水处理常规指标测定方法

水处理常规指标测定方法
水处理常规指标测定方法

三、项目指标测定方法

1、COD含量

(1)测定步骤

a)估算水样中COD的含量,决定取样的体积,一般取5ml;

b)取适量样品(含两个空白样品)于COD消解罐中,加入约0.3g掩蔽剂(HgSO4)、

3.0 mL消解液、5.0 mL催化剂;

c)将消解罐摇晃均匀,放入COD消解仪中消解相应时间;

d)自然冷却后用蒸馏水润洗消解罐,将罐中液体移入250ml锥形瓶中,保证液体

体积约20mL-30ml左右。加入三滴指示剂;

e)用硫酸亚铁铵标准溶液滴定至锥型瓶颜色转为暗红色即可;

f)记录、存档、分析;

(2)试剂配置:

a)重铬酸钾标准溶液(1/6K2CrO7):称取经120℃烘干2h的基准或者优纯级

K2Cr2O7 4.903g,用少量水溶解,移入1000mL的容量瓶中,用水稀释至标线,摇匀;

b)硫酸亚铁铵标准溶液:称取39.2g分析纯级溶解于水中,加入浓硫酸,冷却后移

入1000mL容量瓶中,用水稀释至标线,临用前用1.000mL的K2Cr2O7的标准溶液标定;

c)消解液:称取19.6g重铬酸钾,50.0g硫酸铝钾,10.0g钼酸铵,溶解于500mL

水中,加入200mL浓硫酸,冷却后转移至1000mL的容量瓶中,用水稀释至标线。该溶液重铬酸钾浓度约为0.4moL/L;

COD值不同水样应选择不同浓度K2Cr2O7消解液

COD(mg/L)<50 50~1000 1000~2500

消解液中K2Cr2O7

0.05 0.2 0.4

浓度(mol/L)

K2Cr2O7质量 2.45 9.8 19.6

d)催化剂:称取8.8g 分析纯Ag2SO4,溶解于1000mL浓硫酸中;

e)指示剂:称取0.695g分析纯FeSO4·7H2O和1.4850g邻菲罗啉溶解于水中稀释至

100mL,贮存于棕色瓶中待用;

f)掩蔽剂:称取10.0g分析纯HgSO4,溶解于100 mL10%硫酸中;

计算:

COD(O2,mg/L)=(V0-V1)C×8×1000/V2

V0:滴定空白时的浓硫酸亚铁铵标准液用量(mL);

V1:滴定水样时的浓硫酸亚铁铵标准液用量(mL);

V2:水样体积(mL);

C:硫酸亚铁铵标准溶液的浓度(moL/L);8:1/2氧的摩尔质量(g/moL)

2、SS、MLSS(重量法)

(1)实验步骤(括号内为实际操作)

①定量滤纸在103-105℃烘干,干燥期内冷却,称重,反复直至获得恒重或称重损失小于前次称重的4%;重量为m0;(干燥8小时后放入干燥器冷却后称重为最终值或Φ12.5的滤纸直接以1g计)

②将样品100ml用1中的滤纸过滤,放入103-105℃的烘箱中烘干(2小时),取出在干燥器中冷却至平衡温度(2小时)称重,反复干燥制恒重或失重小于前次称重的5%或0.5mg(取较小值),重量为m1;

SS=(m1- m0)/0.1(干燥8小时后放入干燥器冷却后称重为最终值)单位g/L

③将干净的坩埚放入烘箱中干燥一小时,取出放在干燥其中冷却至平衡温度,称重,重量为m2;

④将2中的滤纸和泥放在3中的坩埚中,然后放入冷的马弗炉中,加热到600℃灼烧60分钟,在干燥器中冷却并称重,m3;(从温度达到600℃开始计时)

vss=[( m1+m2- m0)- m3]/0.1

MLSS:单位容积混合液内含活性污泥固体物质的总量(mg/L),MLVSS指混合液挥发性悬浮固体。生活污水一般MLVSS/MLSS=0.7。测MLSS需要定量滤纸(不能用定性的)、电子分析天平、烘箱、干燥器等。取100ml混合液用滤纸过滤,待烘箱中温度升到103-105之间的设定值后,将滤干后的滤纸放入烘箱烘2小时,取出置于干燥器中放置半小操作时。称量后减去滤纸重量,并且测滤纸的重量也要采用上述同样的步骤。该实验必须严格按照上述操作,否则会入偏差。

3、NH4+-N测定(测定上限为2mg/l)

(1)标准曲线做法:

a)吸取铵标准贮备溶液5mL于500mL容量瓶中;

b)分别吸取稀释后的铵标准溶使用液0,0.50,1.00,3.00,5.00,7.00,10.00

于50mL的比色管中,加蒸馏水稀释至标线,加入1.0mL酒石酸钾钠,混匀。

加入1.5mL纳氏试剂,混匀。静置15min后,在波长420nm处,用空白样品调零后测试标准样品(未含空白)的吸光度值;

c)记录,存档,作图,分析后得出标准曲线;

(2)样品测试:

a)估算水样中NH4+-N的含量,决定取样的体积;

b)分别吸取适量过滤后的水样溶液于50mL比色管中,加蒸馏水稀释至刻度线,

加入1.0mL酒石酸钾钠,混匀,加入1.5mL纳氏试剂,混匀。静置15min 后,在420nm处,用

c)空白样品调零后测试标准样品(未含空白)的吸光度值;

d)测试得出样品(未含空白)吸光度值,在标准曲线上计算得到样品的NH4+-N

含量;

(3)试剂配置:配制试剂用水均应为无氨水

a)纳氏试剂:①称取16gNaOH于50mL水中,冷却至室温;②另称取7.0gKI、

10.0 HgI2溶于水,在搅拌下徐徐注入注入①NaOH溶液,稀释至100 mL,贮

存在聚乙烯瓶中,密塞保存;

b)酒石酸钾钠:称取50g酒石酸钾钠溶于100 mL水中,加热、煮沸去除氨,

放冷、洗内壁,定容于100 mL;

c)铵标准贮备液:称取3.819g经100℃干燥过的优级纯氯化铵溶于1000 mL容

量瓶中,定容,即得到1.00mg/mL的铵标准贮备液;

d)铵标准使用液:取5.00mL铵标准贮备液于500mL容量瓶中,定容至500mL,

即得到0.010mg/mL;

NH4+-N(mg/L) = M/V(ug/mL)

4、NO2--N测定

(见单独PDF中测定方法)

5、NO3--N测定

标准曲线做法:

①准确吸取硝酸盐氮标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00mL于

25mL比色管中,用蒸馏水稀释至25ml标线,加入

和0.1ml 0.8%的氨基磺酸溶液;

②用光程长10mm石英比色皿,在220nm和275nm波长处,测量吸光度。

样品测试:

a)估算水样中NO3-N的含量,决定取样的体积;

b)分别吸取适量水样于比色管中,以下操作同标准曲线做法。

c)测试得出样品(未含空白)吸光度值,在标准曲线上计算得到样品的NO3-N含

量;

试剂配置:

a)硝酸钾标准贮备溶液:①标准贮备液:称取0.7218g经105~110℃烘干4h的优

纯级硝酸钾于1000 mL,得到100mg/L,加入2 mL三氯甲烷为保护剂,至少可稳定6个月;

b)硝酸钾标准使用液:稀释10倍硝酸钾标准贮备溶液得到,此溶液每毫升含10 微

g,即10 ug /mL;

6、TN测定(方法的测定下限为0.05 mg/l,测定上限为4mg/l)

(1)标准曲线做法:

a)吸取硝酸钾标准贮备溶液10mL于100mL容量瓶中,得到稀释了10倍标准使

用液;

b)分别吸取稀释后的硝酸钾标准溶+使用液0,0.50,1.00,3.00,5.00,7.00,10.00

于25mL的比色管中,先加蒸馏水至10mL,加入5mL碱性过硫酸钾,塞紧放于压力锅中120℃,30min,自然冷却至室温;

c)加入(1+9)盐酸1mL,稀释至25mL标线,震荡、静置,用蒸馏水调零后测试标

准样品;测试得出标准样品(未含空白)吸光度值后减空白后等出标准样品的真实的吸光度值;

d)记录,存档,作图,分析后得出标准曲线;

(2)样品测试:

a)估算水样中TN的含量,决定取样的体积;

b)吸取适量水样体积于25 mL比色管中,加蒸馏水至10mL,加入5mL碱性过硫

酸钾,塞紧置于压力锅中120℃下30min,自然冷却至室温;

c)加入(1+9)盐酸1mL,稀释至25mL标线,震荡、静置,用蒸馏水调零后测试样

品(含空白)吸光度值后减空白后等出样品的真实的吸光度值;

d)在标准曲线上得到样品的TN含量;

(3)试剂配置:

a)碱性过硫酸钾溶液:称取40g过硫酸钾和15g氢氧化钠溶于无氨水中,稀释至

1000mL,存放在聚乙烯瓶内,可贮存一周;

b)(1+9)盐酸,体积比;

c)硝酸钾标准贮备溶液:称取0.7218g经105~110℃烘干4h的优级纯硝酸钾溶于

无氨水,置于1000 mL容量瓶,定容。此溶液中每毫升含100ug硝酸盐氮,加入2 mL三氯甲烷为保护剂,至少可稳定6个月;

d)硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得,此溶液每毫升含10 ug,

即10 mg/L;

7、TP测定(本方法最低检出浓度为0.01mg/l,测定上限为0.6mg/l)

(1)标准曲线做法:

a)取数支50ml的具塞比色管,加入KH2PO4标准使用液0,0.50,1.00,3.00,

5.00,7.00,10.00,15.00于50mL的比色管中,

b)用蒸馏水稀释至25mL标线,加入4mL 5%过硫酸钾溶液后,塞紧放于压力锅中120℃,30min,自然冷却至室温;

c)定容至50ml标线,加入1mL10%抗坏血酸,混匀,30s 后加入2mL钼酸铵,震荡、充分混匀,静置15min,用空白样品调零后,于700nm处测试标准样品(未含空白)的吸光度值;

d)记录,存档,作图,分析后得出标准曲线;

(2)样品测试:

a)估算水样中TP的含量,决定取样的体积;

b)分别吸取适量水样于50mL的比色管中,用蒸馏水稀释至25mL标线,加入4mL过硫酸钾后,塞紧放于压力锅中120℃,30min,自然冷却至室温;

c)加入1mL10%抗坏血酸,30s 后加入2mL钼酸铵,震荡比色管后静置15min,用空白样品调零后开始测试标准样品;测试得出后样品吸光度值,在标准曲线上得到样品的TP含量;

(3)试剂配置:

a)10%抗坏血酸:10g抗坏血酸于水中,定容于100 mL容量瓶,放入棕色瓶中,在4℃下可稳定数周;

b)5%过硫酸钾溶液:溶解5g过硫酸钾于100ml蒸馏水中;

c)钼酸盐溶液:溶解13g钼酸铵((NH4)6Mo7O24.4H2O)于100ml水中。溶解

0.35g酒石酸锑氧钾(K(SbO)C4H4O6.1/2H2O)于100ml水中。在不断搅拌下,将钼酸铵溶液徐徐加入到300ml(1+1)硫酸中,加酒石酸锑氧钾溶液并且混合均匀,贮存在棕色的玻璃瓶中在4℃条件下保存,至少稳定两个月。

d)KH2PO4贮备液:将优级纯KH2PO4于110℃干燥2h,取0.2197g溶于水,移入1000ml容量瓶,加入(1+1)硫酸5mL,用蒸馏水稀释至标线,得到50 ug/mL 的溶液;

e)KH2PO4标准使用液:10 mL磷酸盐贮备液于250 mL容量瓶中定容后,得到

2.00(ug/mL);

最新植物生理指标测定方法

实验一植物叶绿素含量的测定(分光光度法) (张宪政,1992) 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。高等植物中叶绿素有两种:叶绿素a 和b,两者均易溶于乙醇、乙醚、丙酮和氯仿。叶绿素a和叶绿素b的比值反映植物对光能利用效率的大小,比值高则大,则反之。 二、材料、仪器设备及试剂 试剂:1)95%乙醇(或80%丙酮) 三、实验步骤 称取剪碎的新鲜样品0.2~0.3g,加乙醇10ml,提取直至无绿色为止。把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm和645nm下测定吸光度。四、实验结果按计算 丙酮法(Arnon法)【可以用于丙酮乙醇混合法和80%丙酮提取法的计算】 叶绿素a的含量(mg/g)=(12.71?OD663 – 2.59?OD645)V/1000*W 叶绿素b的含量(mg/g)=(22.88OD645 – 4.67OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(8.04?OD663 +20.29?OD645) V/1000*W 按Inskeep公式 叶绿素a的含量(mg/g)=(12.63?OD663 – 2.52?OD645)V/1000*W 叶绿素b的含量(mg/g)=(20.47OD645 – 4.73OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(7.90?OD663 + 17.95?OD645) V/1000*W

