高中数学-等比数列及其前n项和练习

高中数学-等比数列及其前n项和练习
高中数学-等比数列及其前n项和练习

高中数学-等比数列及其前n 项和练习

一、选择题

1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5 D .6

解析:选B.由题意知,q ≠1,则?

????3a 1(1-q 3

)1-q =a 1q 3

-23a 1(1-q 2

)1-q

=a 1q 2

-2

,两式相减可得-3(q 3-q 2)

1-q =q 3-q 2

,即-31-q

=1,所以q =4.

2.(·成都第二次诊断检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( )

A .12

B .18

C .36

D .24

解析:选 B.a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78?1+q 2+q 4=13?q 2

=3,所

以a 5=a 3q 2

=6×3=18.故选B.

3.(·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A .1盏

B .3盏

C .5盏

D .9盏 解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得

a 1(1-27)

1-2

=381,解得a 1=3,选择B.

4.(·广州综合测试(一))已知等比数列{a n }的各项都为正数,且a 3,1

2a 5,a 4成等差数

列,则

a 3+a 5

a 4+a 6

的值是( ) A .

5-1

2

B.5+1

2 C .3-52

D.

3+5

2

解析:选A.设等比数列{a n }的公比为q ,由a 3,1

2a 5,a 4成等差数列可得a 5=a 3+a 4,即

a 3q 2

=a 3+a 3q ,故q 2

-q -1=0,解得q =1+52或q =1-52(舍去),由a 3+a 5a 4+a 6=a 3+a 3q

2

a 4+a 4q 2

a 3(1+q 2)a 4(1+q 2

)=1q =25+1=2(5-1)(5+1)(5-1)

=5-1

2,故选A.

5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15

解析:选 C.因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.

不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=12

4

=3.

所以b m =4×3m -1

.

令b m =324,即4×3m -1

=324, 解之得m =5,

所以b 5=324,即a 13a 14a 15=324. 所以n =14.

6.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n 等于( )

A .3

B .4

C .5

D .6 解析:选A.因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,

所以a 1,a n 是方程x 2

-34x +64=0的两根,

解得?????a 1=2,a n =32或?

????a 1=32,a n =2.

又因为{a n }是递增数列,所以?

????a 1=2,a n =32.

由S n =

a 1-a n q 1-q =2-32q

1-q

=42, 解得q =4. 由a n =a 1q n -1=2×4n -1

=32, 解得n =3.故选A. 二、填空题

7.在等比数列{a n }中,若a 1a 5=16,a 4=8,则a 6=________.

解析:因为a 1a 5=16,所以a 2

3=16,所以a 3=±4. 又a 4=8,所以q =±2.

所以a 6=a 4q 2

=8×4=32. 答案:32

8.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.

解析:设等比数列的公比为q ,则有?

????a 1+a 1q 3

=9,

a 21q 3=8,

解得?????a 1=1,q =2或?

???

?a 1=8,

q =12

.

又{a n }为递增数列,所以?

????a 1=1,q =2,

所以S n =1-2n

1-2=2n

-1.

答案:2n

-1

9.(·郑州第二次质量预测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3

=________.

解析:由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5

,所

以27a 1q 2=a 1q 5

所以q =3,由S n =a 1(1-q n )

1-q

得S 6=

a 1(1-36)

1-3

,S 3=

a 1(1-33)

1-3

所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)

=28.

答案:28

10.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +n

a m

=a n ,则数列{a n }的前n 项和S n =________.

解析:因为

a n +m

a m

=a n , 令m =1,则a n +1

a 1

=a n , 即

a n +1

a n

=a 1=2, 所以{a n }是首项a 1=2,公比q =2的等比数列, S n =2(1-2n

)1-2

=2n +1

-2.

答案:2n +1

-2 三、解答题

11.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式;

(2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2.

所以a n =2n -1.

(2)设等比数列{b n }的公比为q .

因为b 2b 4=a 5,所以b 1qb 1q 3

=9.

解得q 2

=3.

所以b 2n -1=b 1q 2n -2=3n -1

.

从而b 1+b 3+b 5+…+b 2n -1=1+3+32

+…+3

n -1

=3n

-12

.

12.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.

(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.

解:(1)设等差数列{a n }的公差为d ,由题意得

d =a 4-a 13

=12-33

=3,

所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得

q 3=b 4-a 4b 1-a 1=20-124-3

=8,解得q =2.

所以b n -a n =(b 1-a 1)q n -1

=2n -1

.

从而b n =3n +2n -1

(n =1,2,…).

