注塑工艺参数优化

注塑工艺参数优化
注塑工艺参数优化

培训课程 2 工艺参数的优化

受训者手册

德马格注塑机工艺参数优化的步骤指导

成型周期分析

采用下面表格估计注塑过程中的每一阶段对周期的影响. 然后去机床看正在运行的模具, 写下实际的时间并计算出百分比.

哪一阶段在整个周期中占最多的时间?

那里可以是最有效的缩短成型周期?

模具 1

模具 2

工艺参数优化

目标:

?一步步改进工艺过程稳定性.

?评估各个参数的更改对工艺过程稳定性的影响

?to demonstrate the cumulative improvemnt in the process and product consistency

方法:

At each stage, after the process has been given sufficient time to stabilise, a run of sixteen consecutive mouldings is to be made. These mouldings will be assessed for consistency by weight (a dimension, a physical property or some other attribute could equally well be used, weight is simply the most widely applicable).

稳定性通过计算重量的标准偏差来衡量. 同时打印出机床IBED上的过程统计数据.

1. 找出转压点

2. 找出浇口冷却时间

3. 优化注射速度

4. 采用正确的螺杆转速

5. 优化多级预塑曲线

6. 优化松推

7. 优化多级保压曲线

8. 优化锁模力

9. 设定注射压力限定

步骤 1

找出转压点

在没有保压压力和保压时间的基础上填满产品95% -98%, 然后设定一定的保压和保压时间生产16模.

初始设置时的指导

称12 模产品的重量, 计算标准偏差

打印:

页面 20 工艺参数优化

页面 50 工艺过程统计

步骤 1 结果输入实际值

步骤 2

找出浇口冷凝时间

设定保压压力为步骤1 上找出的注射压力峰值的50% 左右.

设定保压时间为 1 s .

生产数模产品使过程稳定后连续取5模产品称出每模重量和平均值

增加保压时间至2 s, 生产数模产品使过程稳定后连续取5模产品称出每模重量. 在保压时间3s, 4s 5s . . . 时重复上述过程直到产品重量不再增加

作出产品重量和保压时间的关系图.

记录Record the TCU setting and the actual mould temperature.

打印:

页面 30 温度

XL Spreadsheet graph

为什么记录模具温度很重要?

还有什么因素会影响浇口冷凝时间?

步骤 2 结果输入实际值

步骤 3

优化注射速度

采用多级注射曲线, 使注射行程最后的10-20% 采用逐步降低的注射速度.

每次更改注射速度, 必须重新建立转压点. (注意每次保压和保压时间都设定为0.) 连续取16模, 计算出标准偏差.

打印:

页面 24 MWE 使用和没使用多级保压时的曲线

页面 26 多级注射

页面50 工艺过程统计

为什么转压点要更改?

注射压力发生了什么?

为什么在数社的末端采用逐步降低的注射速度是有用的?

步骤 3 结果输入实际值

步骤 4

采用正确的螺杆转速

Select the correct, optimum screw speed for the material being processed (see T.01 notes, Section 5 ). Use this single speed for the whole plasticising stroke

Set a back pressure of 5 to 10 bar (hydraulic).

Readjust dosing stroke to achieve 95-98% fill

Take sixteeen consecutive mouldings and determine the standard deviation of the weights.

Print out:

Page 50 Process Statistics

Why is it important to use the manufacturer’s recommended screw speed?

STEP FOUR RESULTS Insert actual values in the relevant boxes

STEP FIVE

Optimise screw speed and back-pressure profile

Use the Dosing Profile page to slow down the screw rotation speed for the last 10% of the metering stroke.

Readjust dosing stroke to achieve 95-98% fill

Take sixteeen consecutive mouldings and determine the standard deviation of the weights.

Print out:

Page 21 Dosing Profiles

Page 50 Process Statistics

What has happened to the Dosing Stop position?

STEP FIVE RESULTS Insert actual values in the relevant boxes

STEP SIX

Optimise decompression

Find the decompression speed which gives best screw stroke and melt cushion consistency. Set a decompression stroke of 5mm.

Check that you still achieve 95-98% fill.

Take sixteeen consecutive mouldings and determine the standard deviation of the weights.

Print out:

Page 21 Dosing Profiles

Page 50 Process Statistics

What has happened to the screw stop position?

What is happening to the check ring?

STEP SIX RESULTS Insert actual values in the relevant boxes

STEP SEVEN

Optimise holding pressure profile

Use the Holding Profile page to set a holding pressure profile which ensures a smooth transition from injection to the holding pressure phase and use a high enough pressure to pack the part properly.

Add a step which reduces holding pressure gradually to zero.

Take sixteeen consecutive mouldings and determine the standard deviation of the weights.

Print out:

Page 24 MWE

Page 27 Holding Profile

Page 50 Process Statistics

Why do you need a smooth transition from injection to holding pressure?

Why bother to reduce the pressure gradually if the gate has already frozen?

