密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题
密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题

一、填空题

1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。

2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。

3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。

4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。

5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。

6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。

7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。

8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。

9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。

10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。

11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。

12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。

13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。

14.DWDM系统中λ1中心波长是(1548.51nm)。

15.DWDM系统中λ2中心频率是(193.5THz)。

二、单项选择题

1.光纤WDM明线技术中的FDM模拟技术,每路电话(B)。

A、2kHz

B、4kHz

C、6kHz

D、8kHz

2.光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话(B)。

A、2kHz

B、4kHz

C、6kHz

D、8kHz

3.光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话(B)。

A、2kHz

B、4kHz

C、6kHz

D、8kHz

4.光纤WDM中的光纤通信140Mbit/sPDH系统,TDM数字技术,每路电话(B)kbit/s。

A、32

B、64

C、128

D、256

5.光纤WDM中的光纤通信2.5Gbit/sSDH系统,TDM数字技术,每路电话(B)kbit/s。

A、32

B、64

C、128

D、256

6.光纤WDM中的光纤通信N×2.5Gbit/sWDM系统,TDM数字技术+光频域FDM模拟技术,每路电话(B)kbit/s。

A、32

B、64

C、128

D、256

7.G.652光纤可以将2.5Gbit/s速率的信号无电再生中继传输至少(C)公里左右。

A、200

B、400

C、600

D、800

8.由于SPM随长度而积累,因而是采用G.652光纤的单波长系统的基本非线性损伤,门限功率大约为(A)dBm。

A、18

B、28D、38D、48

9.DWDM系统的无电再生中继长度从单个SDH系统传输的50~60km增加到了500~(A)km。

A、600

B、700

C、800

D、900

10.DWDM系统中λ10的中心波长为(C)nm,中心频率为192.7THz。

A、1557.36

B、1556.55

C、1555.75

D、1554.94

三、多项选择题

1.G.653光纤可以在1550nm波长的工作区毫无困难地开通长距离(AD)系统,是最佳的应用于单波长远距离传输的光纤。

A、10Gbit/s

B、14Gbit/s

C、17Gbit/s

D、20Gbit/s

2.在零色散波长区,传输3路WDM系统,传输25km以后,就可能产生不可弥补的失真,解决的办法有(ABC)。

A、采用不等间隔的波长安排

B、增加光通路的间隔

C、适当缩短光放大器间距

D、适当加大光放大器间距

3.掺饵光纤放大器主要由(ABCD)等部件组成。

A、掺饵光纤

B、泵浦光源

C、耦合器

D、隔离器

4.克尔效应也称作折射率效应,在理论上,克尔效应能够引起下面不同的非线性效应,即(ABC)。

A、自相位调制

B、交叉相位调制

C、四波混频

D、六波混频

5.目前广泛使用的光纤通信系统均为强度调制——直接检波系统,对光源进行强度调制的方法有(AB)。

A、直接调制

B、间接调制

C、交叉调制

D、混合调制

6.EDFA的基本结构与改进形式有(ABCD)。

A、同向泵浦

B、反向泵浦

C、双向泵浦

D、反射型泵浦

四、判断题

1.按各信道间的波长间隔的不同,WDM可分为密集波分复用和稀疏波分复用。(√)

2.在光纤通信系统中可以采用光的频分复用的方法来提高系统的传输容量。(√)

3.一根光纤只完成一个方向光信号的传输,反向光信号的传输由另一根光纤来完成,因此同一波长在两个方向上不可以重复利用。(×)

4.在一根光纤中实现两个方向光信号的同时传输,两个方向的光信号应安排在相同波长上。(×)

5.单纤双向传输不允许单根光纤携带全双工通路。(×)

6.光波是一种高频电磁波,不同波长(频率)的光波复用在一起进行传输,彼此之间相互作用,将产生四波混频(FWM)。(√)

7.G.655光纤的工作区色散可以为正也可以为负,当零色散点位于短波长区时,工作区色散为负,当零色散点位于长波长区时,工作区色散为正。(×)

8.发生拉曼散射的结果将导致WDM系统中短波长通路产生过大的信号衰减,从而限制了通路数。(√)

9.在G.652光纤的1550nm窗口处,光纤的色散系数D为正值,光载波的群速度与载波频率成正比。(√)

