第三章_牛顿运动定律

第三章_牛顿运动定律
第三章_牛顿运动定律

第三章牛顿运动定律

第 1 课时牛顿第一定律牛顿第三定律

基础知识归纳

1.牛顿第一定律

(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.

(2)牛顿第一定律的意义

①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律.

②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.

(3)惯性

①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.

②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.

③普遍性:惯性是物体的固有属性,一切物体都有惯性.

2.牛顿第三定律

(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.

(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.

(3)大小相等方向相反作用在两个物体上同时产生同时消失

典例精析

1.牛顿第一定律的应用

【例1】如图所示,在一辆表面光滑的小车上,有质量分别为m 1、

m2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他

阻力,设车足够长,则两个小球()

A.一定相碰

B.一定不相碰

C.不一定相碰

D.难以确定是否相碰,因为不知小车的运动方向

【解析】两个小球放在光滑的小车表面上,又不考虑其他阻力,故水平方向不受外力,由牛顿第一定律可知,两小球仍然以相同的速度做匀速直线运动,永远不相碰,只有B对.

【答案】B

【思维提升】运用牛顿第一定律解决问题时,正确的受力分析是关键,如果物体不受力或所受合外力为零,物体的运动状态将保持不变,同理可知,如果物体在某一方向上不受力或所受合外力为零,则物体在这一方向上的运动状态(即速度)保持不变.

2.对惯性概念的理解

【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?

【解析】从惯性的角度去考虑瓶内的气泡和水,显然水的质量远大

于气泡的质量,故水的惯性比气泡的惯性大.当小车突然停止时,水保持

向前运动的趋势远大于气泡向前运动的趋势,于是水由于惯性继续向前

运动,水将挤压气泡,使气泡相对瓶子向后运动.

【思维提升】分别考虑水和气泡的惯性是解决本题的关键,抓住惯性只与质量有关,质量越大,惯性越大,也就是运动状态更不易改变.

【拓展1】在上题中:

(1)若在瓶内放一小软木块,当小车突然停止时,软木块相对于瓶子怎样运动?

(2)若在瓶内放一小铁块,又如何?

【解析】(1)由于木块的密度小于水的密度,所以同体积的水质量大于木块的质量,水的惯性比木块大,木块将相对于瓶子向后运动.

(2)由于同体积的铁块质量大于水的质量,铁块的惯性比水大,所以铁块相对于瓶子将向前运动.

3.作用力与反作用力和平衡力的区别

【例3】如图所示,在台秤上放半杯水,台秤示数为G′=50 N,

另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金

属块的密度ρ=3×103 kg/m3,当把弹簧测力计下的金属块平稳地浸

入水中深b=4 cm时,弹簧秤和台秤示数分别为多少?(水的密度

是ρ水=103 kg/m3,取g=10 m/s2)

【解析】金属块的受力分析如图所示,因金属块静止,故有F T=G-F浮

又因G=ρa3g=30 N,F浮=ρ水gV排=ρ水ga2b=4 N

由牛顿第三定律知水对金属块的力与金属块对水的力都为4 N,F T=30 N-4 N=26 N 台秤的示数由于浮力的作用力增加了F′=4 N,所以台秤的示数为F N=G′+F′=54 N

易错门诊

【例4】关于马拉车时马与车的相互作用,下列说法正确的是()

A.马拉车而车未动,马向前拉车的力小于车向后拉马的力

B.马拉车只有匀速前进时,马向前拉车的力才等于车向后拉马的力

C.马拉车加速前进时,马向前拉车的力大于车向后拉马的力

D.无论车是否运动、如何运动,马向前拉车的力都等于车向后拉马的力

【错解】C;马拉车加速前进,就像拔河一样,甲方胜一定是甲方对乙方的拉力大,所以甲对乙的拉力比乙对甲的拉力大,由此而得出结论:马向前拉车的力大于车向后拉马的力.

【错因】产生上述错解原因是学生凭主观想象,而不是按物理规律分析问题.按照物理规律我们知道物体的运动状态不是由哪一个力决定的而是由合外力决定的,车随马加速前进是因为马对车的拉力大于地面对车的摩擦力.

【正解】马拉车的力和车拉马的力是一对作用力和反作用力.根据牛顿第三定律,物体间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上,故不管在什么情况下,马向前拉车的力都等于车向后拉马的力,而与马车的运动状态无关,故A、B、C错误,D 正确.

【答案】D

第 2 课时牛顿第二定律力学单位制

基础知识归纳

1.牛顿第二定律

(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比.

(2)表达式:F=ma.

(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg?m/s2=1 N.

(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.

(5)适用范围:

①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).

②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.

2.单位制

(1)单位制:由基本单位和导出单位一起组成了单位制.

①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.

②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.

重点难点突破

一、力和运动关系的分析

分析力和运动关系问题时要注意以下几点:

1.物体所受合力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.

2.合力与速度同向时,物体加速,反之则减速.

典例精析

1.瞬时性问题分析

【例1】如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.

(1)现将L2线剪断,求剪断瞬间物体的加速度;

(2)若将图甲中的细线L1改为质量不计的轻弹簧而其余情况不变,如图乙所示,求剪断L2线瞬间物体的加速度.

【解析】(1)对图甲的情况,L2剪断的瞬间,绳L1不可伸缩,物体的加速度只能沿切线方向,则mg sin θ=ma1

所以a1=g sin θ,方向为垂直L1斜向下.

