水泵的使用范围与特性

水泵的使用范围与特性
水泵的使用范围与特性

泵:一指改变容积内流体的压力或输送流体的机器;二指具有ATP酶活性的穿膜蛋白。可利用水解ATP 产生的能量,将离子或小分子逆电化学梯度穿膜运输

从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高达19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200℃以下,最高可达800℃以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。

机电一体泵

在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。

在农业生产中,泵是主要的排灌机械。我国农村幅员广阔,每年农村都需要大量的泵,一般来说农用泵占泵总产量一半以上。

在矿业和冶金工业中,泵也是使用最多的设备。矿井需要用泵排水,在选矿、冶炼和轧制过程中,需用泵来供水等。

在电力部门,核电站需要核主泵、二级泵、三级泵、热电厂需要大量的锅炉给水泵、冷凝水泵、循环水泵和灰渣泵等。

在国防建设中,飞机襟翼、尾舵和起落架的调节、军舰和坦克炮塔的转动、潜艇的沉浮等都需要用泵。高压和有放射性的液体,有的还要求泵无任何泄漏等。

在船舶制造工业中,每艘远洋轮上所用的泵一般在百台以上,其类型也是各式各样的。其它如城市的给排水、蒸汽机车的用水、机床中的润滑和冷却、纺织工业中输送漂液和染料、造纸工业中输送纸浆,以及食品工业中输送牛奶和糖类食品等,都需要有大量的泵。

总之,无论是飞机、火箭、坦克、潜艇、还是钻井、采矿、火车、船舶,或者是日常的生活,到处都需要用泵,到处都有泵在运行。正是这样,所以把泵列为通用机械,它是机械工业中的一类主要产品。

泵的使用范围与特性

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

水泵的性能曲线图分析

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程--流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。 GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) HP与功率的比例关系? 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。 首先你要明白水泵性能曲线是由管路性能曲线和扬程流量曲线构成的,其实很简单。他的交点就是工况点,两水泵并联时流量叠加,扬程基本不变。串联时扬程叠加流量不变。 cdlf2系列里面还有多级叶轮的,根据叶轮代号查看对应极数的扬程(纵坐标),X+Y 对应的那个点。压力就是扬程,1公斤=10米 汽蚀余量 Capcity m3/h H (m) N (﹪) P (kw) Speed (rymin) (NPSH)r

水力特性曲线绘制方法

1、将需要绘制的数据列入excel表格中(如图1)。 图1 2、然后打开Grapher,进入界面(如图2)。 图2

3、点击左上角工具栏的“折线/散点图”,并进入如图3界面,找到你需要绘制的工作表(我的工作表就是Book1),打开,然后进入图4界面,选择你需要绘制的两列数据(一次只能绘制一条曲线),点击确定就可以得到一条曲线了(如图5)。 第一个按钮就是“折线/散点图”了哈。 图3 图4

图5 4、选中Y轴,双击,得到图6界面,修改坐标轴长度和起点(X、Y轴都可以一 起改)、线条粗细、线条样式等,然后确定,得到你想要的图片尺寸,如图7。 图6

图7 5、点击左上角的“文件”,选择“导出”,进入界面如图8,选择保存路径、输入文件名、选择保存类型(文件名要加后缀“.dxf”,即将导出的图形为DXF格式),点击“确定”,进入如图9界面,选择“保存”“二进制”,单击“确定”。 完成图形的导出过程。重复上面的方法,得到所有你需要的曲线。 图8

图9 6、找到你保存的导出文件,用CAD方式打开,将所有曲线复制到一个CAD图里面。移动曲线和Y轴,画上箭头,写好文字,调整好格式,如图10。然后选中调整好的图形,点击“文件”选择“输出”,进入如图11界面,选择保存路径、输入文件名后点击“确定”。图像的输出完成。 图10

图11 7、在word里面插入你保存的图像就,修改图片大小,ok了! 进入word,点击“插入”,然后选择“图片”,然后选择“来自文件”,找到你CAD 输出的图像,就完成插入过程了。图片大小的修改用图片工具修改哈(选中图片,右键,选择“显示图片工具栏”)。 8、好,大功告成了哈!