10.SPM的效果与输入信号的光强成正比,与光纤衰减系数及有效纤芯面积成反比。(√)

11.利用低色散光纤也可以减少SPM对系统性能的影响。(√)

12.DWDM系统的工作波长较为密集,一般波长间隔为几个纳米到零点几个纳米。(√)

13.DWDM系统的光源的两个突出的特点是比较大的色散容纳值和标准而稳定的波长。(√)

14.对光源进行强度调制的方法有两类,即直接调制和问接调制。(√)

15.分离外调制激光器是将输入光分成两路不相等的信号分别进入调制器的两个光支路。(×)

16.对于1.5μmDFB激光器,波长温度系数约为13GHz/℃。(√)

17.没有定时再生电路的光波长转换器实际上由一个光/电转换器和一个高性能的电/光转换器构成。(√)

18.没有定时再生电路的光波长转换器往往被应用于开放式DWDM系统的入口边缘,将常规光源发出的非标准波长的光转换成符合ITU-TG.692规定的波长。(√)

19.光放大器是一种需要经过光/电/光的变换而直接对光信号进行放大的有源器件。(×)

五、简答题

1.光纤WDM与同轴电缆FDM技术不同点有哪些?

答:(1)传输媒质不同,WDM系统是光信号上的频率分割,同轴系统是电信号上的频率分

割利用。

(2)在每个通路上,同轴电缆系统传输的是模拟信号4kHz语音信号,而WDM系统目前每个波长通路上是2.5Gbit/sSDH或更高速率的数字信号系统。

2.什么是光通信中的斯托克频率?

答:当一定强度的光入射到光纤中时,会引起光纤材料的分子振动,低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度强于后者,两者之间的频差称为斯托克斯频率。

3.什么是光通信中的受激拉曼散射?

答:当两个频率间隔恰好为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,高频波的能量将转移到低频波上,这就是所谓的受激拉曼散射(SRS)。

4.在理论上,光通信中的克尔效应能够引起哪些不同的非线性效应?

答:在理论上,克尔效应能够引起下面三种不同的非线性效应,即自相位调制(SPM)、交叉相位调制(XPM)和四波混频(FWM)。

5.简述光纤通信中激光器直接调制的定义、用途和特点。

答:直接调制:即直接对光源进行调制,通过控制半导体激光器的注入电流的大小,改变激光器输出光波的强弱,又称为内调制。传统的PDH和2.5Gbit/s速率以下的SDH系统使用的LED或LD光源基本上采用的都是这种调制方式。

直接调制方式的特点是,输出功率正比于调制电流,简单、损耗小、成本低。

一般情况下,在常规G.652光纤上使用时,传输距离≤100km,传输速率≤2.5Gbit/s。

六、综合题

1.阐述受激拉曼散射与受激布里渊散射的区别。

答:从现象上看,SBS类型于SRS,只是SBS涉及声子振动,而非分子振动。然而实际上两者实际上有三个重要区别,第一,峰值SBS增益比SRS大2个量级;第二,SBS频移(10~13GHz)和增益带宽(20~100MHz)远小于SRS的相应值;第三,SBS只出现在后向散射方向上,其影响要大于SRS。

2.举例说明由SPM引起的非线性影响的结果有几种可能?

答:由SPM引起的非线性影响的结果有两种可能:当使用色散系统D为负的光纤工作区时(例如G.653光纤的短波长侧或工作区色散为负的G.655光纤),系统色散受限距离变短;当使用色散系数D为正的光纤工作区时(例如G.652光纤、G.653光纤的长波长侧,或工作区色散为正的G.655光纤),系统色散受限距离反而会延长。

3.阐述光源半导体激光器LD和半导体发光二极管LED的主要区别和作用。

答:LD和LED相比,其主要区别在于,前者发出的是激光,后者发出的是荧光,因此,LED的谱线宽度较宽,调制效率低,与光纤的耦合效率也较低;但它的输出特性曲线线性好,使用寿命长,成本低,适用于短距离、小容量的传输系统。而LD一般适用于长距离、大容量的传输系统,在高速率的PDH和SDH设备上已被广泛采用。