氧化应激与慢性阻塞性肺疾病

!!作者单位! C %""Q "广州中山大学第一附属医院呼吸内科通信作者!曾!勉氧化应激与慢性阻塞性肺疾病 刘凌云!曾!勉 !!慢性阻塞性肺疾病"<=>?#是一种具有气流受限特征的疾病$气流受限不完全可逆%呈进行性发展$与肺部对有害气体或颗粒的异常炎症反应有 关&%’(目前对<=>?的发病机制仍未完全阐明$ 氧化应激在<=>?发生机制中的作用日益受到重视(氧化应激不仅直接损伤肺组织$而且可使抗蛋白酶氧化失活%炎症细胞渗出%炎前介质基因表达$从而促进<=>?的发生发展(<=>?患者糖皮质激素治疗的抗炎效果远较哮喘的疗效要差$其糖皮质激素抵抗的机制尚不清楚$多数认为与氧化应激水平增加有关(在此$就以上内容的新进展作一综述(?!氧化剂的来源?@?!吸烟及空气污染!香烟的烟雾和焦油中包含#A ""多种化学物质$ 其中各种自由基和氧化产物浓度较高(估计每口香烟烟雾中含有%"%A 个自由基$香烟焦油中则含有更多各种稳定的自由基(此外$在支气管上皮内衬液";Z M #中形成的烟雾凝集物"=# 浓度增加$维生素<水平下降( ?@A !内源性氧化剂!吸烟或吸入环境污染的空气 不仅能直接增加体内氧化负荷$还能通过活化炎症细胞释放许多内源性氧化剂(有研究发现吸烟者肺内中性粒细胞和巨噬细胞渗出较非吸烟者多$且吸 烟者白细胞释放的氧化物如=g )!%过氧化氢"D !=!# 也较非吸烟者多&#’(另外$铁离子是许多氧化反应的主要元素$气道和肺泡巨噬细胞中铁离子增加使;Z M 和肺泡中的氧化产物进一步增加$ 并可通过M *0)/0和D &-*,W T *.33反应产生=D g $导致组织损害$尤其是细胞膜的脂质过氧化(H 2/75 3/0等&C ’ 研究发现与非吸烟者比$吸烟者和慢性支气管 炎者肺泡巨噬细胞中铁离子增加$ 而且慢性支气管炎者增加更明显(最近有研究发现血浆铜离子增加和锌离子下降也参与了<=>?患者体内氧化*抗氧 化失衡&@’ ( A !气道局部氧化应激的指标 A @?!;Z M !;Z M 是气道上皮和外界环境的分界面$是机体对抗外源性氧化剂的主要机制(氧化应激时;Z M 中抗氧化剂减少% 抗氧化酶活性下降(监测;Z M 中这些指标的变化能反映气道局部的氧化应激 状态(:4.33&,等&A ’研究证实吸入=$时;Z M 中谷胱苷肽过氧化物酶活性下降%;Z M 中细胞外谷胱苷 肽蛋白浓度下降( A @A !a :Z M !测定a :Z M 中的氧化产物% 可溶性抗氧化剂浓度及抗氧化酶活性可反映肺泡内的氧化应激$但是其操作方法复杂且对可溶性物质检查还存在某些问题$主要是灌洗液量与操作方法不同$对肺衬液稀释程度不同$从而影响测定结果( A @ B !诱导痰!诱导痰是以高渗盐水雾化吸入诱导无痰受检者产生足量痰液$以对下气道分泌物中的细胞及液相成分进行分析和研究(近年来$它的方法已基本成熟$且成功率较高(相对于纤支镜活检%肺泡灌洗等操作$诱导痰检测简单易行$消耗较少(诱导痰中抗氧化剂%抗氧化酶等液相成分浓度较高且较稳定不易受操作方法的影响$因而在测定氧化应激指标方面较a :Z M 有一定的优势(目前诱导痰技术主要应用于气道炎症$最近也有学者以诱导痰中谷胱甘肽浓度作为气道局部氧化应激水平的标志 研究哮喘患者气道局部的氧化应激&Q ’( A @C !呼出气!呼出气中过氧化氢"D !=!#&S ’%<=%P =%脂质过氧化代谢物"H a :F E #&S ’ %乙烷%戊烷$被认为是监测<=>?气道氧化应激的指标(目前呼出 气在<=>?氧化应激研究中应用较多$但还没有统一的收集气体的方法$且P =和<=等明显受吸烟 的影响$乙烷%戊烷的产生则有赖于金属离子的存在$并受氧分压的影响$因此限制了它的应用(B !全身氧化应激的指标 直接测定全身氧化应激损伤很困难$通常通过测定F =E 作用于各种生物分子如脂质蛋白%?P :而引起的损伤来评估氧化应激(血浆中异前列腺素和丙二醛"N ?:# 含量等是目前测定全身氧化应激) $$A )国外医学呼吸系统分册!!""C 年!第!C 卷!第%"期!E *’)F *35.,E 83M /,*.I 0N *9E ’.$=’)G !""C $O /6G !C G P /G %" 万方数据

细胞氧化应激基本概念讲解

1、细胞氧化 细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。 2、OS 氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。 3、ROS 需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。 4、细胞凋亡 细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD ) 5、SOD 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD 是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD 具有抗衰老的特殊效果。是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。

水质指标测定方法手册

水质指标测定方法手册 第一部分总则 1.1 目的 此手册的目的是规范化验室分析工作,保证实验条件、仪器设备、人员操作符合国家标准的规定,确保化验室检验的准确性。 1.2 宗旨 此手册的宗旨是以先进的、科学的分析方法,以准确的分析数据来帮助操作员工了解本废水处理系统实际的运行情况视实调整,以取得最好的工艺处理效果,达到指导的目的。 1.3 依据 本手册介绍的所有指标检测方法均使用国家标准方法或是行业规定标准方法;