水力发电主要特点

水力发电原理及特点 把天然水流蕴藏的力学能转换成电能的发电方式。是水能利用的主要形式。天然水流所蕴藏的力学能称为水力资源,是人类可以利用的重要能源之一。在自然状态下,河川水流的这种潜在能量以克服摩擦、冲刷河床、挟带泥沙等形式消耗掉。兴建水电站可利用这部分能量。1878年在德国建成世界上第一座水电站。此后,1880年制成了冲击式水轮机,1918年制成了轴流式转桨水轮机,1957年制成了斜流式水轮机,并开始出现可逆式抽水蓄能机组。尤其是在第二次世界大战以后,随着机械制造业和超高压输电技术的发展,世界各国的水力资源得到大力开发。80年代最大的水轮发电机的单机容量已超过了70万千瓦,最大的水电站装机容量已达1050万千瓦。 由于天然水流有着明显的季节性,而大量的电能又是无法贮存的,因此,开发河川水电一般都必须首先把天然河川水流的潜在能量蓄集起来,然后再根据用电需要对其进行时间上的再分配。另外,也只有把河川水流的能量蓄集起来,才便于完成水能到电能的集中转换,如图所示。河面上A、B两点的水位差H 称为河段Ⅰ~Ⅱ的落差。如在Ⅱ断面附近筑坝拦水并

兴建电站,则Ⅰ~Ⅱ河段的落差就被集中到电站附近。这一集中的落差称为水电站的水头,其物理意义为电站上、下游单位质量水体的势能差。它由河川水流的动能转换而来。通过压力水管向水轮发电机组供水,水轮机接收水流的能量并将其转变成自身旋转的机械能,然后再带动发电机旋转,完成力学能到电能的转换。当供水量为Q米3/秒),水的密度为ρ≈1000千克/米3,考虑到102千克力·米/秒=1千瓦,则水轮发电机组的输入功率为:Nh=9.81QH(千瓦)。由于在整个能量转换过程中不可避免地存在着各种能量损失,因此水电站的输出功率N最后可按下式估算: N=9.81QHη(千瓦) [attachment=14313] 上式称为水力发电或水能利用基本方程式。式中η为水力发电的效率。大型水电站η高达90%以上。 [b]水力发电有如下特点:[/b] ①能源的再生性。由于水流按照一定的水文周期不断循环,从不间断,因此水力资源是一种再生能源。所以水力发电的能源供应只有丰水年份和枯水年份的

离心泵特性曲线的测定

离心泵特性曲线的测定 一、 实验目的 1、了解离心泵的结构与特性,熟悉离心泵的使用。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安转方法。 4、测量孔板流量计的孔流系数C 随雷若数Re 变化的规律。 5、测定管路特性曲线。 二、 基本原理 离心泵的主要性能参数有流量Q 、压头H 、效率和轴功率N ,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。而且,当期流量变化时,泵的压头、功率、及效率也随之变化。因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。 1、扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2截面,列机械能衡算方程: ∑+++=+++f h g u g p H g u g p 2z 2z 2 2 222111ρρ 因两截面间的管长很短,通常将其阻力项∑f h 归并到泵的损失中,且泵的进出口为等径 管则有 式中 H 0 :泵出口和进口的位差,对于磁力驱动泵32CQ-15装置,H 0= ρ:流体密度,kg/m 3 ; p 1、p 2:分别为泵进、出口的压强,Pa ; u 1、u 2:分别为泵进、出口的流速,m/s ; z 1、z 2:分别为真空表、压力表的安装高度,m 。 2、轴功率N 的测量与计算 N=N 电k 式中—N 电为泵的轴功率,k 为电机传动效率,取k= 3、效率η的计算 泵的效率η是泵的有效功率N e 与轴功率N 的比值。反映泵的水力损失、容积损失和机械损失的大小。泵的有效功率N e 可用下式计算: 故泵的效率为 %100g ?=N HQ ρη 4、泵转速改变时的换算 在绘制特性曲线之前,须将实测数据换算为某一定转速n? 下(可取离心泵的额定转

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是: H-qv曲线,表示泵的扬程与流量关系。 P-qv曲线,表示泵的轴功率与流量的关系。 η-qv曲线,表示泵的效率与流量的关系。 扬程随流量的增加而减少,轴功率随流量的增加而增加; 流量为零时,效率为零; 流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降 1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能 曲线,合理配备水泵的台数。 2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大, 会烧坏电机。 3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题 或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好 用的。 5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线 影响造成的。 6、合理,主要就是检修,否则可以不用阀门。 7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况 下,那么压力不会变化,轴功率会增加。 8、问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。 离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