4.阐述DWDM的系统结构及其特点。

答:DWDM可以分为开放式和集成式两种系统结构,开放式WDM系统的特点是对复用终端光接口没有特别的要求,只要这些接口符合ITU-T G.957建议的光接口标准,WDM系统采用波长转换技术(Transpond),将复用终端的光信号转换成指定的波长,而集成式WDM 系统没有采用波长转换技术,要求复用终端的光信号的波长符合系统的规范。

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

DWDM原理

DWDM原理 一、单选题(每题1分) 1. 以下几种不属于光纤非线性效应是: A. 色散 B. 自相位调制 C. 拉曼散射 D. 四波混频 正确答案:A 答案解析:无 2. 关于放大器测试的描述不正确的是: A. 对于放大增益的测试,最好采用光谱分析仪进行。 B. 放大器的输出、输入光功率之差即为放大器增益。 C. 在测试中选取1310nm波长光源,直接输入放大器,再测试放大器的输出即可计算出放大增益。 D. 测试输入光功率范围时,必须确保在所测范围内,放大器可以完成正常的放大功能。 正确答案:C 答案解析:无 3. 关于DWDM系统代码32L5-16.2的解释正确 的是: A. 32通道系统,共有2个超长距离的区段,使用G.655光纤,承载STM-16的SDH信号。 B. 32通道系统,共有2个长距离的区段,使用G.655光纤,承载STM-16的SDH信号。 C. 32通道系统,共有5个长距离的区段,使用G.652光纤,承载STM-16的SDH信号。 D. 32通道系统,共有5个长距离的区段,使用光纤,承载STM-16的SDH信号。 正确答案:C 答案解析:无 4. 关于TWF说法正确的是: A. 将符合G.691标准的信号转化符合G.692标准的信号 B. 将符合G.692标准的信号转化为符合G.691标准的信号 C. 将符合G.957标准的信号转化为符合G.692标准的信号 D. G.691标准的信号转化为符合G.957标准的信号 正确答案:A 答案解析:无 5. 在我国大面积敷设的光缆是()型的光纤。 A. G.652 B. G.653 C. G.654 D. G.655 正确答案:A 答案解析:无 6. 1310nm和1550nm传输窗口都是低损耗窗 口,在DWDM系统中,只选用1550nm传输 窗口的主要原因是: A. EDFA的工作波长平坦区在包括此窗口 B. 1550nm波长区的非线性效应小 C. 1550nm波长区适用于长距离传输 正确答案:A 答案解析:无 7. 考虑色散距离时,这里的距离应该是: A. 相邻站点距离 B. 整个组网的总距离 C. 电再生段距离 D. 以上皆错 正确答案:C 答案解析:无 8. 下列光纤中在1550nm窗口处,四波混频现 象最为严重的是: A. G.652 B. G.653 C. G.654 D. G.655 正确答案:B 答案解析:无 9. G.652光纤的零色散点位于()处,在此波 长处,其色散最小,但衰耗较大。 A. 1550nm B. 1310nm C. 850nm 正确答案:B 答案解析:无 10. G.652光纤在()处其衰耗最小,但色散较 大。 A. 1550nm B. 1310nm C. 850nm 正确答案:A

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

第二章密集波分复用(DWDM)传输原理

第二章密集波分复用()传输原理 [ : 雨丝] 一、填空题 系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器地高容量系统. 系统地工作方式主要有双纤单向传输和(单纤双向传输). 光纤有两个应用窗口,即和,前者每公里地典型衰耗值为,后者为(). 光纤又称做色散位移光纤是通过改变折射率地分布将附近地零色散点,位移到()附近,从而使光纤地低损耗窗口与零色散窗口重合地一种光纤. 在~之间光纤地典型参数为:衰减<();色散系数在·之间. .克尔效应也称作折射率效应,也就是光纤地折射率随着光强地变化而变化地(非线性)现象. .在多波长光纤通信系统中,克尔效应会导致信号地相位受其它通路功率地(调制),这种现象称交叉相位调制. .当多个具有一定强度地光波在光纤中混合时,光纤地(非线性)会导致产生其它新地波长,就是四波混频效应. .光纤通信中激光器间接调制,是在光源地输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)地作用. .恒定光源是一个连续发送固定波长和功率地(高稳定)光源. .电光效应是指电场引起晶体(折射率)变化地现象,能够产生电光效应地晶体称为电光晶体. .光耦合器地作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现. .光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长地光信号. 系统中λ中心波长是(). 系统中λ中心频率是(). 二、单项选择题 .光纤明线技术中地模拟技术,每路电话(). 、、、、 .光纤中地小同轴电缆路模拟技术,每路电话(). 、、、、 .光纤中地中同轴电缆路模拟技术,每路电话(). 、、、、 .光纤中地光纤通信系统,数字技术,每路电话(). 、、、、 .光纤中地光纤通信系统,数字技术,每路电话(). 、、、、 .光纤中地光纤通信×系统,数字技术光频域模拟技术,每路电话(). 、、、、 光纤可以将速率地信号无电再生中继传输至少()公里左右. 、、、、 .由于随长度而积累,因而是采用.光纤地单波长系统地基本非线性损伤,门限功率大约为().