第二部分注意事项 1.1进入实验室工作和学习的人员需遵守实验室安全管理规章制度,克 服麻痹大意思想,掌握基本的安全知识和救助知识,非工作需要未经许可不得擅自进入实验室。 1.2工作人员进入实验室后需着工作服,严格实行检验方法标准,遵守 操作规程和一切规章制度不得擅自修改。 1.3 水质分析过程需用到浓硫酸,浓盐酸、硫酸汞等腐蚀、有毒药品, 这些危险品及有毒药品要按规定设专用库房,做到专室专柜储存,并指定专人、双人双锁妥善保管,严格以上物品的管理; 1.4 开启使用硫酸、盐酸等腐蚀刺激性药品时,要带上耐酸手套和防护 眼镜,先用湿布盖上瓶口再开动瓶塞,以防溅出,烧伤眼睛和皮肤等。因为浓盐酸是具有挥发性的,操作应在通风橱内进行。 1.5 为确保分析结果的准确性,建议购买环境标准样品,化验室分析人 员定期拿环境标准样品进行实际测试,将测试结果与参考值进行比较。 1.6 实验人员严格按规定方法取样、制样、留样,经常检查有关设备的 取样管等,确保取样有代表性,留样标记要清楚。

1.7 正确使用并维护好相关仪器,定期对其进行校正。 1.8 测定方法用到标准曲线的,严格上要求每次重新配制药品后需重新 绘制标准曲线。 第三部分操作手册 水质篇 第一章、PH的测定 (4) 第二章、悬浮物(SS)的测定 (8) 第三章、色度的测定 (10) 第四章、化学需氧量(COD)的测定 (11) 第五章、五日生化需氧量(BOD5)的测定 (14) 第六章、溶解氧的测定 (18) 第七章、挥发性脂肪酸(VFA)的测定 (21) 第八章、总氮(TN)、总磷(TP)的测定 (23) 第九章、氨氮的测定 (34) 污泥篇 第一章、颗粒污泥总浓度(TSS)、挥发性污泥浓度(VSS)、灰分

植物生理生化测定

2.1.8转基因植株在盐胁迫下的超氧化物歧化酶(SOD)活性测定 将转基因植株与非转基因对照植株继代于含有0.5% NaCl的MS固体培养上进行胁迫培养,培养条件为27±1℃,每天13 h、3000 lux光照。胁迫培养4 w后,取其叶片测定其SOD 活性,每个样品设3次重复,求其平均数,并进行多重比较。 2.1.8.1主要试剂及配方 (1)0.1 mol/l pH 7.8磷酸钠(Na2HPO4-NaH2PO4)缓冲液 A液(0.1 mol/l Na2HPO4溶液):称取Na2HPO4·12H2O 7.163 g,用少量蒸馏水溶解后定容至200 ml,4℃冰箱中保存备用; B液(0.1 mol/l NaH2PO4溶液):称取NaH2PO4·2H2O 0.780 g,用少量蒸馏水溶解后定容至50 ml,4℃冰箱中保存备用; 取上述A液183 ml与B液17ml充分混匀后即为0.1 mol/l pH 7.8的磷酸钠缓冲液,4℃冰箱中保存备用。 (2)0.026 mol/l甲硫氨酸(Met)磷酸钠缓冲液 称取甲硫氨酸(C5H11NO2S)0.388 g,用少量0.1 mol/l pH 7.8的磷酸钠缓冲液溶解后,再用相同磷酸钠缓冲液定容至100 ml,现用现配,4℃冰箱中保存可用1~2 d。 (3)7.5 × 10-4 mol/l NBT溶液 称取NBT(C40H30Cl2N10O6)0.153 g,用少量蒸馏水溶解后,定容至250 ml,现用现配,4℃冰箱中保存可用2~3 d。 (4)含1.0 μmol/l EDTA的20 μmol/l核黄素溶液 A液:称取EDTA 0.003 g,用少量蒸馏水溶解; B液:称取核黄素0.075 g,用少量蒸馏水溶解; C液:合并A液和B液,定容至100 ml,此溶液即为含0.1 mmol/l EDTA的2 mmol/l 核黄素溶液,避光保存(可用黑纸将装有该液的棕色瓶包好),4℃冰箱中可保存8~10 d,当测定SOD酶活时,将C液稀释100倍,即为含1.0 μmol/l EDTA的20 μmol/l核黄素溶液。 (5)含2% PVP的0.05 mol/l pH7.8磷酸钠缓冲液 取0.1 mol/l pH7.8的磷酸钠缓冲液50 ml,加入2 g PVP(聚乙烯吡咯烷酮),充分溶解后移入100 ml容量瓶中用蒸馏水定容至刻度,充分混匀,4℃冰箱中保存备用。 2.1.8.2提取及测定方法 (1)称取1.0 g样品叶片于预冷的研钵中,加入4 ml预冷的提取介质(含2% PVP的0.05 mol/l pH7.8磷酸钠缓冲液),冰浴研磨匀浆,转入10 ml离心管,并用提取介质定容至