(2)对图乙的情况,设弹簧上拉力为F T1,L2线上拉力为F T2.重力为mg,物体在三力作用下保持平衡,有

F T1cos θ=mg,F T1sin θ=F T2,F T2=mg tan θ

剪断线的瞬间,F T2突然消失,物体即在F T2反方向获得加速度.因为mg tan θ=ma2,所以加速度a2=g tan θ,方向与F T2反向,即水平向右.

【思维提升】(1)力和加速度的瞬时对应性是高考的重点.物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然;

(2)求解此类瞬时性问题,要注意以下四种理想模型的区别: 特性

模型

质量 内部弹力 受外力时 的形变量 力能否突变 产生拉力或压力 轻绳

不计 处处相等 微小不计 可以突变 只有拉力没有压力 橡皮绳

较大 一般不能突变 只有拉力没有压力 轻弹簧

较大 一般不能突变 既可有拉力 也可有压力 轻杆 微小不计 可以突变 既有拉力也

可有支持力

【拓展1】如图所示,弹簧S 1的上端固定在天花板上,下端连一小球A ,

球A 与球B 之间用线相连.球B 与球C 之间用弹簧S 2相连.A 、B 、C 的质量分别

为m A 、m B 、m C ,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A 、B

间的线突然剪断,求线刚剪断时A 、B 、C 的加速度.

【解析】剪断A 、B 间的细线前,对A 、B 、C 三球整体分析,弹簧S 1中的

弹力:

F 1=(m A +m B +m C )g

① 方向向上.

对C 分析,S 2中的弹力:F 2=m C g

② 方向向上.

剪断A 、B 间的细线时,弹簧中的弹力没变.

对A 分析:F 1-m A g =m A a A

③ 对B 分析:F 2′+m B g =m B a B

④ 对C 分析:F 2-m C g =m C a C

⑤ F 2′=F 2

由①③式解得a A =

A

C B m m m +g ,方向向上. 由②④式解得a B =B C B m m m +g ,方向向下. 由②⑤式解得a C =0

2.应用牛顿第二定律解题的基本方法

【例2】一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图所示,在物体始终相对于斜面静止的条件下,下列说法正确的是( )

A.当θ一定时,a 越大,斜面对物体的正压力越小

B.当θ一定时,a 越大,斜面对物体的摩擦力越大

C.当a 一定时,θ越大,斜面对物体的正压力越小

D.当a 一定时,θ越大,斜面对物体的摩擦力越小

【解析】解法一:用合成法,根据平行四边形定则求解.对物体作受力分析,如图所示.(设物体质量为m ,斜面对物体的正压力为F N ,斜面对物体的摩擦力为F f )物体具有

向上的加速度a ,由牛顿第二定律及力的合成有

θ

cos N F -mg =ma

θ sin f F -mg =ma 当θ一定时,a 越大,F N 越大,A 不正确;当θ一定时,a 越大,F f 越大,B 正确;当a 一定时,θ越大,F N 越小,C 正确;当a 一定时,θ越大,F f 越大,D 不正确.

解法二:应用正交分解法求解.

物体受重力、支持力、摩擦力的作用.由于支持力、摩擦力相互垂直,所以把加速度a 在沿斜面方向和垂直于斜面方向分解,如图所示.

沿斜面方向,由牛顿第二定律得:

F f -mg sin θ=ma sin θ

① 垂直于斜面方向,由牛顿第二定律得:

F N -mg cos θ=ma cos θ ② 当θ一定时,由①得,a 越大,F f 越大,B 正确.

由②得,a 越大,F N 越大,A 错误.

当a 一定时,由①得,θ越大,F f 越大,D 错误.

由②得,θ越大,F N 越小,C 正确.

【答案】BC

【思维提升】解题方法要根据题设条件灵活选择.本题的解法二中,要分析的支持力和摩擦力相互垂直,所以分解加速度比较简单,但是当多数力沿加速度方向时,分解力比较简单.

【拓展2】风洞实验中可产生水平方向的、大小可以调节

的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略

大于细杆直径,如图所示.

(1)当杆在水平方向上固定时,调节风力的大小,使小球

在杆上匀速运动,这时所受风力为小球所受重力的0.5倍,求

小球与杆的动摩擦因数;

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x 的时间为多少.(sin 37°=0.6,cos 37°=0.8)

【解析】(1)设小球所受的风力为F ,支持力为F N 、摩擦力为F f 、

小球质量为m ,作小球受力图,如图所示,当杆水平固定,即θ=0时,

由题意得F =μmg

所以μ=F /mg =0.5mg /mg =0.5

(2)沿杆方向,由牛顿第二定律得

F cos θ+mg sin θ-F f =ma

① 在垂直于杆的方向,由共点力平衡条件得 F N +F sin θ-mg cos θ=0

② 又F f =μF N

③ 联立①②③式解得

a=m F mg F f -+θθ sin cos =m

mg F ) cos sin ) sin (cos θμθθμθ-++( 将F =0.5mg 代入上式得a =4

3g ④ 由运动学公式得x =2

1at 2 ⑤ 由④⑤式解得t =g

x g x 384/32=

易错门诊

3.力和运动的关系

【例3】如图所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点,如果物体受到的摩擦力恒定,则( )

A.物体从A 到O 加速,从O 到B 减速

B.物体从A 到O 速度越来越小,从O 到B 加速度不变

C.物体从A 到O 间先加速后减速,从O 到B 一直减速运动

D.物体运动到O 点时所受合力为零

【错解】A ;物体在O 点附近来回运动,因此物体在O 点的速度最大,则A 选项正确.