DWDM试题与答案详解(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 DWDM试题 一、单项选择题: 1.下面哪种情况下DWDM设备的APR功能一定会启动:D A.线路光功率下降; B.O PA盘出现故障; C.O SC盘出现OSC-LOS告警; D.线路光缆断。 2.下面单盘属于无源器件的是:B A.光监控信道(OSC)盘; B.分波(ODU)盘; C.光功放(OBA)盘; D.网元管理(EMU)盘。 3.根据啦曼放大盘的工作原理,请指出下面哪个说法是正确的C A.啦曼放大盘可以替代OPA(光前放)盘来工作; B.如果将啦曼放大盘的信号输入输出接口反接的话,它将成为一个衰耗值较大的衰耗器; C.光信号必须直接接入啦曼放大盘,啦曼放大器的输入端必须是光纤; D.啦曼放大盘适合于城域网系统。

4.有一块波长转换OTU盘,波长为1535.82nm,其色散为7200PS,若使用该盘在无中继再生的情况下传递A、B两点的信号,则A、B间的距离最大满足B A.120公里; B.720公里; C.360公里; D.960公里。 5.对于160×10Gbit/s的DWDM来说,波道的通道间隔为A A.50GHz; B.100GHz; C.200GHz; D.250GHz。 6.下面关于波分复用系统保护的说法中错误的是C A.波分复用系统的保护可以通过SDH设备自愈环保护来完成; B.光通道保护(OCP)盘可以作为波分复用系统实现的保护的一种手段; C.如果波分复用系统中传输的是以太网信号,则该信号是无法实现保护的; D.波分复用系统的保护可以是基于光层的保护。 7.那种情况可能导致光监控信号无法从上游站点向下游传递C A.光放大盘失效; B.两业务站点间跨距太大;

色散平坦光纤设计在密集波分复用系统的研究

色散平坦光纤设计在密集波分复用系统的研究 光通讯发展至今,长距离的光纤传输仍有一个问题存在,此问题就是色散(Dispersion)。色散对密集波分复用(DWDM,Dense Wavelength-Division Multiplexing)系统而言,由于色散的积累,各通道的色散都会随传输距离的增长而增大。然而,由于色散斜率的作用,各通道的色散积累量是不同的,其中位于两侧的边缘信道间的色散积累量差别最大。当传输距离超过一定值后,具有较大色散积累量通道的色散值超标,从而限制整个DWDM系统的传输距离。 将研究如何设计色散平坦光纤(DFF,Dispersion Flattened Fiber),可以使用在DWDM系统上。DWDM使用波段为C-Band和L-Band,其波长使用分别为1520—1570nm和1570—1620nm,我们将利用OptiFbert这软件,将此波长范围的色散值,当色散等于零时,会有非线性现象,如四波混合,故本研究为设计接近零值且平坦斜率的光纤,在设计上,我们有考虑制造成本,故不做复杂的Profiles设计,故不需做多层镀膜,我们利用四包层折射率分布(Quadruple-Clad Index Profile)。 标签:色散平坦光纤;DFF;Dispersion Flattened Fiber 1引言 高速率讯号和超长传输距离的光通讯系统中,传送距离越远,光功率就会不断的减弱,然而色散则会使讯号脉冲波形变形。因为光纤的非线性效应会降低DWDM系统的讯号质量,通常有大量残余的色散,即使是传输过程中使用色散补偿技术,如色散补偿光纤,被扩大的脉冲波行可以在接收端放放后置色散补偿(Post-Dispersion Compensation,PDC)还原波形。另外还有一种方式就是使用光弧子系统,因为光弧子系统作为全光非线性方案是消除色散的一种方式,长距离传输且不变形。在未来的光纤网络系统中,可以使用色散平坦光纤,因为这些光纤可以提供非常低色散在很宽的光谱范围。在单模光纤的色散作用起因是从光纤结构特性的波导以及玻璃材料的色散特性,因此本研究会设定不同参数,来观察材料色散与波导色散的相对关系,此关系会影响最终的色散值。色散平坦光纤却是将从1300nm到1650nm的较宽波段的色散,都能作到很低,几乎达到均匀零色散的光纤称作DFF。由于DFF要作到1300nm-1650nm范围的色散都减少。如果想要控制色散的特性,就需要对光纤的折射率分布进行复杂的设计,它又称为Depressed Cladding Fiber,核心外围有厚度较薄且折射率低的外壳层,更外面一层为折射率稍高的外壳,这种光纤可适用于1300nm-1650nm范围的光波长。 不过这种光纤对于高密度分波多任务系统(DWDM)的线路却是很适宜的。 2色散平坦光纤的设计原理 典型的色散平坦光纤有复杂的Profiles,这个Profiles包括有多个steps,去调整它的折射率来减少损失,大部份的色散平坦设计是基于相当简单的W-Profiles,W-Profiles的设计往往能得到在广大的波长范围有低色散的一段平坦