程辉辉 实验单元3:鱼类氧化应激指标的测定

华中农业大学水产学院《动物生理生化研究法》实验报告(2014-2015年度第二学期) 实验单元3:鱼类氧化应激指标的测定 学号No.:2014308110001 姓名Name:程辉辉日期Date:2015.3.21 摘要:鱼体在受到外界刺激的时候,组织或细胞内氧自由基生成增加,清除能力降低,导致活性氧在组织或细胞内蓄积而引起氧化损伤。而活性氧的逐步产生可以导致蛋白质和脂质的氧化。蛋白质羰基化是指蛋白质侧链氨基酸被氧化修饰后,羰基产物积累,蛋白质功能丧失甚至被降解。而衡量脂质过氧化的指标便是丙二醛,其是脂质过氧化物的最终分解产物之一,常作为脂类过氧化的测定指标。在本实验中,我们主要探究了脂质过氧化和蛋白羰基化的测定方法,以便更好的定量衡量氧化应激的程度。实验中所测得的肌肉蛋白质羰基含量为727.92 nmol/mg prot,肝脏蛋白质羰基含量为1142.41 nmol/mg prot,肌肉MDA含量为0.011 nmol/mg prot,肝脏MDA 含量为0.14 nmol/mg prot,相比其他的实验,所测定结果相差较大。在实验中存在诸多操作失误,希望能在以后的实验中引以为戒,为实验室条件下对鱼类的氧化应激水平奠定实验和操作基础。 关键词:应激;蛋白质定量;蛋白质羰基化;脂质过氧化 【前言】 随着集约化养殖的发展,鱼类在养殖过程中遭受到的应激因素日益增多。人为活动、外界环境的变化、饵料和水体中的有害物质均会对鱼体产生应激。氧化应激反应是有氧生物不可避免的,它是生物体的活性氧簇( reactive oxygen species,ROS)和抗氧化防御系统之间不平衡的结果。ROS是过渡金属离子、农药、石油污染物等物质诱导产生的。自由基是正常细胞新陈代谢过程中由内源性细胞产生的。线粒体呼吸是ROS 主要的内源性来源(李学彬,2009)。ROS 的逐步产生可以导致蛋白质和脂质的氧化,基因表达的改变以及细胞氧化还原状态的变化。 在生物体内,很多脂类含有多不饱和脂肪酸。不饱和脂肪酸双键电子云密度大,化学性质很不稳定,很易受到过氧化作用损伤,产生有细胞毒性的脂质过氧化物。这些化合物能破坏人体细胞正常生理功能,促使人体衰老和诱发癌症。丙二醛(MDA)是脂质过氧化物的最终分解产物之一,常作为脂类过氧化的测定指标,其含量能直接反映机体脂质过氧化程度,并间接反映细胞损伤程度(刘淑兰,2012)。 脂质过氧化的测定通常是通过TBA试验来完成的,其主要应用于食品和生物材料中脂类氧化检测和定量。硫代巴比妥酸法是基于不饱和脂肪酸通过自由基反应,形成氧化自由基而氧化生成环氧化合物,环氧化合物分解生成丙二醛(MDA),MDA 与硫代巴比妥酸(TBA)作用生成TBA染料配合物,此化合物在532nm 下有最大吸收值。通常测试结果表示为532nm下吸光值与丙二醛吸光系数之积,即通常所说TBA值。 蛋白质羰基化是指蛋白质侧链氨基酸被氧化修饰后,羰基产物积累,蛋白质功能丧失甚至被降解。蛋白质羰基含量是蛋白质氧化损伤的敏感指标。蛋白质羰基在体内的形成主要是通过金属离子催化氧化系统(MCO系统)完成的。在这个过程中,Fe2+和Cu2+可以结合在蛋白质的阳离子结合位点。被H2O2或O2攻击之后将侧链含有氨基的氨基酸羰基化(曹溪青,1985)。此外, 羟自由基也可直接作用于肽链, 使肽链断裂, 引起蛋白质一级结构的破坏, 在断裂处产生羰基。目前,大量的研究证明了氧化损伤与衰老和疾病的关系。 实验中采用的蛋白质羰基化的测定方法是2, 4 -二硝基苯肼(DNPH)比色法,这 1 / 3

水质常规指标测定操作方法精

1 / 23 水质常规指标测定操作方法 一、COD: 化学需氧量COD(Chemical Oxygen Demand),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。采用重铬酸盐法测定(参看GB11914-89) 方法原理: 在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。 方法的适用范围: 用0.25mol/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值,未经稀释水样的测定上限是700mg/L,用0.025mol/L浓度的重铬酸钾溶液可测定5~50mg/L的COD值,但低于10mg/L时测量准确度较差。 所需仪器和实验用品: 1.硫酸汞: xx 2.硫酸-硫酸银试剂: 向2500ml浓硫酸中加入25g硫酸银,放置1~2天,使之溶解,并混匀,使用前小心摇动。

3.重铬酸钾标准溶液( 2CrO 7=0.25mol/L): 2 / 23 称取预先在120℃烘于2h的优级纯重铬酸钾12.258g溶于水中,移入1000m容量瓶,稀释至标线,摇匀。 4.硫酸亚铁铵标准溶液[(NH 4) 2Fe(SO4) 2·6H 2O≈0.1mol/L]: 称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法: 准确吸取10ml重铬酸钾标准溶液于500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,摇匀。冷却后,加入3滴试亚铁灵指示液(约0.15ml),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 c[(NH 4) 2Fe(SO 4) 2]=0.25×10/V 式中: c----硫酸液铁铵标准溶液的浓度(mol/ L); V---硫酸亚铁铵标准滴定溶液的用量(ml)。 3 / 23 5.试亚铁xx指示液:

植物生理生化指标测定

小黑豆相关生理指标测定 1.表型变化:鲜重、株高、主根长和叶面积 鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。 株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。每个测6个重复。 2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定 样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。 总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug)) 蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。 丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。采用双组分分光光度法,可计算出MDA含量。MDA的计算公式为:MDA(umol/L)=6.45OD532-0.56OD450. 反应体系为:400ul 0.6%TBA+350ul H2O+50ul样品,80℃水浴10min后,测OD532和OD450。对照用Tris-HCl. 0.6%TBA配方:称取硫代巴比妥0.6g,溶于少量1M NaOH中,待其完全溶解后用10%TCA(称取10gTCA三氯乙酸,溶于100ml蒸馏水中,待其溶解即可)定容至100ml。 H2O2测定(二甲酚橙法):样品反应体系(82ul溶液A+820ul溶液B (A:B=1:10)+150ul样品提取液),30℃水浴30min,测OD560。标准曲线为:Y=0.01734X-0.0555(Y代表OD560,X代表H2O2含量)

【JF-800A】血液灌流治疗腹型过敏性紫癜,改善氧化应激与炎性反应指标,安全性良好

【JF-800A】血液灌流治疗腹型过敏性紫癜,改善氧化应激与炎性反应指标,安全性良好 【文献解读】肠外营养支持联合HA280血液灌流治疗腹型过敏性紫癜临床研究 导读 过敏性紫癜(HSP)目前已经成为我国儿童人群中较为常见的一种系统性血管疾病。在医学领域中,认为HSP可能属于血管的炎性反应,若干研究结果也显示,HSP的发病机制与机体的氧化应激反应、免疫炎性反应等均具有较为密切的联系。罹患腹型过敏性紫癜的患儿大多症状十分严重,会出现消化道内的大出血,诱发肠梗阻、肠穿孔以及肠套叠等多种严重的并发症,对儿童的生命安全形成巨大的威胁。在过敏性紫癜的治疗方面,目前尚以对症治疗、控制病情进展等保守策略为主。随着近些年医学科技的进步,针对各类重症患者抢救方法以及策略的方法研究也取得了较大的进展。其中血液灌流技术在近些年逐渐成熟,在重症患者的抢救过程中发挥了极大的作用,该种方法在本质上是利用体外循环的方法将患者血液循环之内的免疫复合物、炎症反应介质和其他有害物质清除,发挥出治疗效果。本研究选择2016年1月到2019年4月在我院接受治疗的腹型过敏性紫癜患儿96例作为研究对象,对肠外营养支持联合HA280血液灌流治疗腹型过敏性紫癜患儿的临床效果进行探讨,现报告如下: 资料和方法 1、研究对象: 选择2016年1月到2019年4月在我院(河北省唐山市丰润区人民医院)接受治疗的腹型过敏性紫癜患儿96例作为研究对象。 2、研究方法: 分组方法和结果:按照患儿的出生日期单日、双日分为对照组(n=48)和治疗组(n=48)。两组的一般临床资料数据差异均不具有统计学意义。