离心泵特性曲线

一、离心泵的特性曲线定义 当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(HS)等随流量(Q)变化的函数关系,即:H=f(Q);N=F(Q);Hs= Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。 离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H-Q、N-Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。 在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。 在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。 二、影响离心泵特性曲线的因素 离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。 1、叶轮出口直径对性能曲线的影响 在叶轮其他几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。 2、转速与性能曲线的关系 同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为: Q1/Q2=n1/n2 H1/H2=(n1/n2)2 N1/N2=(n1/n2)2

离心泵的性能参数与特性曲线(精)

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

水泵变频运行特性曲线

1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、 实验目的 1. 了解离心泵的结构与特征,熟悉离心泵的使用。 2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3. 熟悉孔板流量计的构造与性能以及安装方法。 4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。 5. 测量管路特性曲线。 二、 基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+ P 1ρg +U 12 2g +H=z 2+ P 2 ρg +U 22 2g +∑h f (1-1) 由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有 H=(z 1-z 2)+ p 1?p 2ρg =H 1+H 2(表值)+H 3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N 的测量与计算 N=N 电k(w) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间流体经过泵时所获得的实际功率,轴功率N 是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: N e =HQ ρg (1-4) η= HQρg N ×100% (1-5)

水泵的特性曲线

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 2-4离心泵的特性曲线 一、离心泵的特性曲线 压头、流量、功率和效率是离心泵的主要性能参数。这些参数之间的关系,可通过实验测定。离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。以供使用部门选泵和操作时参考。 特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。图上绘有三种曲线,即 1.H-Q曲线 H-Q曲线表示泵的流量Q和压头H的关系。离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,H-Q曲线的形状有所不同。如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。 2.N-Q曲线 N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。 3.η-Q曲线 η-Q曲线表示泵的流量Q和效率η的关系。开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点。泵在该点所对应的压头和流量下操作,其效率最高。所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。高效率区的效率应不低于最高效率的92%左右。泵在铭牌上所标明的都是最高效率下的流量,压头和功率。离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。 二.离心泵的转数对特性曲线的影响 离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为 , , (2-6) 式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。 三.叶轮直径对特性曲线的影响 当叶轮直径变化不大,转速不变时,叶轮直径、流量、压头及功率之间的近似关系为 , , (2-7) 式(2-7)称为切割定律。 四.液体物理性质的影响 泵生产部门所提供的特性曲线是用清水作实验求得的。当所输送的液体性质与水相差较大时,要考虑粘度及密度对特性曲线的影响。 1.粘度的影响所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的压头、流量都要减小,效率下降,而轴功率则要增大,所以特性曲线改变。 2.密度的影响离心泵的压头与密度无关,这可以从概念上加以说明。液体在一定转速下,所受的离心力与液体的密度成正比。但液体由于离心力的作用而取得的压头,相当于由离心力除以叶轮出口截面积所形成的压力,再除以液体密度和重力加速度的乘积。这样密度对压头的影响就

叶片式水力机械的全特性(Q-H)

叶片式水力机械的全特性(Q ~H 坐标) (1)转速为正(n >0)时轴流式机组特性曲线。如图3-3(a )所示,曲线AB 段的H 、Q 、n 、M 均为正值,则QH >0,ωM P =>0,由工况定义知,AB 为水泵工况。BC 段的Q 、n 、M 为正,H 为负,则QH <0,水流经过转轮后能量减少,ωM P =>0,转轮输入功率,此为制动工况。C 点M =0,亦即P =0,QH <0,为飞逸工况,水流流经转轮减少的能量用于克服飞逸时的机械损耗。C 点以下的Q 、n 为正,H 、M 为负,则QH <0,水流能量减少,ωM P =<0,转轮向外输出功率,此为水轮机工况。不过这时的水流由尾水管流向蜗壳,是倒冲式水轮机工况,一般称为反水轮机工况。A 点以左,Q 为负值,其它参数均为正值,则QH <0,ωM P =>0,亦为制动工况。所以n 为某一正值时,水力机组自左至右经历了制动工况、水泵工况、制动工况及反水轮机工况四个工作状态。 图3-3 三种转速下水力机组的全特性曲线 (2)转速为零(n =0)时轴流式机组的特性曲线。此时水力机组在循环管道上实际上就成为局部阻力,因此,不管流量是正还是负,水流流经转轮后能量总是减少的,也不管扭矩是正还是负,因为转速为零,所以功率也必为零。故当转速为零时,整个特 性曲线上的工况均为制动工况,转轮处的局部损失22 2KQ g v h ==?ζ,所以()Q f H =曲线亦为抛物线,又因QH <0,则H 为正时,Q 必为负,反之亦然,故()Q f H =曲线贯穿于Ⅱ、Ⅳ象限,如图3-3(b )所示,但此抛物线不是水力机组相似工况点的抛物线。水流对转轮的作用力矩等于水流进出转轮的动量(mv )的变化量,由此可知,力矩的大小与流量的平方成正比,所以()Q f M =亦是一抛物线,其方向当n =0时,水头为正,