CWDM标准与关键技术

CWDM 1 CWDM的技术标准 CWDM是指信道之间的波长间隔较大的一种波分复用,即人们所称的粗波分复用。CWDM(粗波分复用)技术的出现使运营商找到一种低价格、高性能的传输解决方案,由于CWDM具有低成本、低功耗、小体积等诸多优点,在城域传送网已经有了一定应用。许多国内外制造商也开始研发和陆续推出产品,ITU也在加速其标准化进程。CWDM技术提高了光纤利用率,给运营商和用户以更大的灵活性。 ITU-T的CWDM建议。 “针对WDM应用的光谱间隔:CWDM波长间隔”。在1270~1610nm范围内,建议了波长间隔20nm的18个可用波长,可以在光纤上使用,如图所示。 IEEE的10GbE系列标准。 该系列主要包括850nm窗口的10GBaseSX-4 CWDM和1310nm窗口的10GBaseLX-4CWDM两个标准。10GBaseLX-4 CWDM同]TU-T建议1310nm窗口的标准相似,只是其波长间隔为,即WWDM。由于仅采用了4个波长,波长间隔较大的信道之间能够容许更大的色散,每个信道传输速率可以达到s,传输距离超过10km。在1310nm 窗口建议的可选信道波长为:(~);(~);(~):(~)。 0IF的VSR-5标准。 在40Gb/s的VSR5中的4×10CWDM方案中,4路传输速率为s至s的并行数据信号,分别驱动4个波长在至的激光器。每个激光器的中心波长间隔为,同IEEE的标准一致。从这些激光器发出的光经一个光复用器耦合到一根普通的单模光纤中,复用后的光信号以s至s的速率在光纤链路上传输。

以上几个国际建议标准,趋向于统—采用波长间隔的IEEE和0IF建议。这样在1260~1625nm的波长范围内,可用波长数为17个,16个波长可以在城域网或者局域网的范围内分配给用户使用,剩余一个波长用做管理信道。 2 CWDM系统优点 CWDM系统的最大的优势在于成本低,其主要表现在器件、功耗、集成度几个方面。 器件成本低 CWDM技术将大大降低建设和运维成本,特别是激光器和复用器/解复用器成本。对于波长间隔小于50GHz DWDM系统,激光器需要采用精密的温度控制电路来控制波长,有时需要采取波长锁定器等来保证波长的准确性和稳定性。光复用器(滤波器型)则需要精确的上百层多层介质膜器件,为了防止同频和异频串扰,还必须采用多次滤波等。而CWDM则不需要激光器制冷、波长锁定和精确镀膜等复杂技术,大大降低了设备成本。 功耗低 DWDM系统激光器集成了Peltier致冷器,采用的温度检测和控制电路消耗较大的功率,每波长需要消耗4W左右,CWDM的无致冷激光器及其控制电路每波长只需要约左右。对于多波长和高速率的DWDM系统,单盘功耗控制是系统设计中的一个困难问题。采用无致冷激光器的CWDM系统的低功耗减少电源备用蓄电池,降低成本。 体积小,集成度高 CWDM激光器物理尺寸上远小于DFB激光器。DWDM光发射机尺寸是CWDM光发射机的5倍左右。由于CWDM激光器结构和简单的控制电路,单个模块可以实现多路光收发,目前商用器件已经做到4路transceiver集成在一个尺寸仅为16cm′9cm′的模块,相当于一路DWDM系统光转发器大小。CWDM系统不使用光放大器,因此有