3、治疗方法: 对照组患儿给予常规治疗,具体包括:入院后给予肠外营养支持,在活动性消化道出血期间严格禁食,适当给予患儿补充钙离子,并使用H2受体阻滞剂进行对症治疗。如果患儿的症状逐渐改善,则逐步停止使用激素。 治疗组患儿在对照组治疗方法基础上进行血液灌流治疗,具体如下:使用JF-800A血液灌流机(健帆生物科技集团股份有限公司)与HA280树脂血液灌流器(健帆生物科技集团股份有限公司)完成血液灌流,每日完成一次血液灌流治疗,每次时间为2h左右,将血流速度控制在50~100ml/min。 两组的治疗时间均为14d。 4、观察指标: 对比两组的治疗期间糖皮质激素使用量、消化道症状持续时间、皮疹持续时间和住院时间;对比两组治疗前后的血清氧化应激指标变化情况;对比两组治疗前后的血清炎性因子变化情况。 5、统计学方法: 采用SPSS 4.0软件进行统计学处理,计量资料结果使用平均数±标准差表示,计数资料以率(%)表示,两组计量数据比较采用独立样本t检验,同组干预前后计量数据比较采用配对t检验,两组计数数据比较采用χ2检验。两组等级资料比较采用秩和检验中的Wilcoxon检验,P<0.05为差异有统计学意义。 结果 1、两组治疗期间糖皮质激素使用量、消化道症状持续时间、皮疹持续时间和住院时间对比 治疗组在治疗期间糖皮质激素使用量、消化道症状持续时间、皮疹持续时间和住院时间均短于对照组(P<0.05)。

氧化应激与心肌

氧化应激与心肌 1957年美国克里夫兰临床中心,首先将大隐静脉搭桥术应用于冠心病病人,此后冠状动脉粥样硬化性心脏病血运重建治疗快速发展。冠状动脉溶栓术、经皮冠状动脉成形术、冠状动脉支架植入术、冠状动脉旁路手术已成为挽救缺血心肌的重要治疗方式。但血流恢复本身也会引起显著的损伤,部分患者在血供恢复后,出现细胞超微结构变化、细胞代谢障碍、细胞内外环境改变,导致缺血再灌注损伤(ischemia/reperfusion-associated tissue injury,IRI),临床表现为心律失常、心力衰竭等。IRI也出现在心脏手术、心脏移植、心肺复苏等临床情况后。目前研究表明细胞IRI的机制主要包括:氧自由基含量增多、细胞内钙超载、线粒体膜去极化等。氧化还原失衡是IRI发生的重要起始因素,但其机制和细胞中存在的保护机制尚不完全明确,本文重点对氧化应激与心肌IRI的研究进展做一综述。 1.氧化应激和ROS 氧化应激(oxidative stress,OS)主要是由于内源性和(或)外源性刺激引起机体代谢异常而骤然产生大量活性氧簇(ROS)。ROS是指在外层电子轨道含有一个或多个不配对电子的原子、原子团或分子,包括超氧阴离子(O2- ·)、过氧化氢(H2O2)、过氧亚硝酸盐(ONOO-)和羟基自由基(·OH)。ROS作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡。超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶作为体内清除自由基的重要物质,在维持体内氧化还原平衡方面发挥重要的作用。但在IRI过程中,参与合成ROS的酶体系增多,且活性更强,如NADPH氧化酶、线粒体黄素酶、黄嘌呤氧化酶、未偶联的一氧化氮合酶、细胞色素P450、脂氧合酶、环氧合酶和过氧化物酶体,ROS的生成量明显高于细胞内的清除能力,导致氧化还原失衡。ROS虽然半衰期很短,但具有极强的氧化活性,与细胞内脂质、蛋白质、核酸等生物大分子发生过氧化反应,造成细胞结构损伤和代谢障碍。 2.ROS的主要来源 NADPH氧化酶是细胞内ROS的最主要来源,是由催化亚基gp91phox或其同系物,即非吞噬细胞氧化酶1~4(NOX1~4) 、双功能氧化酶1~2(Duox1~2) ,跨膜亚基p22phox,胞浆亚基p47phox、p67phox等蛋白分子共同组成的多亚基蛋白复合体。NOX家族蛋白亚型与跨膜亚基、胞浆亚基结合并组装成有活性的复合体后发挥其生物学功能。活化的NADPH氧化酶复合物与NADPH结合并释放2个电子,通过黄素腺嘌呤二核苷(FAD)传递给亚铁血红素,与细胞膜的外侧的2个氧分子结合生成O2-,最后生成H2O2、过氧化硝酸盐(ONOO-) 、羟基团(-OH) 及其它基团[1,2]。NOX源性的ROS在维持机体稳态中是把双刃剑,NOX源性ROS 一方面在氧化还原信号通路中起到了第二信使作用,参与多种细胞生理功能;另一方面,在高血压、动脉粥样硬化以及心肌IRI的病程中发挥了重要作用,因此单一抑制NOX活性对治疗心肌IRI并不是最好的选择。Vincent等[3]研究发现在30分钟缺血-24小时再灌注小鼠模型中,NOX4基因敲除组与NOX1和NOX2敲除组相比,表现出更大面积的心肌梗死,提示内源性NOX4 在H/R损伤中可能发挥着心肌细胞保护作用。 黄嘌呤氧化酶(XO)是IRI中ROS产生的另一重要来源,与合成抗氧化剂尿酸的黄嘌呤还原酶(XDH)作用相反。XDH/XO活力受细胞因子、细胞内化学物质及激素的调节。细胞缺血时XO活力升高,并且A TP分解产物次黄嘌呤积聚,再灌注时O2大量介入,次黄嘌呤和氧在XO作用下反应生成O2- ·和H2O2。有研究指出,XO不仅通过合成ROS参与心肌缺血再灌注损伤,XO本身可以与白细胞产生相互作用,造成微循环阻塞,导致再灌注的无复流现象。此外,XO可以直接损伤血管内皮细胞(EC)或通过ROS间接损害EC,影响心肌血流再灌注[4]。 3.ROS与细胞损伤