(2)由(1)知b n =3n +2n -1

(n =1,2,…).

数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n

1-2=2n

-1.

所以,数列{b n }的前n 项和为32

n (n +1)+2n

-1.

1.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n

=n .

(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.

解:(1)证明:因为a n +S n =n ①, 所以a n +1+S n +1=n +1②. ②-①得a n +1-a n +a n +1=1,

所以2a n +1=a n +1,所以2(a n +1-1)=a n -1,

当n =1时,a 1+S 1=1,所以a 1=12,a 1-1=-1

2,

所以

a n +1-1a n -1=1

2

,又c n =a n -1, 所以{c n }是首项为-12,公比为1

2

的等比数列.

(2)由(1)可知c n =? ????-12·? ????12n -1

=-? ??

??12n

, 所以a n =c n +1=1-? ??

??12n

.

所以当n ≥2时,b n =a n -a n -1=1-? ????12n -??????1-? ????12n -1=? ????12n -1-? ????12n =? ????12n . 又b 1=a 1=1

2

也符合上式,

所以b n =? ??

??12n

. 2.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *

). (1)求a 2,a 3的值;

(2)求证:数列{S n +2}是等比数列.

解:(1)因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *

), 所以当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, 所以a 2=4;

当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, 所以a 3=8.

综上,a 2=4,a 3=8.

(2)证明:因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *

).① 所以当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②

①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1

+2.

所以-S n +2S n -1+2=0, 即S n =2S n -1+2,

所以S n +2=2(S n -1+2).

因为S 1+2=4≠0,所以S n -1+2≠0,所以

S n +2

S n -1+2

=2,

故{S n +2}是以4为首项,2为公比的等比数列.

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

等比数列及其前n项和

等比数列及其前n 项和 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【知识通关】 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用 字母q 表示,定义的数学表达式为a n +1a n =q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m q n -m . (2)前n 项和公式: S n =??? na 1(q = 1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). [常用结论] 1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k . 2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),???? ??1a n ,{a 2n },{a n ·b n },???? ??a n b n 仍然是等比数列. 3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项?G 2=ab .( ) (3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )

高中数学经典题型50道(另附详细答案)讲解学习

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟

悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +

高中数学《等比数列的前n项和(第一课时)》教学设计

高中数学《等比数列的前n项和(第一课时)》教学设计 一.教材分析。 (1教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思 维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

高考数学复习专题 等比数列性质(含等差等比数列综合题)

第50炼 等比数列性质 一、基础知识 1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比 注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列 2、等比数列通项公式:11n n a a q -=?,也可以为:n m n m a a q -=? 3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有 2a b b a c b c =?= (2)若{}n a 为等比数列,则n N * ?∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+?= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q -= - 可变形为:()1111111 n n n a q a a S q q q q -= = ----,设11a k q =-,可得:n n S k q k =?- 5、由等比数列生成的新等比数列 (1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}n a λ (λ为常数)为等比数列,特别的,当1λ=-时,即1n a ?? ???? 为等比数列 ③ 数列{}n n a b 为等比数列 ④ 数列{} n a 为等比数列

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

等比数列及其前n项和(作业)

等比数列及其前n 项和(作业) 例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31 2 a ,22a 成等差数列,则 910 78 a a a a +=+( ) A .1 B .1 C .3+D .3- 【思路分析】 设公比为q ,则0q >,21a a q =,231a a q =, ∵1a ,31 2 a ,22a 成等差数列, ∴3122a a a =+,即21112a q a a q =+, 解得1q =+ 1, ∴22910787878()3a a a a q q a a a a ++===+++. 故选C . 例2: 若等比数列 {} n a 中,25112a a a ++=,58146a a a ++=,那么 2581114a a a a a ++++的值为( ) A .8 B .9 C .242 31 D . 240 41 【思路分析】 设公比为q ,则335814251125112511() a a a q a a a q a a a a a a ++++==++++,即33q =, ∴38553a a q a ==,9145527a a q a ==, 由58146a a a ++=,得5553276a a a ++=,解得56 31 a = , ∴2581114251158145242 ()()31 a a a a a a a a a a a a ++++=+++++-=. 故选C . 例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{} n c

的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978 B .557 C .467 D .1 023 【思路分析】 设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =, 则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =, ∴2122q d q d +=??+=? ,解得21q d =??=-?, ∴数列{}n a 的前10项之和10110(1) 1 0231a q S q -= =-.故选D . 1. 在等比数列{}n a 中,已知332a = ,前三项和39 2 S =,则公比q =( )

高中数学 等差数列与等比数列 课件

第1讲等差数列与等比数列 高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下. 真题感悟 1.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则() A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2n 2-2n

2.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 122.若第一个单音的频率为f ,则第八个单音 的频率为( ) A.32f B.3 22f C.1225f D.1227f 3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4= ________. 4.(2019·全国Ⅱ卷)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式; (2)设b n =log 2a n ,求数列{b n }的前n 项和. 考 点 整 合 1.等差数列 (1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n = n (a 1+a n )2=na 1+n (n -1)2 d ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ; ③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列 (1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q 1-q ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ; ③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.