STEP SEVEN RESULTS Insert actual values in the relevant boxes

常用塑料注塑工艺参数表样本

常见塑料注塑工艺参数表:

常见塑料注塑工艺参数( 2) -06-16 20:02:13| 分类: 个人日记 | 标签: |字号大中小订阅聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、 PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料, Tg为149~150℃; Tf为215~225℃; 成型温度为250~310℃; 2、热稳定性较好, 并随分子量的增大而提高。但PC高温下遇水易降解, 成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前, PC树脂必须进行充分干燥( 而且应当充分注意防止干燥过的物料再吸湿) 。干燥效果的快速检验法, 是在注塑机上采用”对空

注射”。3、熔体粘度高, 流动性较差, 其流动特性接近于牛顿流体, 熔体粘度受剪切速率影响较小, 而对温度的变化十分敏感, 在适宜的成型加工温度范围内调节加工温度, 能有效地控制PC的粘度。4、由于粘度高, 注射压力较高, 一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品, 为使熔体顺利、及时充模, 注射压力要适当提高至120~150MPa。保压压力为80~100MPa。5、成型时, 冷却固化快, 为延迟物料冷凝, 需控制模温为80~120℃。6、 PC分子主链中有大量苯环, 分子链的刚性大, 注塑中易产生较大的内应力, 使制品开裂或影响制品的尺寸稳定性; ( 在100℃以上作长时间热处理, 它的刚硬性增加, 内应力降低) 。PC的典型干燥曲线台湾奇美典型牌号加工参数: 十、 PA及玻纤增强PA注塑工艺特性与工艺参数设定1、常见品种及其熔点: q 品种: 尼龙-66; 尼龙-610; 尼龙-1010; 尼龙-1212; 尼龙-46尼龙-6; 尼龙-7; 尼龙-9; 尼龙-11; 尼龙-12; 尼龙-66/6、尼龙-66/610; 尼龙-6∕66∕1010; 尼龙-66/6/610q 熔点: 尼龙n系列: 尼龙-6 215~220℃; 尼龙-12为178℃; 尼龙m,n系列: 尼龙- 46 295 ℃; 尼龙-66 255~265℃; 尼龙-610 215~223℃; 尼龙-1010 200℃; 共缩聚尼龙: 由于分子链的规整性较差, 结晶性和熔点一般较低, 如尼龙-6∕66∕1010的熔点仅为155~175℃, 但其有较好的透明性和弹性。2、熔点高, 熔化范围窄( 约10℃) 。考虑到PA熔点高、热稳定性较差, 故加工温度不宜太高, 一般高于熔点30℃左右即可。3、吸湿性大, 且酰胺基易于高温水解, 引起分子量严重降低; ( 须严格干燥至含水量低于0.05%, 特别是回料使用时更应严格干燥, 必要时可添加”增粘剂”。) 4、熔体粘度低, 表观粘度对温度敏感, 由于熔体的冷却速率快, 要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流, 螺杆头应装有止逆环; 另外, 为防止喷嘴处熔体的”流涎”现象, 应选用自锁式喷嘴。5、注射PA时不需高的注射压力, 一般选取范围为70~100MPa, 一般不超过120MPa。注射速率宜略快些, 这样可防止因冷却速率快而造成波纹及充模不足等问题。6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。7、酰胺基在高温下

注塑成型工艺优化技术(余成根)

注塑成型工艺优化技术(余成根) “调机就是浪费,调机就是犯罪”,越来越多的注塑工作者已经意识到优化注塑工艺参数的重要性和紧迫性。如果注塑工艺条件设定得不合理,就会造成注塑生产过程中出现不良率高、料耗大、效率低、模具故障多及胶件质量不稳定等一系列问题,严重的会出现粘模、顶白、翘曲变形、内应力开裂、尺寸变化大、批量报废或退货等现象。学习“注塑成型工艺优化技术”,掌握优化注塑工艺条件的方法,实行科学注塑,是每一个注塑工作者追求的目标;长期以来,很多注塑工作者对每个注塑工艺参数的作用、设定依据及调机顺序搞不清楚,不但造成盲目调机时间长、原料浪费大、生产成本高,而且工艺条件和产品质量很不稳定。“注塑成型工艺优化技术”培训课程是专为深入学习科学调机方法和优化注塑工艺参数,欲快速提高注塑工艺技术水平、减少盲目调机的注塑技术/管理人员而开设的。 培训内容 1、注塑成型工艺参数的五要素 2、注塑成型工艺的真正作用 3、设定注塑工艺参数的条件 4、设定注塑工艺参数的正确顺序 5、料筒温度的作用、设定与优化 6、注塑成型工艺窗口的确定与优化 7、喷嘴温度的作用、设定与优化 8、螺杆转速的作用、设定与优化 9、背压的作用、设定与优化 10、缓冲垫(残留量)的作用、设定与优化 11、倒索(抽胶)的作用、设定与优化 12、熔胶终点位置(射胶量)的确定与优化 13、射胶各段位置的设定与优化 14、模温的作用、设定与优化 15、注塑速度的作用、设定与优化 16、注射压力的作用、设定与优化 17、保压的作用及前提条件 18、保压切换位置的确定与优化 19、保压压力的确定与优化 20、保压时间的确定与优化 21、保压曲线的分析与解读 22、锁模力的作用、设定与优化 23、注射时间的设定与优化 24、冷却时间的确定与优化 25、新模初始调机的方法与技巧 26、几种特殊的注塑成型方

对注塑成型工艺参数优化的一般框架(翻译)

西南交通大学 本科毕业设计论文翻译 对注塑成型工艺参数优化的一般框架 年级:2010级 学号:20101476 姓名:段威力 专业:机械设计制造及其自动化 指导老师:罗征志 2014 年 3 月