DWDM技术原理及发展趋势

DWDM技术原理及发展趋势 一、DWDM技术的产生背景 1、光网络复用技术的发展 通信网络中,包括多种传输媒介,如双绞线、同轴线、光纤、无线传输。其中,光纤传输的特点是传输容量大、质量好、损耗小、保密性好、中继距离长等。 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用(WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数,投资效益较差;TDM技术的应用很广泛,如PDH、SDH、ATM、IP都是基于TDM的传输技术,缺点是线路利用率较低;WDM技术在1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 在过去20年里,光纤通信的发展超乎了人们的想象,光通信网络也成为现代通信网的基础平台。光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的SDH系统,以及近来风起云涌的DWDM系统,乃至将来的智能光网络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM(1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。但是到90年代中期,WDM系统发展速度并不快,主要原因在于: (1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/s TDM技术相对简单。据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。正由于此,在过去的系统升级中,人们首先想到并采用的是TDM技术。 (2)波分复用器件还没有完全成熟,波分复用器/解复用器和光放大器在90年代初才开始商用化。 DWDM发展迅速的主要原因在于: (1)TDM10Gb/s面临着电子元器件的挑战,利用TDM方式已日益接近硅和镓砷技术的极限,T DM已没有太多的潜力可挖,并且传输设备的价格也很高。 (2)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色度色散和偏振模色散的影响日益加重。人们正越来越多地把兴趣从电复用转移到光复用,即从光域上用各种复用方式来改进传输效率,提高复用速率,而WDM技术是目前能够商用化最简单的光复用技术。 (3)光电器件的迅速发展。1985年英国南安普顿大学首先研制出掺饵光纤放大器。1990年,比瑞利(Pirelli)研制出第一台商用光纤放大器(EDFA),EDFA的成熟和商用化,使WDM技术长距离传输成为可能。

密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

密集波分复用(DWDM)传输原理试题

第二章密集波分复用(DWDM)传输原理 一、填空题 1. DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个低损耗窗口, 在传输过程中共享光纤放大器的高容量WDM系统。 2. DWDM系统的工作方式主要有双纤单向传输和单纤双向传输。 3. G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB, 后者为0.2dB 。 4. G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位 移到1550 nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5. G.655在1530~1565nm之间光纤的典型参数为:衰减< 0.25 dB/km;色散系数在1~ 6ps/nm·km之间。 6. 克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的非线性现象。 7. 在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的调制,这种现象 称交叉相位调制。 8. 当多个具有一定强度的光波在光纤中混合时,光纤的非线性会导致产生其它新的波长,就 是四波混频效应。 9. 光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器 实际起到一个开关的作用。 ⒑恒定光源是一个连续发送固定波长和功率的高稳定光源。 ⒒电光效应是指电场引起晶体折射率变化的现象,能够产生电光效应的晶体称为电光晶体。 ⒓光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器来实现。 ⒔光栅型波分复用器属于角色散型器件,是利用角色散元件来分离和合并不同波长的光信号。 ⒕DWDM系统中λ1中心波长是1548.51nm 。 ⒖DWDM系统中λ2中心频率是193.5THz 。 二、单项选择题 ⒈光纤WDM明线技术中的FDM模拟技术,每路电话( B)。 A、2kHz B、4kHz C、6kHz D、8kHz ⒉光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话( B )。 A、2kHz B、4kHz C、6kHz D、8kHz ⒊光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话( B )。