水质检测42项常规指标所需仪器试剂

水质检测42 项常规指标所需仪器试剂 一、42 项检测指标 根据农村饮水水质特点和现行国家饮用水水质卫生标准以及《全国农村饮水安全工程“十二五”规划》、《农村饮水安全水质中心建设导则》,水质检测指标为《生活饮用水卫生标准》(GB5749-2006)中的42项水质常规指标。水质检测中心检测指标即: 1、感官性状4项:色度(度)、浑浊度(NTU、臭和味(描述)、肉眼可见物。 2、一般化学指标13 项:pH 铝(mg/L)、铁(mg/L)、锰(mg/L)、铜(mg/L)、锌(mg/L)、氯化物(mg/L)、硫酸盐(mg/L)、溶解性总固体、总硬度(mg/L以CaCO计)、耗氧量(mg/L)、挥发酚类(以苯酚计,mg/L)、阴离子合成洗涤剂 (mg/L)。 3、毒理指标15 项:砷(mg/L)、镉(mg/L)、铬(六价,mg/L)、铅(mg/L)、汞(mg/L)、硒(mg/L)、氰化物、氟化物(mg/L)、硝酸盐(以N计)(mg/L)、三氯甲烷(mg/L)、四氯化碳(mg/L)、溴酸盐(使用臭氧时,mg/L)、甲醛(使用臭氧时,mg/L)、亚氯酸盐(使用二氧化氯消毒时,mg/L)、氯酸盐(使用复合二氧化氯消毒时,mg/L)。 4、微生物学指标4项:菌落总数(CFU/mL、总大肠菌群(MPN /100mL、耐热大肠菌群(MPN /100mL、大肠埃希氏菌(MPN /100mL。 5、与消毒有关的指标4项:应根据水消毒所用消毒剂的种类选择检测指标,游离余氯(mg/L)、臭氧(mg/L)、二氧化氯(mg/L)、一氯胺(总氯,mg/L)。 &放射性指标2项:总a放射性、总B放射性。 说明:根据卫生部、国家发展改革委、水利部关于加强农村饮水安全工程卫生学评价和水质卫生监测工作的通知(卫疾控发〔2008〕3号)附件内容要求监测指标包括: 1. 感官性状4项:色度(度)、浑浊度(NTU、臭和味(描述)、肉眼可见物。 2. 一般化学指标9项:卩日、铁(mg/L)、锰(mg/L)、氯化物(mg/L)、硫酸盐 (mg/L)、溶解性总固体、总硬度(mg/L以CaCO3^)、耗氧量(mg/L)、氨氮(mg/L)。 3. 毒理指标3项:砷(mg/L)、氟化物(mg/L)、硝酸盐(以N计)(mg/L)。 4?微生物学指标3项:菌落总数(CFU/mL、总大肠菌群(MPN /100mL、耐热大肠菌群(MPN /100mL)。 5. 与消毒有关的指标3项:应根据水消毒所用消毒剂的种类选择监测指标,如游离余氯(mg/L)、臭氧(mg/L)、二氧化氯(mg/L)等。 各地可结合当地的实际情况适当增加监测指标。

植物生理生化指标测定(精)

小黑豆相关生理指标测定 1. 表型变化:鲜重、株高、主根长和叶面积 鲜重 :取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测 6个重复。 株高 :取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长 :取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积 :取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长, 测叶片最窄处长度作为叶的宽, 叶片长和宽的乘积即为叶表面积。每个测 6个重复。 2. 总蛋白、可溶性糖、丙二醛(MDA 和 H2O2含量测定 样品处理:取 0.5g 样品(叶片要去除叶脉、根要先用清水清洗干净 ,速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入 1.5ml 的 Tris-HCl (pH7.4 抽提, 将抽提液转移到 2ml 的 EP 管中, 于 4℃, 12000rpm 离心 15min , 取上清, 保存在 -20℃下,上清液可用于总蛋白、丙二醛(MDA 、可溶性糖和 H2O2含量测定。 总蛋白测定(Bradford 法 :样品反应体系(800ul H2O+200ul Bradford+5ul样品 , 空白对照为(800ul H2O+200ul Bradford 。测定后带入标准曲线 Y=32.549X-0.224(Y代表蛋白含量, X 代表 OD595 ,计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml 蒽酮 +180ul ddH2O+20ul样品提取液 ; 空白对照 (1ml 蒽酮 +180ul ddH2O , 测定 OD625后带入标准曲线 : Y=0.0345X+0.0204(Y代表 OD625, X 代表可溶性糖含量(ug

实验方法汇总(水质监测指标)

实验方法汇总 第一部分水样的采集和储存 第一节进水取样 用烧杯从进水箱中取样,根据不同指标的测定频率确定取样量的大小,从中取约20mL水样过0.45um滤膜后存于聚乙烯瓶中,标明取样日期后4℃储存于冰箱中用于硝氮、亚硝氮的测定;另取约10mL水样过玻璃纤维膜后用硫酸调pH至小于2,存于玻璃试管中,标明取样日期后4℃储存于冰箱中用于TOC 的测定。其余水样用于COD、氨氮、色度、pH、总铁、蛋白质和多糖指标的测定,测定BOD的当天取样量约300mL。 第二节出水取样 用烧杯从出水口接取一定量水样,其它同进水。 第三节上清液取样 将适量混合液用定性滤纸过滤,取滤液进行各项指标的测定,具体同进水取样,将过滤后余下的污泥倒回反应器内(整个实验中,除测定MLVSS外,其它指标测定完毕后都要将污泥倒回反应器内)。

第二部分理化指标的测定方法 第一节DO、水温的测定 采用溶解氧仪进行DO和水温的测定:将溶氧仪的电极与仪器连接并将电极浸没入反应器内混合液液面以下(每次的测定位置都固定在同一死角处并保证温度感应部分也没入水面以下),打开溶解氧仪,调至显示mg/L单位的状态下,待读数稳定后记录下DO和水温。测试完毕后关掉溶氧仪,拔下电极依次用清水和蒸馏水清洗后,用滤纸小心擦干电极后将溶氧仪放回固定位置处。 第二节pH的测定 1.仪器:pH计10mL小烧杯 2.试剂 用于校准仪器的标准缓冲液,按《pH标准溶液的配制》中规定的数量称取试剂,溶于25 oC水中,在容量瓶内定容至1000ml、水的电导率应低于 2μS/cm,临用前煮沸数分钟,赶走二氧化碳,冷却。取50ml冷却的蒸馏水,加1滴饱和氯化钾溶液,测量pH值,如pH在6~7之间即可用于配制各种标准缓冲液。 pH标准液的配制 标准物质 pH(25 oC)每1000ml水溶液中所含试剂的质量(25 oC) 基本标准 酒石酸氢钾(25 oC饱 3.557 6.4gKHC4H4O6①