第1章前言 成型条件和工艺参数在注塑成型工艺中起着重要角色。模塑部分的质量包括:受力、热变形和残余应力,很大程度上受注塑工艺进程的条件状况影响。成型条件也会影响注塑工艺的生产率、生产周期和资源消耗率。成型条件与其他一些决定塑料产品的因素也有密切关系,如材料、零件的设计和加工等。成型条件主要包括以下几个因素[1]:熔点、浇铸温度、填充时间、填料时间和填充压力。 指定模型零件的质量不仅取决于塑料材料特性同时取决于公益参数。最佳工艺参数可以生产周期,提高产品质量。在实际生产中,工艺参数的设定主要取决于工程师的经验。这种方法不能一直确保工艺参数适当的价值。由于塑料具有复杂的热塑性,设定工艺参数获得想要的产品质量是一个挑战。最终,工艺参数往往从工具书中选取,随后通过反复试验法调整。但是,事实上反复试验法耗时耗力。 对于分析法,为了得到合适的工艺参数需要陈列大量的数学方程[2]。但是,由于复杂的注塑工艺,而方程中又应用了很多简化,这些方程并不能总是达到一个可靠的解决方案。因此,很多研究者投入了大量精力研究注塑成型工艺参数的优化。 尽管目前有大量的文献注塑模工艺参数的优化,但是很多都是理论上的可行,没法投入到实际生产中。因此,并没有对着这些优化方法的适用范围以及优缺点的系统地比较和评估。优化方法的选择主要取决于每位作者的经验和主管选择。甚至,分析现有有话方法的特点和适用范围都是很有意义的任务。因此,寻求合适的一般框架简化注塑成型工艺参数设定是很有必要的。

注塑工艺调试验证技术规范

注塑工艺参数调试验证作业技术规范 1 目的 规范现场工艺参数调试验证的作业流程,培养工艺员良好的调试习惯,从而提高工艺员自身的工艺水平,能够快速的判断问题以及解决问题;同时本技术规范适用于对新工艺员的入门指导,促进其对工艺参数调试验证的正确认识,正确的引导其成才。 2 适用范围 本技术标准仅适用于*****公司工艺员。 3 术语和定义 无 4 职责 4.1 技术部负责本标准的编写及修定; 4.2 技术部负责对本技术规范的宣贯及实施。 5 技术内容与管理方法 5.1 作业流程 确认问题点分析引起问题发生起主要和次要影响作用的各种工艺条件调整相关工艺条 件解决具体问题点工艺参数验证对标准化工艺条件再验证 5.1.1 根据相关质量标准、生产效率指标和现场产品质量生产效率情况,确定问题点。 5.1.1.1 对注塑工艺条件调整之前要依据相关质量标准、图纸或样件判定影响质量的问题点; 5.1.1.2 依据有关注塑工序相应生产效率指标判定影响注塑生产效率的问题点; 5.1.2 根据不符合注塑生产质量要求及生产效率指标的问题点,分析引起问题发生起主要和次要影响作用的各 种工艺条件。 5.1.2.1 对问题点的分析应从人、机、料、法、环五方面全面分析从中选择对问题发生起主要影响的工艺条件; 5.1.2.2 根据具体问题点,分析步骤如下: 5.1.2.2.1 人员操作方面对注塑生产波动的影响因素: (1)在岗人员是否经过岗前培训并具备相应的操作技能; (2)人员配置是否合理; (3)操作者的操作均衡性是否满足生产节拍; (4)操作工的操作动作是否符合操作规程要求或特殊作业规范; (5)操作人员是否熟练并且定岗; (6)调试者本人是否接受相应的技能培训,并具备相关调试技能。 5.1.2.2.2 机器设备(包括模具)对注塑生产的影响因素: (1)注塑机的加温系统是否运作正常,并能使料筒加工温度在注塑工艺所要求加工温度范围内保持稳 定,特别要注意射嘴温控正常; (2)射嘴的口径长度是否适用于该模具,射嘴的球面R与模具浇口套是否适用; (3)设备性能是否达到工艺要求,并且状态良好和稳定,注塑机压力、速度等其它参数设定值与工艺

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参

注塑工艺参数优化

培训课程 2 工艺参数的优化

受训者手册 德马格注塑机工艺参数优化的步骤指导

成型周期分析 采用下面表格估计注塑过程中的每一阶段对周期的影响. 然后去机床看正在运行的模具, 写下实际的时间并计算出百分比. 哪一阶段在整个周期中占最多的时间? 那里可以是最有效的缩短成型周期?

模具 1

模具 2

工艺参数优化 目标: ?一步步改进工艺过程稳定性. ?评估各个参数的更改对工艺过程稳定性的影响 ?to demonstrate the cumulative improvemnt in the process and product consistency 方法: At each stage, after the process has been given sufficient time to stabilise, a run of sixteen consecutive mouldings is to be made. These mouldings will be assessed for consistency by weight (a dimension, a physical property or some other attribute could equally well be used, weight is simply the most widely applicable). 稳定性通过计算重量的标准偏差来衡量. 同时打印出机床IBED上的过程统计数据. 1. 找出转压点 2. 找出浇口冷却时间 3. 优化注射速度 4. 采用正确的螺杆转速 5. 优化多级预塑曲线 6. 优化松推 7. 优化多级保压曲线 8. 优化锁模力 9. 设定注射压力限定

常用注塑工艺参数

常用塑料的注塑工艺参数 一、高密度聚乙烯(HDPE) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件 流长与壁厚之比为50:1到100:1 熔料温度220~280℃ 料筒恒温220℃ 模具温度20~60℃ 注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60% 背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品 螺杆转速高螺杆转速(线速度为s)是允许的,只要满足冷却时间结束前就完成塑化过程就可以;螺杆的扭矩要求为低 计量行程~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的 残料量2~8mm,取决于计量行程和螺杆直径 预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率~%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀 二、聚丙烯(PP)