水泵特性曲线

一、水泵的调速性能 水泵在改变转速时,其内部几何尺寸没有改变,所以,据水泵的相似原理可知:当转速变化时,流量与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比,得出:同一台水泵当转速变化时,水泵的主要性能参数将按上述比例定律而变化,并且,在变化过程中可保持效率基本不变,若水泵机组转速可调,我们就可以改变某台水泵的转速以适应当时需水量的变化,这样就可以避免水泵机组在低效率区域运转造成的电动机过载,另一方面,也可以避免供水压力偏高所造成的浪费。同时,水泵随着转速的变慢而使轴功率大为减少,电动机输入功率也随之减少,这就是调速水泵在供水系统中所起的节能作用。 二、变频恒压供水的节能原理 所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。若采用关阀调节,当流量由Q2→Q1时,则工况点由A2变为A1,浪费扬程△H=H1-H3=△H1+△H2。若采用变频恒压供水,则自动将转速调至n1,工况点处于B1点(参见图1)。由于变频调速是无级变速,可以实现流量的连续调节,所以,恒压供水工况点始终处于直线H=H2上,在控制方式上,只需在水泵出口设定一个压力控制值,比较简单易行。显然,恒压

供水节约了H1-H2。而没有考虑△H2。因此,它不是最经济的供水调节方式,尤其在管路阻力大,管路特性曲线陡曲的情况下,△H2所占的比重更大,其局限性就显而易见。 图1 三、 四、减速的基本原理 根据交流电动机工作原理中的转速关系,n=60f(1-s)/p,从公式中得出:均匀改变电动机定子绕组的电源频率,就可以平滑地改变电动机的同步转速。电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少,这就是水泵调速的节能作用。

离心泵特性曲线

长江大学 化工原理实验报告 实验四离心泵特性曲线的测定 1.实验目的及任务 1.1了解离心泵结构与特性,熟悉离心泵的使用。 1.2测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 1.3熟悉孔板流量计的构造、性能及安装方法。 1.4测量孔板流量计的孔流系数C随雷诺数Re变化的规律。 1.5测定管路特性曲线。 2.基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z1+p1 ρg +u12 2g +H=z2+p2 ρg +u22 2g +Σ?f (1.1) 由于两截面间的管长较短,通常将其阻力项hf归并到泵的损失中,且泵进出口为等径管,则有 H=(z2?z1)+p2?p1 ρg =H0+H1+H2 (1.2)式中H0--泵出口和进口间的位差,H=z2?z1(对于磁力驱动泵32CQ=15装置,H0=0.3m;多数情况下,H可忽略,即H并归入到泵内损失中); ρ—流体密度, g—重力加速度, p1、p2—分别为泵进、出口的真空压和表压, H1、H2 ---分别为泵进、出口的真空压和表压对应的压头, u1、u2 ---分别为泵进、出口的流速, z1、z2---分别为真空表、压力表的安装高度, 由上式可知,只要直接读出真空表和压力表上的数值及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N 电k(1.3) 式中N电 ---电功率表显示值; k---电机传动功率,可取k=0.90 2.2效率η的计算 泵的效率n是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际 功,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械能损失的大小。 泵的有效功率Ne可用下式计算: N 电 =HQρg (1.4) 故泵效率为 ρ=HQρg N ×100% (1.5) 2.3转速改变时的换算 泵的特性曲线是在恒定转速下的实验测定所得。但是,实际上感应电动机在转矩改变时,其转速会有变 化,这样随着流量Q的变化,多个实验点的转速n将有所差异,因此在绘制特性曲线之前,须将实测数据换 算为某一定转速n下(可取离心泵的额定转速)的数据。在n=20%的情况下其换算关系如下: 流量 Q′=Q n′ n (1.6) 扬程 H′=H(n′ n )2 (1.7) 轴功率 N′=N(n′ n )3 (1.8) 效率 η’=Q′H′ρg N′ =QHρg N =η (1.9) 2.4管路特性曲线H-Q 当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与 管路特性有关,也就是说,在液体输送过程中,泵和管路二者是相互制约的。 在一定的管路上,泵所提供的压头和流量必然与管路所需的压头和流量一致。若将泵的特性曲线与管路 特性曲线绘在同一坐标图上,两曲线交点即为泵在该管路的工作点。因此,可通过改变泵转速来改变泵的特 性曲线,从而得出管路特性曲线。泵的压头H计算同上。 He=Δz+Δp ρg +Δu2 2g +Σhf=A+BQ2(1.10) 其中 BQ2=Δu2 2g +Σhf=Δu2 2g +(8λ π2 g )(l+Σl e d5 )Q2(1.11) 当H=He时,调节流量,即可得到管路特性曲线H?Q。 2.5孔板流量计孔流系数的测定 孔板流量计的结构如图所示。