【错因】犯以上错误的客观原因是思维定势,好像是弹簧振子的平衡位置O 具有最大速度,这是盲目的模仿,主要是没有好的解题习惯,没有弄清楚力和运动的关系,另外有些同学是忽略了摩擦力.

【正解】在A 点,弹簧弹力F 大于摩擦力μmg ,合外力向右,物体加速运动;在O 点,弹簧弹力减小到零,只受摩擦力μmg ,方向向左,物体在A 到O 之间一定存在某点弹力等于摩擦力,此时物体所受到的合外力为零,速度最大.故从A 到O ,物体先加速后减速,加速度先减小后增大.从O 到B ,合外力向左,物体一直减速运动,加速度一直增大,故C 选项正确.

【答案】C

【思维提升】要正确理解力和运动的关系,物体运动方向和合外力方向相同时物体做加速运动,当弹力减小到等于摩擦力,即合外力为零时,物体的速度最大,小球的加速度决定于小球受到的合外力. 第 3 课时 牛顿运动定律的应用

典例精析

1.动力学基本问题分析

【例1】在光滑的水平面上,一个质量为200 g 的物体,在1 N 的水平力F 作用下由静止开始做匀加速直线运动,2 s 后将此力换为相反方向的1 N 的力,再过2 s 将力的方向再反过来……这样物体受到的力大小不变,而力的方向每过2 s 改变一次,求经过30 s 物体的位移.

【解析】物体在1 N 的水平力F 作用下,产生的加速度的大小为a =2.01=m F m/s 2=5 m/s 2 物体在2 s 内做匀加速运动,2 s 内位移为

s 1=21at 2=2

1×5×22 m =10 m 方向与力的方向相同.

t =2 s 末的速度为v 1=at =5×2 m/s =10 m/s

从第3 s 初到第4 s 末,在这2 s 内,力F 的方向变成反向,物体将以v 1=10 m/s 的初速度做匀减速运动,4 s 末的速度为v 2=v 1-at =(10-5×2) m/s =0

在此2 s 内物体的位移为

s 2=2

010·221+=+t v v ×2 m =10 m 方向与位移s 1的方向相同.

从上述分段分析可知,在这4 s 内物体的位移为s 1+s 2=20 m ,物体4 s 末的速度为零.以后重复上述过程,每4 s 物体前进20 m.在30 s 内有7次相同的这种过程,经过4 s×7=28 s ,最后2 s 物体做初速度为零的匀加速运动,位移为10 m.

所以经过30 s 物体的总位移为

s =(20×7+10) m =150 m

2.临界、极值问题

【例2】如图所示,一个质量为m =0.2 kg 的小球用细绳吊在倾角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当斜面以10 m/s 2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.

【解析】先分析物理现象.用极限法把加速度a 推到两个极端:当a 较小(a →0)时,小球受到三个力(重力、拉力、支持力)的作用,此时绳平行于斜面;当a 增大(足够大)时,小球将“飞离”斜面,不再受支持力,此时绳与水平方向的夹角未知.那么,当斜面以加速度a = 10 m/s 2向右加速度运动时,必须先求出小球离开斜面的临界值a 0才能确定小球受力情况.

小球刚要离开斜面时,只受重力和拉力,根据平行四边形定则作出其

合力如图所示,由牛顿第二定律得

mg cot θ=ma 0

代入数据解得a 0=g cot θ=7.5 m/s 2

因为a =10 m/s 2>7.5 m/s 2,所以在题给条件下小球离开斜面向右做加速运动,T =22)()(mg ma +=2.83 N ,F N =0

【思维提升】物理问题要分析透彻物体运动的情景.而具体情景中存在的各种临界条件往往会掩盖问题的实质,所以有些问题挖掘隐含条件就成为解题的关键.

【拓展2】如图所示,长L =1.6 m ,质量M =3 kg 的木板静放在

光滑水平面上,质量m =1 kg 的小物块放在木板的右端,木板和物块

间的动摩擦因数μ=0.1.现对木板施加一水平向右的拉力F ,取g =10 m/s 2,求:

(1)使物块不掉下去的最大拉力F ;

(2)如果拉力F =10 N 恒定不变,小物块的所能获得的最大速度.

【解析】(1)求物块不掉下时的最大拉力,其存在的临界条件必是物块与木板具有共同的最大加速度a 1

对物块,最大加速度a 1=m

mg

μ=μg =1 m/s 2

对整体,F =(M +m )a 1=(3+1)×1 N =4 N

(2)当F =10 N 时,木板的加速度a 2=3

101.010?-=-M mg F μm/s 2=3 m/s 2 由21a 2t 2-2

1a 1t 2=L 得物块滑过木板所用时间t =6.1s 物块离开木板时的速度v 1=a 1t =6.1 m/s =1.26 m/s

易错门诊

3.多过程问题分析

【例3】如图,有一水平传送带以2 m/s 的速度匀速运动,现将一物

体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带

将该物体传送10 m 的距离所需时间为多少?(取重力加速度g =10 m/s 2)

【错解】由于物体轻放在传送带上,所以v 0=0,物体在竖直方向合外力为零,在水平方向受到滑动摩擦力(由传送带施加),做v 0=0的匀加速运动,位移为10 m.

据牛顿第二定律F =ma 有f =μmg =ma ,a =μg =5 m/s 2

据x =21at 2得t =a x 2=2 s 【错因】上述解法的错误出在对这一物理过程的认识,传送带上轻放的物体的运动有可

能分为两个过程,一是在滑动摩擦力作用下做匀加速直线运动;二是达到与传送带相同速度后,无相对运动,也无摩擦力,物体开始做匀速直线运动,关键问题应分析出什么时候达到传送带的速度,才好对问题进行解答.