注塑成型工艺参数说明

注塑成型注塑成型工艺参数工艺参数工艺参数说明说明说明 一.干燥温度 定义:为保证成型质量而事先对聚合物进行干燥所需要的温度 作用:1.去除原料中的水份.2.确保成品质量 设定原则: 1.聚合物不致于分解或结块(聚合) 2.干燥时间尽量短,干燥温度尽量低而不致于影响其干燥效果. 3.干燥温度和时间因不同原料而异. 注:1,A 表示用热风干燥机. 2,D 表示用除湿干燥机. 3,*表示通常不需干燥. 4,**表示干燥依条件类别而定,最好材料供货商确认. 二.料温 定义: 为保证成型顺利进行而设加在料管上之温度. 作用: 保证聚合物塑化(熔胶)良好,顺利充模,成型. 设定原则: (1)不致引起塑料分解碳化. (2)从加料断至喷嘴依次上升. (3)喷嘴温度应比料筒前断温度略低. (4)依材料种类不同而所需温度不同. (5)不至对制品产生坏的质量影响. 三.模温 定义: 制品所接触的模腔表面温度 作用: 控制影响产品在模腔中的冷却速度,以及制品的表观质量. 设定原则: (1)考虑聚合物的性质. (2)考虑制品大小和形状. (3)考虑模具的结构.浇道系统. 四.注射速度 定义: 在一定压力作用下,熔胶从喷嘴注射到模具中的速度 . 作用: (1)注射速度提高将使充模压力提高. (2)提高注射速度可使流动长度增加,制质量量均匀. (3)高速射出时粘度高,冷速快,适合长流程制品. (4)低速时流动平稳,制品尺寸稳定.

设定原则: (1) 防止撑模及避免产生溢边. (2)防止速度过快导致烧焦. (3)保证制品质量的前提下尽量选择高速充填,以缩短成型周期. 五.熔胶速度 定义: 塑化过程中螺杆熔胶时的转速 . 作用: 影响塑化能力,塑化质量的重要参数,速度越高,熔体温度越高,塑化能力越强 . 设定原则: (1)熔胶速度调整时一般由低向高逐渐调整. (2)螺杆直径大于50MM之机台转速应控制在50RPM以下,小于50MM之机台应控制在100RPM以下为宜. 六.射压 定义: 螺杆先端射出口部位发生之最大压力,其大小与射出油缸内所产生油压紧密关连 . 作用: 用以克服熔体从喷嘴--流道--浇口--型腔的压力损失,以确宝型腔被充满,获得所需的制品. 设定原则: (1)必在注塑机的额定压力范围内. (2)设定时尽量用低压. (3)尽量避免在高速时采用高压,以免异常状况发生 七.背压 定义: 塑料在塑化过程建立在熔腔中的压力 . 作用: (1)提高熔体的比重. (2)使熔体塑化均匀. (3)使熔体中含气量降低.提高塑化质量 设定原则: (1)背压的调整应考虑塑料原料的性质. (2)背压的调整应参考制品的表观质量和呎寸精度 八.锁模压力 定义: 合模系统为克服在注射和保压阶段使模具分开的胀模力而施加在模具上的闭紧力. 作用: (1)保证注射和保压过程中模具不致于被胀开 (2)保证产品的表观质量. (3)保证产品的尺寸精度. 设定原则: (1)合模力的大小依据产品的大小,机台的大小而定. (2)一般来说,在保证产品不出毛头的情况下,合模力 要求越小越好. (3)合模力的设定不应超出机台之额定压力.

注塑工艺参数的优化选择

第5章注塑工艺参数的优化选择 注塑工艺参数包括模具温度、熔体温度、注射压力、保压压力、注射时间等[66]。前面的注塑成型过程分析比较都是在统一的注塑工艺参数下进行的,没有考虑到注塑工艺参数对注塑成型过程的影响。即使浇注系统保持不变,流动过程也会随着注射时间、熔温和模温等注塑工艺参数的变化而发生变化。为确保流动过程的合理性,就需要考虑注塑工艺参数的影响。在注塑成型过程中,注塑成型工艺参数如熔体温度、模具温度、注射压力、保压压力、注射时间和保压时间等都会对塑件注塑成型后的成型周期、塑件质量、体积收缩率等有着很大的影响。其中塑料熔体温度和模具温度对注塑过程的影响尤其显著,塑料熔体温度和模具温度的变化会直接影响到熔体在型腔内的流动情况。如果塑料熔体温度升高,流动速率可能会增加,这样就有利于充模;但是如果塑料熔体温度过高就可能会引起塑件烧焦甚至材料降解[67]。模具温度变化也会直接影响制品的生产效率和质量,如果模温过高可能会延长塑件注塑成型周期,就会降低生产效率;如果模温过低就可能会发生熔体滞留,造成欠注和熔接痕等缺陷[68]。 在传统的塑件注塑成型中,注塑工艺参数的确定一般需要经过多次试模,而通过Moldflow的模拟分析就可以一次性确定注塑工艺参数。Moldflow中的注塑工艺参数优化包括两种方法,一种是在DOE模块进行优化分析,一种是在流动分析模块进行优化分析。DOE模块的优化分析主要是对塑料熔体温度和模具温度进行优化分析,但是不能够对其它的注塑工艺参数进行优化分析,这个也是目前软件在DOE模块开发方面的限制,有待科技的进一步发展。DOE模块的优化分析是根据设置的变量情况,软件自动运用类似正交实验的方法来分析塑料熔体温度和模具温度对塑件各方面的影响情况,然后经过对模拟结果的分析比较来确定塑料熔体温度和模具温度。流动分析的优化方法是在流动分析模块对注塑工艺参数如保压压力、注塑速率等进行优化选择的方法。这种方法通过对被注塑工艺参数影响较大的流动过程描述量如充填时间、体积收缩率、残余应力和锁模力等的比较分析来确定优化的注塑工艺参数。下面将通过这两种方法来对注塑工艺参数进行优化分析。 5.1 DOE模块的熔体温度和模具温度优化选择 下面将通过对重要描述量如循环时间、体积收缩率、注射压力等进行分析来优化选择熔体温度和模具温度。

