小型变压器的简易计算

小型变压器的简易计算
小型变压器的简易计算

小型变压器的简易计算:

1,求每伏匝数

每伏匝数=55/铁心截面

例如,铁心截面=3.5╳1.6=5.6平方厘米

故,每伏匝数=55/5.6=9.8匝

2,求线圈匝数

初级线圈n1=220╳9.8=2156匝

次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝

次级线圈匝数计算中的1.05是考虑有负荷时的压降

3,求导线直径

要求输出8伏的电流是多少安?这里我假定为2安。

变压器的输出容量=8╳2=16伏安

变压器的输入容量=变压器的输出容量/0.8=20伏安

初级线圈电流I1=20/220=0.09安

导线直径d=0.8√I

初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米

次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米

经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。

小型变压器的设计原则与技巧

小型变压器是指2kva以下的电源变压器及音频变压器。下面谈谈小型变压器设计原则与技巧。

1.变压器截面积的确定铁芯截面积a是根据变压器总功率p确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即a=1.25 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。

2.每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35w电源变压器,通常计算(中夕片取8500高斯)每伏应绕7.2匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25ma左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。

3.漆包线的线径确定线径应根据负载电流确定,由于漆包线在不同环境下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2a/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度2 5a/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样

的漆包线取电流密度3~3.5a/mm2(线径)。音频变压器的漆包线电流密度可取

3 5~4a/mm2(线径)。这样因时制宜取材既可保证质量又可大大降低成本。

综上所述要想设计出性价比较高的变压器,铁芯的截面积只能大不能小;适当减少每伏的匝数;详细分析负载情况;合理选用漆包线的规格。只有通过反复实践细心推敲,才能真正掌握变压器的设计原则与技巧。

对于感性负荷,无功功率等于视在功率的平方与有功功率的平方差的平方根,即:Q= ;功率因数等于有功功率与视在功率之比,即:Cos =P/S。如一台300VA 的调压器,带动一台80W的彩电,经计算,消耗网上的无功功率为289.14var;功率因数为0.27。再如一台500VA的调压器,带动一台200W冰箱,经计算,消耗网上的无功功率为458.26var;功率因数为0.4。

由此说明,对于感性负载,在有功功率一定时,视在功率越大,容量越大,消耗网上的无功功率越大,功率因数越低,设备利用率越低,很不经济。

如何确定变压器线圈导线的电流密度

1kva以下变压器电流密度的取值:连续使用的变压器可取3.7到4.7a/mm2;间歇或短时工作的变压器可取5到6安培每平方厘米。

10kva以下空气自冷式单相变压器电流密度的取值:对于内绕组取3到4a/mm2;外绕组散热条件较好,可取4到4.5安培每平方厘米.选取变压器电流密度取值时,通风条件好及容量大者取大值.当使用铝线绕制时,其电流密度可安铜线的60%

计算。

欢迎转载,信息来自维库电子市场网(https://www.360docs.net/doc/4b5254030.html,)

如何减小变压器的空载电流

变压器次级开路时,初级仍有一定的电流,这部分电流称为空载电流。空载电流由磁化电流(产生磁通)和铁损电流(由铁芯损耗引起)组成。

空载电流的作用是建立工作磁场,又称励磁电流。当变压器二次侧开路,在一次侧加电压u1e时,一次侧要产生电流io——空载电流。

io=u1e/(z1+zm)

z1——变压器一次阻抗

zm——变压器激磁阻抗

为了减少空载电流,主要就是从变压器的铁芯入手。

1、提高铁芯(如硅钢片)质量。

2、改进铁芯结构。

交流三相变压器线圈的接法

三相电压的变换可以用三只单相变压器或如图所示的三相变压器来完成.三相变压器原理和单相变压器原理相同。

在三相变压器中,每一芯柱均绕有原绕组和副绕组,相当于一只单相变压器.三相

变压器高压绕组的始端常用a,b,c,末端用x,y,z来表示.低压绕组则用a,b,c和

x,y,z来表示。高低压绕组分别可以接成星形或三角行.在低压绕组输出为低电压,大电流的三相变压器中(例如电镀变压器),为了减少低压绕组的导线面积,低压绕组亦有采用六相星行或六相反星行接法。

我国生产的电力配电变压器均采用y/y0-12或y/三角形-11这两种标准结线方法.数子12和11表示原绕组和副绕组线电压的相位差,也就是所谓变压器的结线组别.在单相变压器运行是,结线问题往往不为人们所重视,然而,在变压器的并联运行中,结线问题却具有重要意义。

变压器基本知识_变压器分类(压器的种类)

常用变压器的分类可归纳如下:

(1)按相数分:

单相变压器:用于单相负荷。

三相变压器:用于三相系统的升、降电压。

(2)按冷却方式分:

干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。

(3)按绕组形式分:

双绕组变压器:用于连接电力系统中的两个电压等级。

三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。

自耦变电器:用于连接不同电压的电力系统,也可做为普通的升压或降后变压器用。

(4)按铁芯形式分:

芯式变压器:用于高压的电力变压器。

壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。

(5)按用途分类:

电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器等。

什么是音频变压器

音频变压器是一个感性元件它对不同的频率就呈现不同的阻抗(zl=2πfl),在音频的低端漏感作用是非常少的可忽略不计,此时放大管的负载是l和r0的并联值,l的值越大感抗也越大,对r0的分流作用就越少,r0上的音频功率就越大。在音频的高端区电感可视为开路,而漏感作用将随频率升高越来越显著,此时放大管的负载相当于漏感+r0(串联),另外分布电容对信号也起到了旁路的作用,显然由于漏感的存在和分布电容的存在,r0所获得的功率随着频率的升高而减少,为此音频变压器在音频的高频区往往失真大,功率增益低,频响变差。

电源变压器的检测测量方法

变压器的检测主要包括以下内容:

1、通过观察变压器的外貌来检查其是否有明显异常现象:如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

2、绝缘性测试:用万用表r×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。

3、线圈通断的检测:将万用表置于r×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

4、判别初、次级线圈:电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220v字样,次级绕组则标出额定电压值,如15v、24v、35v等。再根据这些标记进行识别。

5、空载电流的检测:

直接测量法:将次级所有绕组全部开路,把万用表置于交流电流挡(500ma,串入初级绕组。当初级绕组的插头插入220v交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100ma左右。如果超出太多,则说明变压器有短路性故障。

间接测量法:在变压器的初级绕组中串联一个10 /5w的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻r两端的电压降u,然后用欧姆定律算出空载电流i空,即i空=u/r。

6、空载电压的检测:将电源变压器的初级接220v市电,用万用表交流电压接依次测出各绕组的空载电压值(u21、u22、u23、u24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。

7、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

8、检测判别各绕组的同名端:在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。否则,变压器不能正常工作。

9、电源变压器短路性故障的综合检测判别:电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。存在短路故障的变压器,其空载电流值将远大于满载电流的10%。当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。此时不用测量空载电流便可断定变压器有短路点存在。

常用数码设备变压器的选择

数码电子设备所需要的外接电源的电压一般多为3伏、4.2伏、5伏、5.4伏、6伏、7.2伏、8.4伏(数码相机、掌上电脑)、9-12伏(摄象机);手提电脑用的外接电源一般是12-19伏的。在选择过程中,必须考虑外接变压器输出电压高低和电流大小的问题。

1:常用数码设备变压器的选择_直流输出电压范围的确定

一般我们使用的数码设备等电子产品所用的电压都会在产品的外壳写清楚。如:dc 3伏,或者dc 5伏。这是表明要使用直流输出电压为3伏的电源变压器或者

直流输出电压为5伏的变压器给它供电。其实,电子产品在设计的时候,对于电压的工作范围都有一个比较宽松的耐压和欠压范围。也就是说虽然那些电子产品上面写了是3伏5伏的,但并不是必须要那么严格。数码设备里面的电子电路在设计的时候已经考虑了这些情况。说的简单点,标明dc 3伏的,它的电压工作范围一般在:2.7伏---3.5伏都可以用(也就是说可以选择输出电压为3伏或者3.3伏的标准电源变压器);标明dc 5伏的,它的电压工作范围一般在:4.5----5.5伏(也说选择输出电压为4.5伏、5伏和5.4伏的标准电源变压器);这些在电子产品设计的时候已经在集成电路里面就作好了的。所以,我们在选择电源变压器的时候,只要结合你的电子产品标示的电压数据,选择在工作范围的电源变压器就可以正常工作,也不会烧坏(或者发生电压低的故障)。

2:常用数码设备变压器的选择_变压器输出电流大小的选择

电压确定了,在选择电源变压器的时候,要优先选择输出电流大的。这样,就可以为那些要求电流大的电子产品提供强劲的电流,从而保证用电器获得稳定的电压和减少发热。数码相机和摄象机一般要选择输出电流达1a--2a的,pda电流要小些。笔记本电脑电流要求的要高一些一般在2-4a。这些都是我们在选择外接变压器要考虑的。进口的电源变压器它上面标示的电流一般比较规范,而且过载能力强,这与设计产品时所用的电子元件有关系,许多或者说留的余量比较大;一般标明1a的,输出1.5a左右;国产许多杂牌的变压器上面标明是1a的,输出电流达不到1a,有的也许在700-800ma左右。

变压器功率铁芯的选用按公式预计算:S=1.25×根号P,(S是套着线圈部位铁芯的截面积,单位:CM,P为功率)

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/4b5254030.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

电气工程--小型单相变压器设计原理

东北石油大学 课程报告

2011年7 月15 日

目录 1、小型单相变压器 (1) 2、变压器的工作原理 (1) 2.1 电压变换 (1) 2.2 电流变换 (2) 3、变压器的基本结构 (2) 4、设计内容 (3) 4.1 额定容量的确定 (3) 4.2 铁心尺寸的选定 (4) 4.3 绕组的匝数与导线直径 (6) 4.4 绕组(线圈)排列及铁心尺寸的最后确定 (7) 5、实例计算 (8) 6、结论 (10) 7、心得体会 (10) 参考文献 (12) 附录 (13)