高中数学必修一集合经典题型总结高分必备

慧诚教育2017年秋季高中数学讲义 必修一第一章复习 知识点一集合的概念 1.集合 一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示. 2.元素 构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示. 3.空集 不含任何元素的集合叫做空集,记为?.

知识点二 集合与元素的关系 1.属于 如果a 是集合A 的元素,就说a ________集合A ,记作a ________A . 2.不属于 如果a 不是集合A 中的元素,就说a ________集合A ,记作a ________A . 知识点三 集合的特性及分类 1.集合元素的特性 ________、________、________. 2.集合的分类 (1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示 知识点四 1.列举法 把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法. 2.描述法 用集合所含元素的 ________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集

2.子集的性质 (1)规定:空集是____________的子集,也就是说,对任意集合A,都有________. (2)任何一个集合A都是它本身的子集,即________. (3)如果A?B,B?C,则________. (4)如果A?B,B?C,则________. 3.集合相等 4.集合相等的性质 如果A?B,B?A,则A=B;反之,________________________. 知识点六集合的运算 1.交集

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

高中数学四种命题经典例题

例命题“若=,则与成反比例关系”的否命题是1 y x y k x [ ] A y x y B y kx x y C x y y .若≠ ,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k x k x D y x y .若≠,则与不成反比例关系k x 分析 条件及结论同时否定,位置不变. 答 选D . 例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________. 分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角. 例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题. 解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}” 例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.

分析根据命题的四种形式的结构确定. 解逆命题:若x、y全为0,则x2+y2=0; 否命题:若x2+y2≠0,则x,y不全为0; 逆否命题:若x、y不全为0,则x2+y2≠0. 说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心. 例5有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; ④“若∪=,则”的逆否命题,其中真命题是 A B B A B [ ] A.①②B.②③ C.①③D.③④ 分析应用相应知识分别验证. 解写出相应命题并判定真假 ①“若x,y互为倒数,则xy=1”为真命题; ②“不相似三角形周长不相等”为假命题; ③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;

(经典)讲义:等比数列及其前n项和

(经典)讲义:等比数列及其前n 项和 1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项 若G 2 =a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +). (2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ ≠0),? ???????? ?1a n ,{a 2n }, {a n ·b n },? ???????? ?a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式 等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q . 【注意】 6.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n 1-q (q ≠1). 7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

高中数学经典题型50道(另附详细答案)

高中数学经典题型50 道(另附详细答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴ |t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的

高中数学经典的解题技巧和方法等差数列、等比数列

高中数学经典的解题技巧和方法(等差数列、等比数列) 跟踪训练题 一、选择题(本大题共6个小题,每小题6分,总分36分) 1.已知等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) (A)12 (B)10 (C)8 (D)6 2.设数列{x n }满足log 2x n+1=1+log 2x n ,且x 1+x 2+x 3+…+x 10=10,则x 11+x 12+x 13+…+x 20的值为( ) (A)10×211 (B)10×210 (C)11×211 (D)11×210 3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) (A)25 (B)50 (C)100 (D)不存在 4.已知{}n a 为等比数列,S n 是它的前n 项和。若2312a a a ?=, 且4a 与27a 的等差中项为5 4,则5S =( ) A .35 B.33 C.31 D.29 5. 设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立 的是( ) A 、2X Z Y += B 、()() Y Y X Z Z X -=- C 、2Y XZ = D 、()() Y Y X X Z X -=- 6.(2010·潍坊模拟)已知数列{a n }是公差为d 的等差数列,S n 是其前n 项和,且有S 9

高中数学经典50题(附问题详解)

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2 +t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。

当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则双曲线方程为 )0(15 42 2≥=-x y x (2)。联立(1)(2),得35,8==y x , 所以).35,8(P 因此33 83 5=-= PA k ,故炮击的方位角北偏东?30。 说明:本题的关键是确定P 点的位置,另外还要求学生掌握方位角的基本概念。 4. 河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2

相关文档
最新文档