注塑成型工艺参数及其影响

注塑成型工艺参数及其影响 11209040112 黄卓 摘要:塑料材料在生活中所占比例越来越高,而对于其质量的要求也越来越高, 注塑成型作为重要的生产手段,对技术的提高也越来越迫切,而注塑成型制品的影响因素较多,但注塑成型加工工艺条件是重要的影响因素之一,下面将会介绍个个工艺参数对于制品性能的影响。 关键词:注塑成型工艺参数 一、注塑成型概念 传统的模具设计和工艺参数设置主要依赖于设计者的经验和技巧,模具设计的合理性只有靠反复的试模和修模,工艺参数的设置也只能靠反复的试模来进行修改,缺乏科学依据,生产周期长,成本高,质量也难以保证。而对成型过程进行模拟,在模具制造之前就可发现设计中的问题,使模具设计和工艺参数设置建立在科学的分析基础之上,可缩短生产周期,提高制品质量。随着对制品质量要求的提高,对成型过程进行预测己经成为设计不可缺少的环节。因此,建立注塑成型过程熔体在模腔中流动和传热的数学模型,并采用数值仿真方法实现成型过程的模拟具有重要的意义。 由于成型过程的工艺参数直接决定了熔体在模腔中的流动状态,对制品质量有着最直接最深远的影响,因此找到制品成型的最优工艺条件,对成型过程进行工艺控制,是提高塑料制品质量的有效途径。这是因为,成型过程中,精密的成型机械、合理的模具设计和优良的材料性能只有在合理的成型工艺设置下刁`能体现出来另一方面,成型机械、模具设计和材料性能的缺陷有时可通过合适的成型工艺设置来弥补。由此可见,注塑成型工艺对制品质量有着至关重要的作用 二、注塑工艺条件及其影响 1、注塑压力 注射压力指的是在注射过程中螺杆顶部或柱塞对于塑料熔体所加载的压力。它的作用是对于使熔料混合和塑化,螺杆(或柱塞)必须提供克服固体粒子和熔料在料筒和喷嘴中的流动阻力。使得塑料熔体以一定的速度来充满型腔,在型腔充满熔体后注射压力起到压实的作用。从而使得塑件致密,并对熔料因冷却而产生的收缩进行补料,从而使塑件保持精确的形状,获得所需要的性能。注射的压力主要由塑料的种类,注塑机的类型,模具的温度,模具结构,塑件的壁厚来决定的,其中浇注系统的尺寸与结构对于注射压力影响很大。 2、保压压力 当熔体充满型腔后,注射压力所起的作用为对于模内的熔体进行压实,此时我们把注射压力也叫做保压压力,在实际生产中,保压压力应该等于或小于注射时所用压力。当保压时的压力与注射时的压力相等时,往往会使塑件的收缩率降低,而且可以保证塑件的稳定性以及塑件的力学性能。但常常也会伴随着脱模时残余应力的增加,造成塑件脱模困难、使塑件容易产生变形、表面划伤等,也容易使塑件产生飞边,影响表观质量。因此,选择保压压力时需要多方面考虑,慎

注塑机的基本参数

注塑机参数与注塑工艺参数 注塑成形技术系统培训教材 SANSEI精密注塑成形 蔡军

注塑机装置的技术参数 1.螺杆直径mm 2.螺杆长径比L/D 3.螺杆压缩比 4.螺杆行程cm 5.理论注射容积cm3 6.最大注射重量(以PS计算)g 7.螺杆最大转速r/min 8.最大塑化能力kg/h 9.注射压力MPa 10.注射速率g/s 11.注射时间s 12.注射座推力及喷嘴推力kN 13.喷嘴行程cm 14.喷嘴伸出量(即伸出模具安装平面的长度)cm 进一步的技术参数: 15.注射速度mm/s 16.螺杆最大扭矩N/m 17.螺杆驱动功率kW 18.喷嘴球半径mm 19.螺杆驱动方式(如油压马达、电动马达等) 20.回复率。 合模装置的技术参数

1.合模力kN 2.开模力kN 3.开模行程cm 4.拉杆有效间距mm 5.最大、最小模厚mm 6.模板间的最大间距mm 7.顶出力kN 8.顶出行程mm 9.模板定位孔直径mm 10.移模速度m/s 11.模板尺寸(H*V)mm 12.模具安装尺寸 可进一步提供的参数: 13.拉杆直径mm 14.调模驱动功率kN 15.调模方式:如手动、电动、液压、马达等。 16.合模方式:如机械式、液压式、机械-液压式等。 17.顶出方式:机械、液压、气动等。 18.顶针数量 19.顶出次数 20.顶针速度 其它整机性能参数 1.油泵马达功率kN