调节阀门的水力特性(2)

调节阀门的水力特性 ΔP = S · G2 λ S = A ( -----·L + ∑ζ) D 1 ζ= --------- A · K VS 2 几种典型的低阻两通恒温阀按K VS换算的ζ值如下表:

散热器进流系数 1 ω = ----------------------- 1 + [ S 1 / S 2 ]1/2? 当采用散热器的ζ= 2时 散热器通路为 S 1 跨越管通路为 S 2 DANFOSS RTD-G型

HONEYWEL—UBG型两通 采用DANFOSS RTD-G型两通阀加跨越管的散热器组的计算阻力特性S值

HONEYWEL—H型两通 采用HONEYWEL—H型两通阀加跨越管的散热器组的计算阻力特性S值-

采用ST-11型手动三通调节阀 散热器组的计算阻力特性S值 DN15 0.01850 DN20 0.00531 DN25 0.00187 三通恒温阀及散热器组 的计算阻力特性S值 是直接针对单管系统的,但水阻仍偏大,以HONEYWELL公司的产品为例,其数值为: DN15 K VS=2.16 ζ=20 全开时的旁通率约58% S=0.010460 DN20 K VS=3.10 ζ=32 全开时的旁通率约42% S=0.002274

恒流量调节阀 恒流量调节阀可在外网压差≧3m的条件下,在对应于一定口径阀门的允许流量范围内,手动设定被调节对象的额定流量。 当外网压差发生变化时,根据阀外的压差信号自力改变阀的开度,使包括被调节对象的系统和调节阀在内的总阻力特性S值,与阀外的压差ΔP等比变化,维持被调节对象的流量稳定。 由于调节阀内被调节对象系统的阻力特性是不变的,仅可改变阀的开度以改变总阻力特性S值,故只需取调节阀两端的压差信号,作为自力调节的依据,即使得调节阀两端的压差保持基本恒定。 调节原理可用下式说明: ΔP = S · G2 恒压差调节阀 恒压差调节阀可在外网压差≧3m的条件下,在对应于一定口径阀门的允许调节范围内,手动设定被调节对象阀后系统供回水的总压差。 由于末端设备采用自力式温控阀或其它调节构件时,阀

水泵特性曲线.

第/弋节离心泵的特性曲线 离心泵的特性曲线定义 -、理论特性曲线的定性分实 测特性曲线的讨论 离心泵的特性曲线定义 当转速n为常量时,列出H、N、n以及Hs等随渝 量变化的函数关系,即: H = f (Q) N = F (Q) Hs =屮(Q) n=

叶轮中通过的水量可用下式表示: Q T = FzCzr 也即: n - T ^2r- 式中Q T ----- 泵理论流量(nP/s ); F2——叶轮的出口面积(in2), C N —叶轮出口处水流绝对速度的径向(m/s ) C 一、理论特性曲线的定性分析 1、理论扬程特性曲线的定性分析 J 胪 由叫= 将 Czu = U2 ■ C2rCtgp2 代入, 可 得: Hy = KU2? C2rCtgp2) s Q 图1-22 速度三角形" Cu=Ceosa = u - C,etgf3 Cj=Csma 所以:H T = ILa (U2 - * Ctgp2)