【正解】以传送带上轻放的物体为研究对象,如图,在竖直方向受重力和支持力,在水平方向受滑动摩擦力,做v 0=0的匀加速运动.

据牛顿第二定律有F =ma

水平方向:f =ma

① 竖直方向:F N -mg =0

② 又f =μF N ③ 由①②③式解得a =5 m/s 2

设经时间t 1,物体速度达到传送带的速度,据匀加速直线运动的速度公式v t =v 0+at 1 ④ 解得t 1=0.4 s

时间t 1内的位移x 1=21at 2=21×5×0.42 m =0.4 m 物体位移为0.4 m 时,物体的速度与传送带的速度相同,物体0.4 s 后无摩擦力,开始做匀速运动则x 2=v 2t 2 ⑤

因为x 2=x -x 1=10 m -0.4 m =9.6 m ,v 2=2 m/s

代入式⑤得t 2=4.8 s

则传送10 m 所需时间为t =0.4 s +4.8 s =5.2 s

第 4 课时 超重与失重 整体法和隔离法

基础知识归纳

1.超重与失重和完全失重

(1)实重和视重

①实重:物体实际所受的重力,它与物体的运动状态 无关 .

②视重:当物体在 竖直 方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的 重力 .此时弹簧测力计的示数或台秤的示数即为视重.

(2)超重、失重和完全失重的比较

现象

实质 超重 物体对支持物的压力或对悬挂物的拉

力 大于 自身重力的现象

系统具有竖直向上的加速度或加速度有竖直向上的分量 失重 物体对支持物的压力或对悬挂物的拉

力 小于 自身重力的现象

系统具有竖直向下的加速度或加速度有竖直向下的分量 完全失重 物体对支持物的压力或对悬挂物的拉

力 等于零 的现象 系统具有竖直向下的加速度,且a =g

2.连接体问题

(1)连接体

两个或两个以上 存在相互作用 或 有一定关联 的物体系统称为连接体,在我们运

牛顿运动定律

第四章牛顿运动定律 全章概述 本章是在前面对运动和力分别研究的基础上的延伸——研究力和运动的关系,建立起牛顿运动定律。牛顿运动定律是动力学的基础,是力学中也是整个物理学的基本规律,正确地理解惯性概念,理解物体间的相互作用的规律,熟练地运用牛顿第二定律解决问题,是本章的学习要求,也为进一步学习今后的知识,提高分析解决问题的能力奠定基础。 本章还涉及到了许多重要的研究方法,如:在牛顿第一定律的研究中采用的理想实验法;牛顿第二定律中的控制变量法;运用牛顿第二定律处理问题时常用的整体法与隔离法,以及单位的规定方法,单位制的创建等。对这些方法要认真体会、理解,以提高认知的境界。 为了更扎实地理解牛顿第二定律,本章第二节安排了实验:探究加速度与力、质量的关系,并提供了参考案例,实验操作方便,规律性强,结论容易获得,控制变量法在此得到了实践。第五节牛顿第三定律的研究引入了传感器――计算机的组合,现代气息浓厚,实验效果很好。 物理知识来源于生活,最终应用于生活,本章的后两节就是牛顿运动定律的简单应用。新课标要求 1、通过实验,探究加速度与质量、物体受力之间的关系。 2、理解牛顿运动定律,用牛顿运动定律解释生活中的有关问题。 3、通过实验认识超重和失重。 4、认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。 新课程学习 4.1 牛顿第一定律 ★新课标要求 (一)知识与技能 1、理解力和运动的关系,知道物体的运动不需要力来维持。 2、理解牛顿第一定律,知道它是逻辑推理的结果,不受力的物体是不存在的。

3、理解惯性的概念,知道质量是惯性大小的量度. (二)过程与方法 1、培养学生分析问题的能力,要能透过现象了解事物的本质,不能不加研究、分析而只凭经验,对物理问题决不能主观臆断.正确的认识力和运动的关系. 2、帮助学生养成研究问题要从不同的角度对比研究的习惯. 3、培养学生逻辑推理的能力,知道物体的运动是不需要力来维持的。 (三)情感、态度与价值观 1、利用一些简单的器材,比如:小球、木块、毛巾、玻璃板等,来对比研究力与物体运动的关系,现象明显,而且更容易推理。 2、培养科学研究问题的态度。 3、利用动画演示伽利略的理想实验,帮助学生理解问题。 4、利用生活中的例子来认识惯性与质量的关系。培养学生大胆发言,并学以致用。 ★教学重点 1、理解力和运动的关系。 2、理解牛顿第一定律,知道惯性与质量的关系。 ★教学难点 惯性与质量的关系。 ★教学方法 1、对比实验、自主探索、合理推理。 2、利用生活中的实例,理解惯性与质量的关系,贴近生活更易理解。 ★教学用具: 多媒体、小车、小球、毛巾、玻璃板、斜槽、刻度尺、木块、气垫导轨、滑块等。 ★教学过程

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

人教版高中物理第一册牛顿运动定律的应用1

牛顿运动定律的应用 教学目标: 1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤 2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解 3.理解超重、失重的概念,并能解决有关的问题 4.掌握应用牛顿运动定律分析问题的基本方法和基本技能 教学重点:牛顿运动定律的综合应用 教学难点: 受力分析,牛顿第二定律在实际问题中的应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、牛顿运动定律在动力学问题中的应用 1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题): (1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等. (2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向). 但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案. 两类动力学基本问题的解题思路图解如下: 可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。 点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2/2 ,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤 (1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型. (2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象. (3)分析研究对象的受力情况和运动情况. (4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上. (5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算. (6)求解方程,检验结果,必要时对结果进行讨论.