2.电热量kW 3.油箱容量L 4.料斗容量kg 5.外形尺寸(长*宽*高)m 6.机器重量kg 7.空循环时间s 8.单耗Kw/kg 9.最大油泵压力MPa 10.总用电量kW 与成形工艺有关的参数 1.最大的注射量(通常要求制品及浇注系统所需塑料量为注射重量75%-80%) 2.合模力(足够的合模力才能保证成形模具的锁紧,精密制品需要的合模力为模具所需合模力的1.5倍) 与模具有关的参数 1.嘴头部球面半径 2.模板上的定位孔 3.拉杆间的有效间距 4.模具的厚度 5.模板上模具安装螺孔(或T形槽)的尺寸 与取出制品有关的参数 1.合模距离必须小于注塑机的最大开模距离,确认最大开模距离 2.顶出装置及顶出行程距离的确认和顶杆位置及顶杆数量的确认

注塑成型周期的最优化设置(成型技术)

注塑成型周期的最优化设置 Graham Webster(翻译:胡乐满) 注塑成型加工工艺的优化仅仅与加工过程中的物理条件有关,而与注塑成型的产能或设备无关。对于任何一次注塑成型过程而言,都存在一个最优的射胶时间。最优的射胶速率需要最低的注塑压力。图1给出了典型制品的射胶时间和注塑压力之间的关系。但是,射胶速率越大,就越容易出现质量方面的问题――射胶速度太高以及模具排气不充足的情况下,往往会导致熔体的最前面部分出现烧焦的现象。因此,在物料被烧焦的部位必须有排气装置。如果有排气装置的存在的话,排气孔必须严格控制尺寸,而且必须保持清洁。这样排气孔的设置能在很大程度上帮助提高物料的射胶速度。但是,加工工艺却不能因为缺少排气装置而有任何的妥协。 图1:注塑压力与注塑速率之间的关系 通常情况下,射胶时间不会太长。几乎95%的制品的射胶时间在1.5到3秒。如果射胶时间超过3秒钟的话,就需要进行调查,以免有任何事故的发生。对于小部件的制品射胶时间可以更短,但是对于薄壁制品或者是熔体长度超过500mm 的制品的射胶时间要超过3秒钟。 射胶阶段的最优化可能只能给射胶阶段带来很少的时间的节约,但是,最优的射胶时间的设置可以在很大程度上节约保压段的时间。在保压段中,填充在模具中的处于半熔体状态的物料必须施加一定的压力,在模具中,当半熔熔体冷却时,受到压缩以让其他熔体进入模具,填充收缩后的空间。对于结晶型的塑料制品而言,这一点是很关键的,因为结晶型的聚合物具有较大的体积收缩率。保压阶段可以减少产品的收缩率,也能在一定程度上保证产品的可重复生产性、巩固产品的焊接以及改善产品的表面光泽度。射胶胶口的尺寸必须合理以保证进行合理的保压。胶口的冷却将取决于保压阶段所用的时间。制品的冷却时间取决于制品的

注塑工艺标准参数优化

'' 培训课程 2 工艺参数的优化

受训者手册 德马格注塑机工艺参数优化的步骤指导 页面周期分析 3 注塑工艺参数优化 6 步骤 1: 找出转压点7 步骤 1结果8 步骤 2: 找出保压时间(浇口冷凝时间) 9 步骤 2 结果10 步骤 3: 优化注射速度11 步骤 3 结果12 步骤 4: 采用正确的螺杆转速13 步骤 4 结果14 步骤 5: 优化多级螺杆转速和背压曲线15 步骤 5 结果16 步骤 6: 优化松退17 步骤 6 结果18 步骤 7: 优化保压曲线19 步骤 7 结果20 TABULATED RESULTS 21 步骤 8: 优化锁模力22 步骤 8 结果22 步骤 9: 设定注射压力23 步骤 9 结果23 典型工艺参数公差设定24

成型周期分析 采用下面表格估计注塑过程中的每一阶段对周期的影响. 然后去机床看正在运行的模具, 写下实际的时间并计算出百分比. 哪一阶段在整个周期中占最多的时间? 那里可以是最有效的缩短成型周期?

模具 1 估计 % 实际实 评价 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

模具 2 评价 估计 % 实际实 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

工艺参数优化 目标: ?一步步改进工艺过程稳定性. ?评估各个参数的更改对工艺过程稳定性的影响 ?to demonstrate the cumulative improvemnt in the process and product consistency 方法: At each stage, after the process has been given sufficient time to stabilise, a run of sixteen consecutive mouldings is to be made. These mouldings will be assessed for consistency by weight (a dimension, a physical property or some other attribute could equally well be used, weight is simply the most widely applicable). 稳定性通过计算重量的标准偏差来衡量. 同时打印出机床IBED上的过程统计数据. 1. 找出转压点 2. 找出浇口冷却时间 3. 优化注射速度 4. 采用正确的螺杆转速 5. 优化多级预塑曲线 6. 优化松推 7. 优化多级保压曲线 8. 优化锁模力 9. 设定注射压力限定

常用塑料注塑工艺参数详述(doc 11页)

常用塑料注塑工艺参数详述(doc 11页)