式中卩2、F2均为常数。当水泵转速一定时,U2也为常数。 HT = A - B Q T 是一个直线方程。其斜率是用卩2来反映的 p2> 90-B^,H T = A + B QT 后弯式,上倾直线,扬程随流量的增加而减小。 02= 9()2时,径向式,是一条水平直线,扬程不随理论流量的变化。 p2< 90:时,H T = A-BQ T 前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。

二、实测特性曲线的讨论 70 40 30 20 10 J o z 1、每一个Q都对应于一定的H, N n Hs 2. Q-H曲线是一条不规则的下倾曲线 (1)设计工况点。最高效率点,水泵在该点工作效率最 高。 (2)水泵高效工作段。是水泵效率较高的工作范围,最髙效率 点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效 段内。

离心泵特性曲线思考题答案

离心泵特性曲线思考题答案 (1)离心泵特征曲线测定⑴为甚么启动离心泵前要向泵内灌水?若是灌水排 气后泵仍启动不起来,你认为多是甚么? 答:为了不打不上水、即气缚现象发生。若是灌水排完空气后还启动不起来。 ①多是泵进口处的止逆阀坏了,水从管子又漏回水箱。 ②电机坏了,没法正常工作。 ⑵为甚么离心泵启动时要封锁出口阀门? 答:避免电机过载。因为电念头的输出功率等于泵的轴功率N。依照离心泵特征曲线,当Q=0时N最小,电念头输出功率也最小,不容易被烧坏。 ⑶离心泵特征曲线测定历程中不成丢,为甚么? 答:Q=0点是始点,它反映了初始状况,所以不成丢。丢了,做出来的图就有缺憾。 ⑷启动离心泵时,为甚么先要按下功率表分流开关绿色按钮? 答:为了庇护功率表。 ⑸为甚么调剂离心泵的出口阀门可调剂其流量?这类体例有甚么优毛病谬误?是不是还有其它方法调剂泵的流量? 答:调剂出口阀门开度,现实上是改变管路特征曲线,改变泵的工作点,可以调剂其流量。这类体例利益是便利、快捷、流量可以延续转变,毛病谬误是阀门关小时,增大勾当阻力,多耗损一部门能量、不很经济。也能够改变泵的转速、削减叶轮直径,生产上很少采取。还可以用双泵并联操作。 ⑹正常工作的离心泵,在其进口管上设置阀门是不是合理,为甚么? 答:不合理,因为水从水池或水箱输送到水泵靠的是液面上的大气压与泵进口处真空度发生的压强差,将水从水箱压入泵体,因为进口管,安装阀门,无疑增大这一段管路的阻力而使流体无足够的压强差实现这一勾当历程。 ⑺为甚么在离心泵进口管下安装底阀?从节能概念看,底阀的装设是不是有益?你认为应若何改良?

答:底阀是单向止逆阀,水只能从水箱或水池抽到泵体,而毫不能从泵流回水箱,目标是连结泵内始终布满水,避免气缚现象发生。从节能概念看,底阀的装设一定发生阻力而耗能。既不耗能,又能避免水倒流,这是最好不外的了。 ⑻为甚么停泵时,要先封锁出口阀,再封锁进口阀? 答:使泵体中的水不被抽暇,别的也起到庇护泵进口处底阀的感化。 ⑼离心泵的特征曲线是不是与连结的管路系统有关? 答:离心泵的特征曲线与管路无关。当离心泵安装在特定的管路系统中工作时,现实的工作压头和流量不但与离心泵自己的机能有关,还与管路的特征有关。 ⑽为甚么流量越大,进口处真空表的读数越大,而出口处压强表的读数越小? 答:流量越大,需要鞭策力即水池面上的大气压强与泵进口处真空度之间的压强差就越大。大气压不变,进口处强压就理当越小,而真空度越大,离心泵的轴功率N是必定的N=电念头输出功率=电念头输入功率×电念头效力,而轴功率N又为:,当N=恒量, Q与H之间关系为:Q↑H↓而而H↓P↓所以流量增大,出口处压强表的读数变小。 ⑾离心泵应选择在高效力区操作,你对此若何理解? 答:离心泵在必定转速下有一最高效力点,凡是称为设计点。离心泵在设计点时工作最经济,因为各种身分,离心泵经常不成能正好在最好工况下运转,是以,一般只能划定一个工作规模,称为泵的高效力区。 ⑿离心泵的送液能力为甚么可以经由过程出口阀的调剂来改变?往来来往泵 的送液能力是不是采取同样的调剂体例?为甚么? 答:离心泵用出口阀门的开、关来调剂流量改变管路特征曲线,调剂工作点。往来来往泵属正位移泵,流量与扬程无关,单元时候排液量为恒定值。若把出口阀关小,或封锁,泵内压强便会急剧升高,造成泵体、管路和电机的破坏。所以往泵不能用排出管路上的阀门来调剂流量,必定采取回路调剂装配。 ⒀试从理论上分析,尝试用的这台泵输送密度为1200 kg·m-3的盐水,在不

