ,Y 是否相关?为什么? 四、(14分)设(X ,Y )的联合密度函数为()()22,0,0,0, x y e x y f x y -+?>>?=???其余, 试求:(1)()X 1,Y 2;P <> (2)()X Y 1.P +< 五、(12分)假设一条生产流水线在一天内发生故障的概率为0.1,流水线发生故障时全天停止工作,若一周5个工作日无故障这条流水线可产生利润20万元,一周内发生一次故障时,仍可获利润6万元,发生二次或二次以上故障就要亏损2万元,求一周内这条流水线所产生利润的期望值。 六、(12分)假设生产线上组装每件成品花费的时间服从指数分布。统计资料表明:该生产线每件成品的平均组装时间10分钟。假设各件产品的组装时间相互独立。试求在15小时至20小时之间在该生产线组装完成100件成品的概率。(要用中心极限定理) 七、(16分)设()1n X ,,X 是取自总体X 的一个样本,X 服从区间[],1θ上的均匀分布, 其中1,θθ<未知,求(1)*θθ的矩估计; (2)θθ的极大似然估计; (3)试问:θ是否为θ的无偏估计?若不是,试将θ修正成θ的一个无偏估计。 八、(14分)已知某种食品的袋重(单位:千克)服从正态分布() 2N μσ,,其中

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率统计简明教程课后习题答案(工程代数同济大学版)

习题一解答 1. 用集合的形式写出下列随机试验的样本空间与随机事件A: (1) 抛一枚硬币两次,观察出现的面,事件两次出现的面相同}; (2) 记录某电话总机一分钟, (2) 记X为一分钟 2. 袋中有10个球,分别编有号码1至10,从中任取1球,设取得球的号码是偶数},取得球的号码是奇数},取得球的号码小于5},问下列运算表示什么事件: ;(2)AB;(3)AC;(4)AC;(5);;解是必然事件; 是不可能事件; 取得球的号码是2,4}; 取得球的号码是1,3,5,6,7,8,9,10}; 取得球的号码为奇数,且不小于取得球的号码为5,7,9}; 取得球的号码是不小于5的偶数取得球的号码为6,8,10}; 取得球的号码是不小于5的偶数}={取得球的号码为6,8,10} 在区间[0,2]上任取一数,记,,求下列事件的表达式: ;(2)B;(3)A; 解 或 (3) 因为,所以; 或或或用事件 的运算关系式表示下列事件: (1) A出现,B,C都不出现(记为E1); (2) A,B都出现,C不出现(记为E2); (3) 所有三个事件都出现(记为E3); (4) 三个事件中至少有一个出现(记为E4); (5) 三个事件都不出现(记为E5); (6) 不多于一个事件出现(记为E6); (7) 不多于两个事件出现(记为E7); (8) 三个事件中至少有两个出现(记为E8)。 解;AB; ;; ;; ; 5. 一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设Ai表示事件“第i次抽到废品”,,试用Ai表示下列事件:

(1) 第一次、第二次中至少有一次抽到废品; (2) 只有第一次抽到废品; (3) 三次都抽到废品; (4) 至少有一次抽到合格品; (2) 只有两次抽到废品。 解;(2)A1A2A3;(3)A1A2A3;; 6. 接连进行三次射击,设Ai={第i次射击命中},,三次射击恰好命中二次},三次射击至少命中二次};试用Ai表示B和C。 解 习题二解答 1.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率。 解这是不放回抽取,样本点总数,记求概率的事件为A, 则有利于A的样本点数 于是 2.一口袋中有5个红球及2个白球,从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球,设每次取球时袋中各个球被取到的可能性相同。求 (1) 第一次、第二次都取到红球的概率; (2) 第一次取到红球,第二次取到白球的概率; (3) 二次取得的球为红、白各一的概率; (4) 第二次取到红球的概率。 解本题是有放回抽取模式,样本点总数记(1)(2)(3)(4)题求概率的事件分别为A,B,C,D. ⅰ)有利于A的样本点数,故 ⅱ) 有利于B的样本点数,故 20(ⅲ) 有利于C的样本点数,故 ⅳ) 有利于D的样本点数,故 3.一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。 解本题是无放回模式,样本点总数 (ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且有一次抽到3,因而有利 样本点数为,所求概率为 (ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是有利样本点数为,

同济大学概率论与数理统计 复习试卷

同济大学概率论与数理统计 复习试卷 1、对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A ) ()()A B P A B P = 是B A ,独立的充分必要条件; (B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件. 2、 设一批产品中一、二、三等品各占60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为 ,在此条件下取到的这件产品是二等品的概率为 . 3、 对任意常数)(,,b a b a <,已知随机变量X 满足 (),()P X a P X b αβ≤=≥=. 记()b X a P p ≤<=,则下列选项中必定成立的是 ( ) (A))(1βα+-=p ; (B) )(1βα+-≥p ; (C) )(1βα+-≠p ; (D) )(1βα+-≤p . 4、 设随机变量X 的概率密度为 ???<<=其它,010,5)(4x x x f ,则使得)()(a X P a X P <=>成立的常数=a ,X Y ln 2-=的密度函数