浅述冷/热模注塑成型技术 2010-2-25 来源:网络文摘 【全球塑胶网2010年2月25日网讯】 所谓的“冷/热模注塑成型”技术,是一种可在注塑成型周期内,使模腔表面温度实现冷热循环的工艺。其特点是:在注射前,先加热模腔,使其表面温度达到加工材料的玻璃化转变温度(Tg)以上;当模腔填满后,迅速冷却模具,以使制件在脱模前完全冷却。 这种冷/热模注塑成型工艺可以大幅度地改善注塑制品的外观质量,而且可以省去某些二次加工(如旨在掩盖表面缺陷的底漆和磨砂处理)过程,从而降低整体生产成本。在某些情况下,甚至还可以省去上漆或粉末涂布工艺。在那些对表面光泽度有较高要求的应用中,冷/热模注塑成型工艺还允许使用玻纤增强材料。该工艺的其他优势还包括:降低注塑内应力、减少甚至消除喷射痕和可见的熔接线,以及增强树脂的流动性,从而生产出薄壁产品等。 通常情况下,冷/热模注塑成型工艺适用于所有的传统注塑机。但是,如果希望模具表面得到快速加热或冷却,还需要配合使用特定的辅助系统,目前常用的辅助系统是高温热水系统和高温蒸汽系统。这些辅助系统中的蒸汽,要么来自外部锅炉,要么由其自身的控制设备产生。早在几年前,沙伯基础创新塑料就开始在日本研究冷/热模注塑成型技术。目前,该公司在其亚太区的开发中心中使用的是高温蒸汽系统,而在位于马萨诸塞州匹兹菲尔德的聚合物加工开发中心(PPDC)中,该公司则使用了德国Single Temperiertechnik公司的高温热水系统,它可以提供200℃的高温热水。 为了实现有效的工艺控制,模具必须配备热电偶,并且热电偶最好被安置在靠近模腔表面的位置,以便监控温度。为了确保工艺的稳定性,注塑模具、注塑机和冷/热控制器还必须集成在一起。沙伯基础创新塑料在该工艺的生产体系中配备了一台控制设备,以将各个要素有效地集成在一起。 在该工艺的开始阶段,利用在模内循环的蒸汽或高温热水来加热模腔表面,使其温度达到高于被加工树脂的玻璃化转变温度10~30℃的水平。一旦模腔表面达到这一温度值,系统便向注塑机发出信号,以将塑料注射到模腔中。当模腔被填满(注射阶段完成)后,冷水开始在模具中循环流动,以快速带走热量,从而使注塑部件在脱模前完全冷却。利用一个阀站,即可方便地实现从蒸汽或高温热水到冷水的切换,反之亦然。当部件冷却后,模具打开,部件被顶出,然后重复上述过程。 工艺优化:模具的设计和构造

注塑工艺参数的优化选择模板

注塑工艺参数的优化选择模板

第5章注塑工艺参数的优化选择 注塑工艺参数包括模具温度、熔体温度、注射压力、保压压力、注射时间等[66]。前面的注塑成型过程分析比较都是在统一的注塑工艺参数下进行的, 没有考虑到注塑工艺参数对注塑成型过程的影响。即使浇注系统保持不变, 流动过程也会随着注射时间、熔温和模温等注塑工艺参数的变化而发生变化。为确保流动过程的合理性, 就需要考虑注塑工艺参数的影响。在注塑成型过程中, 注塑成型工艺参数如熔体温度、模具温度、注射压力、保压压力、注射时间和保压时间等都会对塑件注塑成型后的成型周期、塑件质量、体积收缩率等有着很大的影响。其中塑料熔体温度和模具温度对注塑过程的影响特别显著, 塑料熔体温度和模具温度的变化会直接影响到熔体在型腔内的流动情况。如果塑料熔体温度升高, 流动速率可能会增加, 这样就有利于充模; 可是如果塑料熔体温度过高就可能会引起塑件烧焦甚至材料降解[67]。模具温度变化也会直接影响制品的生产效率和质量, 如果模温过高可能会延长塑件注塑成型周期, 就会降低生产效率; 如果模温过低就可能会发生熔体滞留, 造成欠注和熔接痕等缺陷[68]。 在传统的塑件注塑成型中, 注塑工艺参数的确定一般需要经过多次试模, 而经过Moldflow的模拟分析就能够一次性确定注塑工艺参数。Moldflow中的注塑工艺参数优化包括两种方法, 一种是在DOE模块进行优化分析, 一种是在流动分析模块进行优化分

析。DOE模块的优化分析主要是对塑料熔体温度和模具温度进行优化分析, 可是不能够对其它的注塑工艺参数进行优化分析, 这个也是当前软件在DOE模块开发方面的限制, 有待科技的进一步发展。DOE模块的优化分析是根据设置的变量情况, 软件自动运用类似正交实验的方法来分析塑料熔体温度和模具温度对塑件各方面的影响情况, 然后经过对模拟结果的分析比较来确定塑料熔体温度和模具温度。流动分析的优化方法是在流动分析模块对注塑工艺参数如保压压力、注塑速率等进行优化选择的方法。这种方法经过对被注塑工艺参数影响较大的流动过程描述量如充填时间、体积收缩率、残余应力和锁模力等的比较分析来确定优化的注塑工艺参数。下面将经过这两种方法来对注塑工艺参数进行优化分析。 5.1 DOE模块的熔体温度和模具温度优化选择 下面将经过对重要描述量如循环时间、体积收缩率、注射压力等进行分析来优化选择熔体温度和模具温度。

常用塑料的注塑工艺参数介绍(doc 13页)

常用塑料的注塑工艺参数介绍(doc 13页)

常用塑料的注塑工艺参数 一、高密度聚乙烯(HDPE) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行 程利用率为35%和65%,模件流长与壁 厚之比为50:1到100:1 熔料温度220~280℃ 料筒恒温220℃ 模具温度20~60℃ 注射压力具有很好的流动性能,避免采用过高的