牛顿运动定律优秀教案教学提纲

牛顿运动第一定律 教学目的: 1.知道亚里士多德、伽利略等对力和运动的关系的不同认识,了解伽利略的理想实验及其推理和结论,认识理想实验是科学研究的重要方法; 2.理解牛顿第一定律的内容和意义; 3.掌握惯性的概念,会应用惯性解释自然现象; 4.通过问题的分析和研究感悟科学研究的方法和规律。 重点难点:牛顿第一定律的理解和应用 教材处理:将教材第一节部分内容渗透到牛顿运动第一定律的教学过程中,并且在本章的教学过程中不断渗透其思想方法,通过不断深入的理性思维引导,提升感悟认识。 课型:规律建立课 教学方法:以讲授为主,调动学生观察与思维体验 手段:利用手边的钥匙做演示实验,多媒体辅助教学 教学过程 引入: 公共汽车急剎车, 一位男士踩到了一位女士, 女士很生气说:”瞧你这德性.”男士回答:”不是德性, 是惯性.”老师提问:”什么是惯性呢?” 教师演示实验,学生观察实验——引导学生体会、思考力与运动的关系:使一串钥匙:竖直上抛、使其摆动、使其圆周运动, 提出思考问题:为什么小球的运动过程不一样? 学生观察后绝大多数答案:小球受力情况不同。 教师变换条件,演示实验,学生观察实验——引导学生思考,感悟力不是决定具体运动形式唯一因素。 使同一串钥匙落体、上抛、平抛、斜抛 问题:小球受力情况是否相同? 答案:均只受重力 问题:为什么小球的运动过程不一样? 学生对比两次实验,深刻思考反思,有学生说到有惯性! 教师肯定,并且强调初始状态不同。 教师引出新课题: 运动学(kinematics) ——只研究物体怎样运用而不涉及运用与力的关系的理论; 动力学(dynamics) ——研究运动和力的关系的理论。 教师调动学生: 让我们走进牛顿的世界

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

第三章牛顿运动定律

第三章牛顿运动定律 第三章第1节牛顿第一定律牛顿第三定律 【重要知识梳理】 一、牛顿第一定律 1.内容 一切物体总保持状态或状态,除非有作用在它上面的外力迫使它改变这种状态. 2.意义 (1)揭示了物体在不受外力或受合外力为零时的运动规律. (2)指出了一切物体都具有惯性,即保持原来的特性.因此牛顿第一定律又叫惯性定律. (3)揭示了力与运动的关系,说明力不是物体运动状态的原因,而是物体运动状态的原因. 二、惯性 1.定义 物体具有保持原来状态或状态的性质. 2.惯性大小的量度 (1) 是物体惯性大小的唯一量度,大的物体惯性大,小的物体惯性小. (2)惯性与物体是否受力、怎样受力无关,与物体是否运动、怎样运动无关,与物体所处的地理位置无关,一切有质量的物体都有惯性.充分体现了“唯一”与质量有关. 三、牛顿第三定律 1.作用力和反作用力 两个物体之间的作用总是的,一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力. 2.定律内容 两个物体之间的作用力和反作用力总是大小,方向,作用在. 3.意义 建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系. 【高频考点突破】 考点一牛顿第一定律 例1、关于物体的惯性,下列说法正确的是( ) A.质量相同的两个物体,在阻力相同的情况下,速度大的不易停下来,所以速度大的物体惯性大 B.质量相同的物体,惯性相同 C.推动地面上静止的物体比保持这个物体匀速运动时所需的力大,所以静止的物体惯性大 D.在月球上举重比在地球上容易,所以同一物体在月球上比在地球上惯性小 考点二作用力和反作用力 例2、下列说法正确的是() A.凡是大小相等、方向相反、分别作用在两个物体上的两个力,必定是一对作用力和反作用力

牛顿第一运动定律讲解

第一节牛顿第一运动定律 一、力和运动的关系 1.基本知识 (1)亚里士多德观点:力是物体运动的原因,物体不受力时将. (2)伽利略观点:力不是物体运动的原因,而是 物体的运动状态,产生加速度的原因. (3)笛卡儿的观点 如果运动中的物体没有受到,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向. 二、牛顿第一定律 1.基本知识 (1)牛顿第一定律 一切物体总保持状态或状态,除非作用在它上面的力迫使它改变这种状态,它又叫惯性定律. (2)运动状态:如果物体速度的或改变了,它的运动状态就发生了改变;如果物体做运动或,它的运动状态就没发生改变. 三、惯性与质量 1.基本知识 (1)惯性:物体具有保持原来状态或 状态的性质. (2)物体惯性大小的唯一量度是物体的. 2.思考判断 (1)惯性是物体的固有属性,一切物体都具有惯性.(√) (2)物体运动的速度越大,惯性越大.(×) (3)力无法改变物体的惯性.(√) 四、牛顿第一定律 1.牛顿第一定律的意义 (1)牛顿第一定律揭示了一切物体都具有保持原来的匀速直线运动状态或静止状态的性质——惯性. (2)牛顿第一定律正确揭示了力和运动的关系,纠正了力是维持物体运动的原因的错误观点,明确指出了力是改变物体运动状态的原因. 2.运动状态变化的三种情况 (1)速度的方向不变,只有大小改变.(物体做直线运动) (2)速度的大小不变,只有方向改变.(物体做匀速圆周运动) (3)速度的大小和方向同时发生改变.(物体做曲线运动) 五、惯性的理解应用 2.惯性与力 (1)惯性不是力,而是物体本身固有的一种性质,因此说“物体受到了惯性作用”、“产生了惯性”、“受到惯性力”等都是错误的. (2)力是改变物体运动状态的原因,惯性是维持物体运动状态的原因.力越大,运动状态越易改变;惯性越大,运动状态越难改变. (3)惯性与物体的受力情况无关. 3.惯性与速度 (1)速度是表示物体运动快慢的物理量,惯性是物体本身固有的性质. (2)一切物体都有惯性,和物体是否有速度及速度的大小均无关. 4.惯性与惯性定律 (1)惯性不是惯性定律,惯性没有条件限制,是物体的一种固有属性. (2)惯性定律是物体不受外力作用时物体运动所遵守的一条规律.