第4章多相流管网水力特征与水力计算

第4章多相流管网水力特征与水力计算 4-1 什么是水封?它有什么作用?举出实际管网中应用水封的例子。 答:水封是利用一定高度的静水压力来抵抗排水管内气压的变化,防止管内气体进入室内的措施。因此水封的作用主要是抑制排水管内臭气窜入室内,影响室内空气质量。另外,由于水封中静水高度的水压能够抵抗一定的压力,在低压蒸汽管网中有时也可以用水封来代替疏水器,限制低压蒸汽逸出管网,但允许凝结水从水封处排向凝结水回收管。 实际管网中应用水封的例子很多,主要集中建筑排水管网,如:洗练盆、大/小便器等各类卫生器具排水接管上安装的存水弯(水封)。此外,空调末端设备(风机盘管、吊顶或组合式空调器等)凝结水排水管处于空气负压侧时,安装的存水弯可防止送风吸入排水管网内的空气。 4-2 讲述建筑排水管网中液气两相流的水力特征? 答:(1)可简化为水气两相流动,属非满管流; (2)系统内水流具有断续非均匀的特点,水量变化大,排水历时短,高峰流量时水量可能充满水管断面,有的时间管内又可能全是空气,此外流速变化也较剧烈,立管和横管水流速相差较大。 (3)水流运动时夹带空气一起运动,管内气压波动大; (4)立管和横支管相互影响,立管内水流的运动可能引起横支管内压力波动,反之亦然; (5)水流流态与排水量、管径、管材等因素有关; (6)通水能力与管径、过不断面与管道断面之比、粗糙度等因素相关。 4-3 提高排水管排水能力的关键在哪里?有哪些技术措施?

答:提高排水管排水能力的关键是分析立管内压力变化规律,找出影响立管压力变化的因素。进而想办法稳定管内压力,保证排水畅通。技术措施可以①调整管径;②在管径一定时,调整、改变终限流速和水舌阻力系数。减小终限流速可以通过(1)增加管内壁粗糙度;(2)立管上隔一定距离设乙字弯;(3)利用横支管与立管连接的特殊构造,发生溅水现象;(4)由横支管排出的水流沿切线方向进入立管;(5)对立管内壁作特殊处理,增加水与管内壁的附着力。减小水舌阻力系数,可以通过改变水舌形状,或向负压区补充的空气不经水舌两种途径,措施(1)设置专用通气立管;(2)在横支管上设单路进气阀;(3)在排水横管与立管连接处的立管内设置挡板;(4)将排水立管内壁作成有螺旋线导流突起;(5)排水立管轴线与横支管轴线错开半个管径连接;(6)一般建筑采用形成水舌面积小两侧气孔面积大的斜三通或异径三通。 4-4 解释“终限流速”和“终限长度”的含义,这二概念与排水管通水能力之间有何关系? 答:终限流速V t ,排水管网中当水膜所受向上的管壁摩擦力与重力达到平衡时,水膜的下降速度和水膜厚度不再发生变化,这时的流速叫终限流速。终限长度 L t :从排水横支管水流入口至终限流速形成处的高度叫终限长度。这两个概念确定了水膜流阶段排水立管在(允许的压力波动范围)内最大允许排水能力。超过终限流速的水流速度将使排水量继续增加,水膜加厚,最终形成水塞流,使排水 系统不能正常使用。水膜流状态下,可有Q=,L t =0.144V t 2,其中Q——通 水能力L/S;W t ——终限流速时过水断面积,cm2,V t ——终限流速,m/s,L t —— 终限长度,m。 4-5 空调凝结水管内流动与建筑排水管内流动的共性和差别是什么? 答:共性:均属于液气两相流。 区别:①空调凝结水管在运动时管内水流量变化不大,气压变化也不大,而建筑排水管风水量及气压随时间变化都较大;

相关文档
最新文档