注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射 压力的30%~60% 背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料 制品 螺杆转速高螺杆转速(线速度为 1.3m/s)是允许的,只要满足冷却时间结束前就完成塑 化过程就可以;螺杆的扭矩要求为低 计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很 重要的 残料量2~8mm,取决于计量行程和螺杆直径预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率 1.2~2.5%;容易扭曲;收缩程度高;24h

后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄 截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何 外形特殊(L:D=25:1),直通喷嘴, 止逆阀 二、聚丙烯(PP) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(220℃) 区3 220~300℃(240℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行 程利用率为35%和65%,模件流长与壁 厚之比为50:1到100:1 熔料温度220~280℃

各种塑料注塑工艺参数设置

各种塑料注塑工艺分析 高密度聚乙烯(HDPE) 料筒温度喂料区 30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴 220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长与壁厚之比为50:1到100:1 熔料温度 220~280℃ 料筒恒温220℃ 模具温度 20~60℃ 注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60% 背压 5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品 螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前就完成塑化过程就可以;螺杆的扭矩要求为低 计量行程 0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的 残料量 2~8mm,取决于计量行程和螺杆直径 预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率 1.2~2.5%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀 二、聚丙烯(PP) 料筒温度喂料区 30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(220℃) 区3 220~300℃(240℃)

注塑工艺及内应力

84. 如何调较注塑工艺参数(温度、压力、速度、位置)? ?温度 温度的测量和控制在注塑中是十分重要的。虽然进行这些测量是相对地简单,但多数注塑机都没有足够的温度采点或线路。 在多数注塑机上,温度是由热电偶感应的。一个热电偶基本上由两条不同的电线尾部相接而组成的。如果一端比另一端热,将产生一个微小的电讯;越是加热,讯号越强。 ?温度的控制 热电偶也广泛应用作温度控制系统的感应器。在控制仪器上,设定需要的温度,而感应器的显示将与设定点上产生的温度相比较。在这最简单的系统中,当温度到达设定点时,就会关闭,温度下降后电源又重新开启。这种系统称为开闭控制,因为它不是开就是关。 ?熔胶温度 熔胶温度是很重要的,所用的射料缸温度只是指导性。熔胶温度可在射嘴处量度或使用空气喷射法来量度。射料缸的温度设定取决于熔胶温度、螺杆转速、背压、射料量和注塑周期。 您如果没有加工某一特定级别塑料的经验,请从最低的设定开始。为了便于控制,射料缸分了区,但不是所有都设定为相同温度。如果运作时间长或在高温下操作,请将第一区的温度设定为较低的数值,这将防止塑料过早熔化和分流。注塑开始前,确保液压油、料斗封闭器、模具和射料缸都处于正确温度下。 ?注塑压力 这是引起塑料流动的压力,可以用在射嘴或液压线上的传感器来测量。它没有固定的数值,而模具填充越困难,注塑压力也增大,注塑线压力和注塑压力是有直接关系。 ?第一阶段压力和第二阶段压力 在注塑周期的填充阶段中,可能需要采用高射压,以维持注塑速度于要求水平。模具经填充后便不再需要高压力。不过在注塑一些半结晶性热塑性塑料(如PA及POM)时,由于压力骤变,会使结构恶化,所以有时无须使用次阶段压力。 ?锁模压力 为了对抗注射压力,必须使用锁模压力,不要自动地选择可供使用的最大数值,而要考虑投影面积,计算一个适合的数值。注塑件的投影面积,是从锁模力的应用方向看到的最大面积。对大多数注塑情况来说,它约为每平方英寸2吨,或每平方米31兆牛顿。然而这只是个低数值,而且应当作为一个很粗略的经验值,因为,一旦注塑件有任何的深度,那么侧壁便必须考虑。 ?背压 这是螺杆后退前所须要产生及超越的压力,采用高背压虽有利于色料散布均匀及塑料熔化,但却同时延长了中螺杆回位时间,减低填充塑料所含纤维的长度,并增加了注塑机的应力;故背压越低越好,在任何情况下都不能超过注塑机注塑压力(最高定额)的20%。 ?射嘴压力 射嘴压力是射嘴里面的压力。它大约就是引起塑料流动的压力。它没有固定的数值,而是随模具填充的难度加大而增高。射嘴压力、线压力和注射压力之间有直接的关系。在螺旋式注塑机上,射嘴压力大约比注射压力少大约百分之十左右。而在活塞式注塑机时压力损失可达到百分之十左右。而在活塞式注塑机时压力损失可达到百分之五十。 ?注塑速度 这是指螺杆作为冲头时,模具的填充速度。注塑薄壁制品时,必须采用高射速,以便于熔胶未凝固时完全填充模具,生产较为光滑的表面。填充时使用一系列程序化的射速,避免产生喷射或困气等缺陷。注射可在开环式或闭环式控制系统下进行。 无论采用那种注射速度,都必须将速度值连同注射时间记录于记录表上,注射时间指模具达到预定的首阶段射压所须的时间,乃螺杆推进时间的一部分。 ?模具排气 由于快速填充模具的缘故,模具必须让气体排出,多数情况下这气体只是模腔中的空气。如果空气不能排出,它会被熔融压缩,使温度上升将引起塑料燃烧。排气位须设于夹水纹及最终注塑部份附近。一般排气位为6至13毫米宽,0.01至0.03毫米深的槽,通常设于其中一个半模的分模面处。 ?保压

相关文档
最新文档