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

教材分析案例——牛顿运动定律1

教材分析案例——牛顿运动定律1 【地位和作用】 本部分讲述牛顿运动定律及其简单的应用,属于力学的重点知识要求。以牛顿运动定律为基础的经典力学对人类的生产和生活产生了深远的影响。从地面上一般物体的运动到航天飞机的飞行,无不留下了牛顿运动定律的印象。掌握好牛顿运动定律及其应用对学生正确认识、解释和探索客观世界,形成正确的世界观具有重要的现实意义。 【知识结构】 在牛顿运动定律这一章,教学内容可以分为四个单元。 第一单元:第一节,介绍人类对力和运动关系的认识,讲述牛顿第一定律。知道什么是惯性。 第二单元:第二节至第四节,讲解牛顿第二定律:理解力与运动的关系;知道力的独立作用原理;会用牛顿第二定律和运动学公式解决简单的动力学问题。 第三单元:第五节,讲牛顿第三定律:能区分平衡力和作用力、反作用力。 第四单元:第六节,介绍力学单位制:理解基本单位和导出单位;单位制在物理计算中的作用。 【重点难点分析和疑难点解析】 本章着重介绍三个牛顿运动定律,从人类对力和运动的关系的认识历史引入,强调对定律本身的理解,以期学生对定律有全面、清楚的认识。 1.力和物体运动的关系,是动力学研究的基本问题。人类正确认识它,经历了漫长的过程。同样,学生在认识这一问题时,也有许多错误直觉的干扰。第一节从人类认识的历史讲起,也是希望引起学生的共鸣和充分注意。并由此让学生正确理解牛顿第一定律的内容和认识它的重要意义。知道伽利略和亚里士多德对运动和力的关系的不同论点,知道伽利略理想实验的基本思路、主要推理过程和结论。知道伽利略理想实验的方法是科学研究的重要方法。 2.研究加速度跟力的关系的实验,有多种做法,教材中所用的装置比较简单,课堂演示也比较可靠。只是在分析小车受到的水平拉力时,要注意不使学生产生错误概念,书中用了“可以认为等于砝码所受重力的大小”,并在页末加了标注:这是一个连接体问题,只有小车的质量远大于砝码和盘的总质量时,才“可以认为小车所受的水平拉力等于砝码所受重力的大小”而在此处尚无法进行严格讨论。但要让学生知道,并在第七章中给以证明。 3.教材中牛顿第二定律是从实验总结出来的,根据大量的实验归纳出规律是人们认识客观规律的重要方法,教材分三节由实验得出牛顿第二定律,就是想让学生通过这一过程对此有所认识。因此,认真做好演示和学生实验十分重要。

高中物理牛顿运动定律的应用试题类型及其解题技巧

高中物理牛顿运动定律的应用试题类型及其解题技巧 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求: (1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】 (1)滑块在平板上做匀减速运动,加速度大小:a 1=1mg m μ=3 m/s 2 由于μ1mg>2μ2mg 故平板做匀加速运动,加速度大小:a 2= 122mg mg m μμ-?=1 m/s 2 设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分) L 2+x =vt -12 a 1t 2 对平板:v′=a 2t x = 12 a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3= mg m μ=5 m/s 2

最新高中物理牛顿运动定律的应用题20套(带答案)

最新高中物理牛顿运动定律的应用题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求: (1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t . 【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】 (1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】 (1)在水平面上,根据牛顿第二定律得:1F mg ma μ-= 代及数据解得:2 14/a m s = (2)根据运动学公式:2 102B v a s = 代入数据解得:8/B v m s = (3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得: 23737mgsin mgcos ma μ?+?=① 物体沿斜面向上运动的时间:22 B v t a = ② 物体沿斜面向上运动的最大位移为:2 22212 s a t = ③ 因3737mgsin mgcos μ?>?,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动 根据牛顿第二定律得:33737mgsin mgcos ma μ?-?=④ 物体沿斜面下滑的时间为:22331 2 s a t = ⑤ 物体在斜面上运动的时间:23t t t =+⑥ 联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈

河北省邢台市高中物理第四章牛顿运动定律第一节牛顿第一定律导学案无答案新人教版必修1精品

【关键字】情况、设想、方法、质量、认识、问题、要点、自主、继续、快速、持续、保持、建立、提出、研究、规律、位置、理想、地位、基础、作用、水平、反映、速度、关系、分析、保证 第一节牛顿第一定律 【学习目标】 1.知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法.2.理解牛顿第一定律的内容及意义. 3.知道什么是惯性,会正确地解释有关惯性的现象. 【自主学习】 1.对力和运动关系的看法(认真阅读教材p68页完成下列问题) 代表人物对力和运动关系的看法 亚里士多德 伽利略 笛卡儿 2.牛顿第一定律: 惯性:; 任何物体都有惯性,惯性是物体的固有属性。牛顿第一定律又叫做。 4. 是物体惯性大小的量度。 【课堂探究】 知识点一、对力和运动的关系的认识 (1)静止的物体若没有力的作用就运动不起来; (2)运动的物体若去掉推力,就会停下来,但是不 是去掉推力,物体就立即停下来? (3)设想:若果接触面光滑,物体将会怎么样?