DWDM系统习题册答案

DWDM系统习题册(答案) DWDM原理 一、填空题 1、按照信号的复用方式进行分类,可分为频分复用,时分复用,波分复 用和空分复用系统; 2、使用波长密度较高的WDM称为密集波分复用,使用波长密度较低的WDM称 为稀疏波分复用。 3、华为公司使用的DWDM系统频率范围:频率间隔:100GHz; 4、华为公司使用的DWDM系统中参考频率:。 5、WDM设备的传输方式包括双纤双向和单纤双向。 6、DWDM通常有两种应用形式:开放式DWDM和集成式DWDM。 7、光源的作用是产生激光或荧光,它是组成光纤通信系统的重要器件,目 前广泛应用于光纤通信的光源类型:半导体激光器LD和半导体发光二极 管LED; 8、激光器的调制方式直接调制和间接调制; 9、半导体光检测其主要有两类:PIN光电二极管和APD雪崩二极管; 10、现在半导体光放大器(SOA)和光纤光放大器 (FOA) 是主要使用的 放大器类型。 11、光纤是由纤芯、涂层包层和护套三层构成的,光信号是在光纤的纤芯 传输。纤心的折射率大于(大于、小于)涂层的折射率。 12、波分系统选用的激光器是:电吸收调制激光器(EA调制 器)。 二、选择题(不定项选择) 1、WDM的系统组成,包括:ABC A、OTU B、OMU C、OSC D、OPU

2、WDM的优势:ABCDE A、超大容量; B、对数据的“透明”传输; C、系统升级时能最大限度地保护已有投资; D、高度的组网灵活性,经济性和可靠性; E、可兼容全光交换 3、DWDM系统的光源的突出特点:BC A,经济可靠 B,比较大的色散容纳值 C,标准而稳定的波长 D,波长可以更改,利于维护; 4、常用的外调制器有ABC A、光电调制器; B、声光调测器; C、波导调制器; D、电吸收调制器 5、ITU-T中,当光信道间隔为的系统,中心波长的偏差不能大于:B A、±10GHz B、±20GHz C、±30GHz D、±40GHz 6、由于从光纤传送过来的光信号一般是非常微弱的,因此对光检测器提出 了非常高的要求:ABCDE A、在工作波长范围内有足够高的响应度。 B、在完成光电变换的过程中,引入的附加噪声应尽可能小。 C、响应速度快。线性好及频带宽,使信号失真尽量小。 D、工作稳定可靠。有较好的稳定性及较长的工作寿命。 E、体积小,使用简便。 7、光复用器和解复用器种类包括:ABCD A、干涉滤光器型 B、光纤耦合型 C、光栅型

通信双频波分复用原理

实验一通信双频波分复用原理 一、实验目的 1、熟悉WDM器件的使用。 2、掌握WDM器件的插入损耗及串扰的测试。 3、掌握经过同一光纤信道的多机通信。 二、实验原理 波分复用(WDM)通信的基本原理 波分复用是指一条光纤中同时传输具有不同波长的几个载波,而每个载波又各自载荷一群数字信号,因此波分复用又称为多群复用。如图1所示。具有不同波长、各自载有信息信号的若干个载波经由CH1、CH2、…….CHn等进入合波器,被耦合到同一条光纤中去,再经此光纤长距离传输,到终端进入合波器,由其按波长将各载波分离,分别进入各自通道CH1’、CH2’、…….CHn’,分别解调,从而使各自载荷信息重现。同样过程可沿与上述相反的方向进行,如图1中的虚线所示,这样的复用称为双向复用,显然,双向复用的复用量将增大一倍,如一个通道传输的信息为B,单向复用传输的则为NB,双向复用传输的则为2NB。 波分复用器 波分复用器的工作原理来源于物理光学,如利用介质薄膜的干涉滤光作用、利用棱镜和光栅的色散分光作用等。 图1 波分复用原理图 (1)干涉滤光片型波分复用器由薄膜光学原理得知,具有高折射率nH、低折射率nL的两种材料交替组成的膜系呈现出滤光效应,如图2所示。在λ0处吸收最小,即透过率最大,因此起到了滤光作用。不过,比较来说,由于Δλ难以作到很窄,故复用的路数是有限的,而且要求被分割的两路波长之间不能靠的太近,以防止串扰。这些都属于干涉滤光片型波分复用器的缺点。