植物生理指标检测方法

植物组织中可溶性糖含量的测定 在作为营养物质主要是指可溶性糖和淀粉。它们在营养中的作用主要有:合成纤维素组成细胞壁;转化并组成其他有机物如核苷酸、核酸等;分解产物是其他许多有机物合成的原料,如糖在呼吸过程中形成的有机酸,可作为NH 3 的受体而转化为氨基酸;糖类作为呼吸基质,为作物的各种合成过程和各种生命活动提供了所需的能量。由于碳水化合物具有这些重要的作用,所以是营养中最基本的物质,也是需要量最多的一类。 Ⅰ蒽酮法测定可溶性糖 一、原理 糖在浓硫酸作用下,可经脱水反应生成糠醛或羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的定量测定。 该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖与己糖含量,而且可以测所有寡糖类和多糖类,其中包括淀粉、纤维素等(因为反应液中的浓硫酸可以把多糖水解成单糖而发生反应),所以用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量,省去许多麻烦,因此,有特殊的应用价值。但在测定水溶性碳水化合物时,则应注意切勿将样品的未溶解残渣加入反应液中,不然会因为细胞壁中的纤维素、半纤维素等与蒽酮试剂发生反应而增加了测定误差。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅,故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。 糖类与蒽酮反应生成的有色物质在可见光区的吸收峰为 620 nm ,故在此波长下进行比色。 二、实验材料、试剂与仪器设备 (一)实验材料 任何植物鲜样或干样。 (二)试剂 1. 80 %乙醇。 2. 葡萄糖标准溶液(100 μg/mL ):准确称取100 mg 分析纯无水葡萄糖,溶于蒸馏水并定容至100 mL ,使用时再稀释 10 倍( 100 μg/mL )。 3 .蒽酮试剂:称取 1.0 g 蒽酮,溶于 80% 浓硫酸(将 98% 浓硫酸稀释,把浓硫酸缓缓加入到蒸馏水中) 1000 mL 中,冷却至室温,贮于具塞棕色瓶内,冰箱保存,可使用 2 ~ 3 周。 (三)仪器设备 分光光度计,分析天平,离心管,离心机,恒温水浴,试管,三角瓶,移液管( 5 、 1 、0.5 mL ),剪刀,瓷盘,玻棒,水浴锅,电炉,漏斗,滤纸。 三、实验步骤 1. 样品中可溶性糖的提取称取剪碎混匀的新鲜样品0.5 ~ 1.0 g (或干样粉末 5 ~100 mg ),放入大试管中,加入15 mL 蒸馏水,在沸水浴中煮沸20 min ,取出冷却,过滤入100 mL 容量瓶中,用蒸馏水冲洗残渣数次,定容至刻度。 2. 标准曲线制作取 6 支大试管,从 0 ~ 5 分别编号,按表 24-1 加入各试剂。 表 24-1 蒽酮法测可溶性糖制作标准曲线的试剂量 将各管快速摇动混匀后,在沸水浴中煮10 min ,取出冷却,在620 nm 波长下,用空白调零测定光密度,以光密度为纵坐标,含葡萄糖量( μg )为横坐标绘制标准曲线。 3 .样品测定取待测样品提取液 1.0 mL 加蒽酮试剂 5 mL ,同以上操作显色测定光密度。重复 3 次。

博莱霉素诱导大鼠肺纤维化过程中羟脯氨酸及氧化应激指标

博莱霉素诱导大鼠肺纤维化过程中羟脯氨酸及氧化应激指标 【摘要】目的:观察博莱霉素诱导的肺纤维化模型中组织羟脯氨酸(Hyp)及各氧化应激指标的变化,探讨氧化抗氧化失衡在该病发生发展中的作用. 方法:二级SD大鼠40只,随机分为模型组与对照组,每组20只. 气管内注入博莱霉素A5(BLMA5)溶液,建立肺纤维化模型. 分别于3,7,14和28 d每组随机抽出5只,处死后取肺脏行HE, Masson染色鉴定模型并测定Hyp含量. 同时分别以八木国夫荧光法测定肺组织脂质过氧化产物(MDA);改良盐酸羟胺法测定组织总超氧化物歧化酶(SOD)的酶活力;改良荧光法测定还原型谷胱甘肽(GSH)含量;荧光法测定氧化型谷胱甘肽(GSSG)含量. 并计算GSH/GSSG值. 结果:成功建立博莱霉素诱导的肺纤维化模型. 各指标在不同时间点出现变化. 模型组Hyp含量于7 d 时高于对照组,28 d达到最高(P<). 模型组MDA含量随时间延长而增加,其中14 d 时显着高于对照组(P<),但在28 d时有下降. SOD活力在7 d, 14 d均降低,28 d 时上升. 模型组GSH/GSSG在3 d, 7 d显着低于对照组(P<),14 d, 28 d又回升. 结论:Hyp可作为博莱霉素诱导的肺纤维化的一个指标. 博莱霉素诱导的大鼠肺纤维化伴有氧化损伤,且在不同阶段细胞内、外的氧化抗氧化出现失衡. 【关键词】肺纤维化;羟脯氨酸;氧化应激 0引言 肺纤维化是一组由多种病因所引起的肺破坏性疾病,目前的治疗方法尚不能改善其不良的预后,加强对肺纤维化机制的研究,并在此基础上发展新的治疗策略已成为更加迫切的现实需要. 一般认为,在肺部,损伤组织及激发纤维化的主要病理机制在于炎症和免疫反应,但是大量研究表明,氧自由基在炎症和免疫介导的组织损伤中扮演了重要角色. 故本研究通过建立博莱霉素诱导的肺纤维化模型,观察各氧化指标在此过程中的变化,从自由基理论的角度,深入探讨氧化抗氧化失衡在该病发生发展中的重要作用. 1材料和方法 材料 博莱霉素A5,天津太河制药有限公司产品(批号:030305),8 mg/支. 丙二醛(MDA)标准品(Merk公司);2Thiobarbituric acid(Merk公司);磷钨酸(中国医药集团上海化学试剂公司);盐酸羟胺(AR, 天津化学试剂一厂);氯化硝基四氮唑蓝,NBT,NEMI(华美公司);Triton X100(上海试剂一厂); 7210分光光度计(上海分析仪器厂虹桥分厂);970CRT荧光分光光度计(上海分析仪器总厂);GL20A全

相关文档
最新文档