2.伽利略的理想实验 ①(实验事实)两个斜面,小球从一个斜面的某一高度滚下,将到达另 一个斜面的某一高度 ②(科学推想)若另一个斜面光滑,则小球一定会滚到另一斜面的 高度 ③(科学推想)若降低另一个斜面的坡度,则小球高度, 不过,在另一个斜面上将滚得更远 ④(科学推想)若把另一个斜面改成光滑的水平面,则物体 将。 理想实验是建立在可靠的基础上的一种科学方法。 练习1:伽利略理想实验将可靠的事实和理论思维结合起来,能更深刻地反映规律,有关的实验程序内容如下: (1)减小第二个斜面的角度,小球在这个斜面上仍要达到原来的高度。(2)两个对接的光滑斜面,使静止的小球沿一个斜面滚下,小球将滚上另一个斜面。(3)如果没有摩擦,小球将上升到释放的高度。(4)继续减小第二个斜面的倾角,最后使它处于水平位置,小球沿水平面做持续的匀速运动。请按程序先后次序排列,并指出它究竟属于可靠事实,还是通过思维过程的推论,下列选项中正确的是:( ) A.事实2→事实1→推论3→推论4 B.事实2→推论1→推论3→推论4C.事实2→推论3→推论1→推论4 D.事实2→推论1→推论4知识点二、牛顿第一定律 1、牛顿的总结:一切物体总保持状态或状态,除非 迫使它改变这种状态,这就是牛顿第一定律。 ①牛顿第一定律反映了力不是,力是。 ②牛顿第一定律不是实验定律,是在可靠的实验事实的基础上,利用逻辑思维对事物进行分析的产物,不能用实验直接验证。 ③提出了惯性的概念,它在牛顿运动定律中有极其重要的地位。 知识点三、惯性 1、物体的性质,叫做惯性。惯性是物体的,与物体的运动状态、物体是否受力均无关;是惯性大小的量度,越大,惯性就越大;越小,惯性就越小。 ①任何物体都有惯性,任何状态下都有惯性(错误的说法:只有在匀速

第三章_牛顿运动定律

第三章牛顿运动定律 第 1 课时牛顿第一定律牛顿第三定律 基础知识归纳 1.牛顿第一定律 (1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态. (2)牛顿第一定律的意义 ①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律. ②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因. (3)惯性 ①定义:物体具有保持原来匀速直线运动状态或静止状态的性质. ②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小. ③普遍性:惯性是物体的固有属性,一切物体都有惯性. 2.牛顿第三定律 (1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力. (2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上. (3)大小相等方向相反作用在两个物体上同时产生同时消失 典例精析 1.牛顿第一定律的应用 【例1】如图所示,在一辆表面光滑的小车上,有质量分别为m 1、 m2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他 阻力,设车足够长,则两个小球() A.一定相碰 B.一定不相碰 C.不一定相碰 D.难以确定是否相碰,因为不知小车的运动方向 【解析】两个小球放在光滑的小车表面上,又不考虑其他阻力,故水平方向不受外力,由牛顿第一定律可知,两小球仍然以相同的速度做匀速直线运动,永远不相碰,只有B对. 【答案】B 【思维提升】运用牛顿第一定律解决问题时,正确的受力分析是关键,如果物体不受力或所受合外力为零,物体的运动状态将保持不变,同理可知,如果物体在某一方向上不受力或所受合外力为零,则物体在这一方向上的运动状态(即速度)保持不变. 2.对惯性概念的理解 【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动? 【解析】从惯性的角度去考虑瓶内的气泡和水,显然水的质量远大 于气泡的质量,故水的惯性比气泡的惯性大.当小车突然停止时,水保持 向前运动的趋势远大于气泡向前运动的趋势,于是水由于惯性继续向前

牛顿运动定律应用

高考第一轮复习---牛顿运动定律考点例析 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了完美的体现。从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。如:2000年上海物理试题第21题(风洞实验)、2001年全国物理试题第8题(惯性制导系统)、2001年上海物理试题第8题(升降机下落)、2001年上海物理试题第20题(轻绳和轻弹簧的辩析纠错题)、2002年理科综合全国卷第26题(蹦床运动)、2003年全国春季理综第16题(滑冰运动)、2004年全国理综四第19题(猫在木板上跑动)等等。同学们只要把任何一套高考试题拿来研究,总会发现有与牛顿定律有关的试题。 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x, F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互

《第三章牛顿运动定律(提高测试)》

第三章 牛顿运动定律(提高测试) 一、选择题(以下题目所给出的四个答案中,有一个或多个是正确的. ) 1. A 、B 两物体以相同的初速度滑到同一粗糙水平面上 ,若两物体的质量 m A > m B ,两物 体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离 S A 与S B 相比为 A. S A = SB B. S A S B C. S A .;:■ S B D.不能确定 2. 一物体沿倾角为 a 的斜面下滑时 ,恰好做匀速运动 ,若把斜面的倾角加倍 ,则下滑时 加 速度为 ( ) A. tan :? g r sin 3用 B . g cos :- 小sin 3用 C. g sin :- r sin 2a D. 2 g 2 cos : 3.跳高运动员从地面跳起,这是由于 ( ) A. 运动员给地面的压力等于运动员受的重力 B. 地面给运动员的支持力大于运动员给地面的压力 C. 地面给运动员的支持力大于运动员受的重力 D. 地面给运动员的支持力等于运动员给地面的压力 4?比较航天飞机里的物体受到的重力 G 和支持力N ,下面说法中正确的是 ( ) A ?航天飞机发射离地时,N>G B ?航天飞机返回地面时,N>G C ?航天飞机在发射架上等待发射时, N