图2 干涉滤波WDM原理 (2)光栅型波分复用器光栅是一种等间隔分割光波波面的光学装置,它具有明显的角色散作用,因此可以用来做分光和合光器件,如下图所示,光源S发出的光通过光栅G,在其后焦面的P点上得到光强可以写成如下形式: 其中u,v是与光栅常数(a,b)有关的系数,显然,当V=kл时可获得最大光强,或者说,在满足下列方程(即光栅方程)的方向(θ角)上,会出现亮线: 这样,当入射光为多种波长组成的复合光时,则由上两式确定出,不同的波长将沿不同的方向出射,从而达到分光的目的;如沿反方向传播,则作用相反,即起到合光作用,光栅靠的是角色散作用分光合光的,角色散的大小可由下式求出,即 由此可以得出:为获得较大的角色散,应取较高的级次(k),如果再考虑高级次有足够的能量,因此使用闪烁型光栅最为适宜,如图3所示,目前使用或研制的光栅型复用器几乎均采用此类型光栅。与滤光片型比较,光栅型复用器的最大优点是:分路(合路)的路数多;缺点是:插入损耗大,制作工艺相对复杂些。 图3 光栅型波分复用器 (3)棱镜型波分复用器和光栅一样,棱镜也是一种熟知的角色散器件,因此也具有显著的分光作用,棱镜的角色散为 其中n是折射率,a是棱镜的折射角,(dn/dλ)是色散率,由此可见,为了实现较多路数的分波和合波,即要求较大的角色散,则应选择大的折射角和高色散率的棱镜。 由于棱镜型复用器件的工艺复杂,制作较难,因此单独使用的较少,一般多将它与其它类型的复用器件结合使用,构成复合型的复用器件。 (4)光纤耦合型波分复用器上述几种复用器件虽各有优点,但他们有一个共同的缺点,即

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

第二章密集波分复用(DWDM)传输原理

第二章密集波分复用(DWDM)传输原理 [ 2006-11-3 13:42:00 | By: 雨丝] 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

100GDWDM系统关键技术及实现原理

龙源期刊网 https://www.360docs.net/doc/4b14579377.html, 100GDWDM系统关键技术及实现原理 作者:黄旭 来源:《中华建设科技》2017年第07期 【摘要】通信网络中高速率业务的不断发展,对现有的网络的传输带宽提出了更高、更迫切的需求。从目前主流的10/40Gbps光传输技术向100Gb/s演进成为光传输技术的发展趋势。本文简述了100G DWDM系统关键技术的基本原理,分析了100G系统的技术特点及优点并详细介绍了100Gb/s线路侧光模块基本实现原理。 【关键词】100G DWDM;PM-QPSK;相干接收;DSP算法 【Abstract】The continuous development of high-speed services in the communication network puts forward higher and more urgent demand for the existing network transmission bandwidth. From the current mainstream 10 / 40Gbps optical transmission technology to 100Gb / s evolution as the development trend of optical transmission technology. This paper briefly introduces the basic principle of 100G DWDM system key technology, analyzes the technical characteristics and advantages of 100G system and introduces the basic realization principle of 100Gb / s line side optical module in detail. 【Key words】100G DWDM;PM-QPSK;Coherent reception;DSP algorithm 1. 100G系统简介 (1)根据定义,由光传送设备承载的100G传送数据包能够迅速完成任何类型100G数据的传输,其封装格式是OTN或者以太网。总流量分布在城域、局域以及长途密集波分复用(DWDM)网络上。目前ITU组织研究的重点是利用现有100G以太网规范,IEEE802.3ba,在现有40G和10G基础设备上实现100G OTN。 (2)这能够满足越来越高的带宽需求,降低系统复杂度,减少了用于管理的波长,提高了频谱总效率,最终降低了成本。根据定义,目前实现的100G以太网覆盖距离比100G传送网要短一些,一般为40Km。100G以太网和100G传送网有相似的目标,即,寻找以低成本实现高性能快速链接的方法。 (3)OTN含有的网络功能和协议要求能够满足这些需求,以系统方式在光介质上传输信息。本文重点介绍通过光纤承载传送网和以太网载荷。建立同步数字体系(SDH)等OTN机制也在这一定义范围之内,但是我们主要关注LAN到WAN的应用,特别是40GbE和 100GbE应用(802.3ba)。出于这一标准化以及工作规划的目的,所有OTN新功能以及相关 技术都被认为是电信标准局(ITU-T标准)的工作范畴。 2. 100G系统的关键技术

相关文档
最新文档