为=)(y f Y . 5、如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( ) ()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y = 6、 设12,,n X X X 相互独立且服从相同的分布, ∑====n i i X n X X D X E 1 111,3)(,1)(,则由切比雪夫不等式可得() ≤≥-11X P ,∑=n i i X n 121依概率收敛于 . 7、 设521,X X X 独立且服从相同的分布, ()1,0~1N X .()()2 542321X X X X X c Y +++=.当常数c = 时,Y 服从自由度为 的F 分布. 8、一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

概率论与数理统计及其应用课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___--=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

概率统计课后答案

概率统计课后答案

2 第 一 章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很 重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但 你是幸运的.因为你找到了我,我已经看过九个 病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后 七位, 这个记录保持了1000多年! 以后有人不 断把它算得更精确. 1873年, 英国学者沈克士 公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费 林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 675844625664686762609 876543210出现次数数字 你能说出他产生怀疑的理由吗?

答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习题一 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反 {(,)(,)(,)(,)} (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6} Ω== i j i j (3)调查城市居民(以户为单位)烟、酒的年支出 3

概率论与数理统计统计课后习题答案

概率论与数理统计统计课后习题答案

第二章习题解答 1. 设)(1x F 与)(2 x F 分别是随机变量X 与Y 的分布函数,为使)()(2 1x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ). A . 5 2,53-==b a B . 32,32==b a C . 23,21=-=b a D . 23,21-==b a 2. 解:因为随机变量X ={这4个产品中的次品数} X 的所有可能的取值为:0,1,2,3,4. 且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈; 2215542070{2}0.2167323 C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈; 041554201{4}0.0010969 C C P X C ===≈. 因此所求X 的分布律为: 3.

5. 解:设X ={其中黑桃张数}. 则X 的所有可能的取值为0,1,2,3,4,5. 051339552 2109 {0}0.22159520C C P x C ===≈; 14 133955227417 {1}0.411466640 C C P x C ===≈; 231339552 27417 {2}0.274399960C C P x C ===≈; 32133955216302 {3}0.0815199920 C C P x C ===≈; 4 11339 552429{4}0.010739984 C C P x C ===≈; 50 133955233 {5}0.000566640 C C P x C ===≈. 所以X 的概率分布为: 6.

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

概率统计课后答案

第 一 章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609 876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 一 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB

概率论1至7章课后答案

一、习题详解: 1.1 写出下列随机试验的样本空间: (1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数; 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{ ;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格; 解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω; (6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{ 2 16,T y x T y x ≤≤=Ω ; (7) 在单位圆内任取两点, 观察这两点的距离; 解:}{ 207 x x =Ω; (8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{ l y x y x y x =+=Ω,0,0,8 ; 1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ; (2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C B A ??; (5) A,B,C 中至少有两个发生; BC AC AB ??; (6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计课后习题答案徐雅静版

习题答案 第1章 三、解答题 1. 设P(AB) = 0 ,贝U下列说法哪些是正确的? ⑴A和B不相容; (2) A和B相容; (3) AB是不可能事件; (4) AB不一定是不可能事件; (5) P(A) = 0或P(B) = 0 (6) P(A -B) = P(A) 解:(4) (6)正确. 2. 设A, B是两事件,且P(A) = 0.6 , RB) = 0.7,问: (1) 在什么条件下P(AB)取到最大值,最大值是多少? (2) 在什么条件下P(AB)取到最小值,最小值是多少? 解:因为P(AB) ^P(A) P(B)-P(A B), 又因为P(B) _P(A B)即P(B)—P(A B)_0.所以 (1) 当P(B)二P(A B)时P(AB)取到最大值,最大值是P(AB)二P(A) =0.6. (2) P( A B) =1 时P(AB)取到最小值,最小值是P(AB)=0.6+0.7-仁0.3. 3. 已知事件A, B 满足P(AB)二P(AB),记P(A) = p,试求P(B). 解:因为P(AB)二P(AB), 即P(AB) = P(A― ) = 1 - P(A B) = 1 _ P(A) _ P(B) P(AB), 所以P(B) =1 _P(A) =1 _ p. 4. 已知P(A) = 0.7 , P(A -B) = 0.3 ,试求P( AB). 解:因为P(A -B) = 0.3 ,所以P(A ) -P(AB) = 0.3, P(AB) = P(A ) -0.3, 又因为P(A) = 0.7 ,所以P(AB) =0 .7 -0.3=0.4 , P(AB) =1 - P(AB) =0.6. 5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 4 解:显然总取法有n二C10种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:k 二c;c:(c2)2+c;

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2, ,6i =, 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC 或 ABC ABC ABC ABC ; (3)A B C 或 ABC ABC ABC ABC ABC ABC ABC ; (4)ABC ABC ABC ; (5)AB AC BC 或 ABC ABC ABC ABC ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)1 23A A A ;(3) 123123123A A A A A A A A A ;(4) 12 13 23A A A A A A 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =;

相关文档
最新文档