第一节《牛顿第一定律》教案

《牛顿第一定律》教案 一、三维目标 1.知识与技能 ⑴体会伽利略的理想实验思想。 ⑵理解牛顿第一定律的内容及意义;理解力和运动的关系。 ⑶理解惯性的概念,知道质量是惯性大小的量度。 2.过程与方法 ⑴通过回顾历史探究过程理解牛顿第一定律的形成过程。 ⑵理解理想实验是科学研究的重要方法。 3.情感态度与价值观 ⑴通过运动和力的关系的历史探究过程,使学生体会规律的形成都有一个从感性到理性、从低级到高级的产生、发展和演变的过程。 ⑵通过理想斜面的教学,体会理想实验的魅力。 二、教材分析 牛顿运动定律是整个力学体系的基石,而牛顿第一定律又是这个“基石”中的“基石”,它定性地揭示了力和运动的关系,提出惯性的概念,为定量研究力和运动的关系拉开了序幕。 高中教材与初中相比,主要有四方面的不同。 一是定律内容深浅不同:初中教材叙述为“一切物体在没有受到外力作用的时候,总是保持静止状态或匀速直线运动状态”;高中教材叙述为“一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止”。高中教材中的表述具有更为丰富的内涵,它强调了力是改变物体运动状态的原因,突出了第一定律的独立性和重要意义,也为学习牛顿第二定律做了一定的铺垫。 二是惯性的认识层次不同:初中强调一切物体都有惯性,高中侧重惯性与质量的关系。 三是实验的设计、探究及思维深度不同:初中为斜面小车实验;高中为伽利略理想实验,突出了理想实验这种科学方法的价值所在。 四是情感、态度、价值观的体现不同:初中对牛顿第一定律建立的历史一语带过,高中教材回顾了历史,让学生体会一个规律的获得是一代又一代人努力的结果,能够激发学生追求科学,勇于创新的情感。 三、学情分析 经过初中的学习,学生初步知道了牛顿第一定律的内容和惯性的概念,但是缺乏对牛顿第一定律建立历史的了解,对内容也是一知半解。 学生对于“质量是惯性唯一的量度”更是缺乏认识,凭借自己的生活经验,认为速度也是惯性的量度。教师要在课堂上充分引导,配合实验、结合生活事例来澄清概念。 教学实践表明,学生在头脑中建立正确的力和运动关系的过程,并非一帆风顺,常常形成与亚里士多德相似的观点,且根深蒂固。处理具体的实际问题时,一些直觉的错误观点不时冒出来,存在着严重的"口是心非"问题。 四、教学重难点 1.教学重点:通过回顾历史探究过程理解牛顿第一定律;惯性的理解。 2.教学难点:力和运动的关系;惯性和质量的关系。 五、教学活动设计 (一)创设游戏,引入课题

高一物理牛顿运动定律的应用

第三章 D 牛顿运动定律的应用 一、教学任务分析 本节内容是对牛顿运动定律的综合提高和延伸,也为学习以后的物理学习打好力学基础。 学习本节内以受力分析、力的合成与分解、匀加速直线运动规律、牛顿运动定律等基础知识和相应的技能为基础。 通过实例情景和学生活动,了解建立国际单位制的重要性和必要性,介绍用国际单位制及其应用。 通过对典型示例的分析和讨论,归纳出用牛顿运动定律解决力学问题的一般规律和方法。 通过对观察录像、演示实验和学生小实验,感受超重、失重现象,应用牛顿第二定律分析、探究超重、失重现象的本质与规律。 二、教学目标 1、知识与技能 (1)知道国际单位制。知道基本单位和导出单位。理解力学中的三个基本单位。 (2)学会导出单位的推演方法并能进行单位换算。 (3)掌握用牛顿运动定律解决力学问题的一般规律和方法。 (4)知道超重和失重现象。 (5)学会用牛顿第二定律分析超重、失重现象。 2、过程与方法 (1)通过创设情景、实例分析和练习的过程,认识引入国际单位制的重要性和必要性。 (2)通过对典型示例的分析、讨论过程,认识分析、比较、等效、演绎、归纳、验证等科学方法。 (3)通过对电梯中进行的超重失重实验的定性观察和学生小实验,感受用牛顿运动定律解决实际问题的一般规律和方法。 3、情感、态度与价值观 (1)通过阅读关于“火星探测器失事原因”的STS材料,在了解统一单位重要性的同时,感悟严谨的治学态度对科学发展的重大意义。 (2)通过应用牛顿运动定律解决实际问题的过程,感悟物理学在社会发展中的重要作用。 (3)通过学生实验的过程,激发求知欲,获得成就感。 (4)通过观察神舟六号飞船录像片段,了解我国航天事业的发展,激发民族自豪感。三、教学重点与难点 重点:怎样应用牛顿运动定律解决力学问题。 难点:对超重失重视现象的认识。 四、教学资源 1、器材:多媒体投影仪,演示超重、失重的DIS实验器材,改锥,饮料瓶(人手一个)。

相关文档
最新文档