1、小型单相变压器 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数[1] 。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备 [2-4] 。 文献[5]所述,变压器的主要部件是一个铁心和套在铁心上的两个绕组。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1 N ,副绕组匝数为2N 。 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 2.1 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通 φ。 (1) (2) (3) (4)

变压器的短路电流计算方法

变380V低压侧短路电流计算: https://www.360docs.net/doc/4b5254030.html,=6%时Ik=25*Se https://www.360docs.net/doc/4b5254030.html,=4%时Ik=37*Se 上式中Uk:变压器的阻抗电压,记得好像是Ucc。 Ik:总出线处短路电流A Se:变压器容量KVA 3。峰值短路电流=Ik*2.55 4.两相短路电流=Ik*0.866 5.多台变压器并列运行 Ik=(S1+S2+。。。。Sn)*1.44/Uk 变压器短路容量-短路电流计算公式-短路冲击电流的计算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为

110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动

电机与变压器教 案2 (小型单相变压器的制作)

教案正页序号2

教案附页 2、小型变压器的设计 四、课题 所需的相 (一)自耦变压器 1、单相自耦变压器 2、三相自耦变压器自 压 仅 降压,只要 入、输出对 下,就变成 压 器。

入低压侧,这是很不安全的,所以低压侧应有防止过电压的保护措施。 2)如果在自耦变压器的输入端把相线和零线接反,虽然二次侧输出电压大小不变,仍可正常工作,但这时输出“零线”已经为“高电位”,是非常危险的。 (3). 自耦变压器输出功率 S2=U2I2=U2(I+I1)=U2 I +U2I1=S’2+S’’2 S’2为绕组之间电磁感应传递的能量,而S’’2为电路直接从一次侧传递的能量。 从U2I1= S’’2可导出:S’’2=S2/K 通常,自耦变压器变比K=1.2~2的状态下,优点明显。(二)仪用互感器 1、电流互感器工作原理 电流互感器结构上与普通双绕组变压器相似,也有铁心和一次侧、二次侧绕组,但它的一次侧绕组匝数很少,只有一匝到几匝,导线都很粗。电流互感器的二次侧绕组匝数较多,它与电流表或功率表的电流线圈串联成为闭合电路,由于这些线圈的阻抗都很小,所以二次侧近似于短路状态。由于二次侧近似于短路,所以互感器的一次侧的电压也几乎为零,因为主磁通正比于一次侧输入电压,总磁势为零。 2、电压互感器工作原理路中,流电流,被

电压互感器的原理和普通降压变压器是完全一样的,不同的是它的变压比更准确;电压互感器的一次侧接有高电压,而二次侧接有电压表或其他仪表(如功率表、电能表等)的电压线圈。因为这些负载的阻抗都很大,电压互感器近似运行在二次侧开路的空载状态, U2为二次侧电压表上的读数,只要乘变比K就是一次侧的高压电压值。 仪用互感器的结构和使用注意事项比较 比较 内容 电流互感器电压互感器 结构一次绕组匝数很少,只 有一匝到几匝,导线都 很粗,串联在被测的电 路中; 二次绕组匝数 较多,二次侧近似于短 路状态。运行中二次侧 不得开路。一次侧接有高电压,而二次侧近似开路状态,运行中,二次侧不能短路。

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

最佳低频变压器设计方法

最佳低频变压器设计方法 热轧硅钢片选铁心型号和叠厚:比如E I型的,中部舌宽,叠厚每伏匝数:N0=4、510^5/BmQ0=4、510^5/(11000Q0) Bm:磁通密度极大值,10000~12000Gs一次匝数:N1=N0U1二次匝数:N2=N0U 21、0 61、06为补偿负载时的电压下降一次导线截面积: S1=I1/δ=P1/U1δ,δ:电流密度,可选2~3A/mm^2二次导线截面积:S2=I2/δ=P2/U2δ舌口32MM,厚34MM,E宽96MM,问功率,初级220,多少匝,线粗多少,次级51V 双组的,最大功率使用要多粗的线,告口是指<EI型变压器铁芯截面积是指E片中间那一横(插入变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽叠厚=截面积,单位:C㎡>,第一种方法:计算方法:(1)变压器矽钢片截面:3、2CM*3、4CM*0、9=9、792CM^2(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9、79/1、25)^2= 61、34瓦(取60瓦)(3)根据截面计算线圈每伏几匝: W=4、5*10^5/BmS=4、5*10^5/(10000*9、79)=4、6匝/伏(4)初级线圈匝数:220*4、6=1012匝(5)初级线圈电流: 60W/220V=0、273A(6)初级线圈线径:d=0、715根号0、273=0、

37(MM)(7)次级线圈匝数:2*(51*4、6*1、03)=2*242(匝)(1、03是降压系素,双级51V=2*242匝)(8)次级线圈电流:60W/(2*51V)=0、59A(9)次级线径:d=0、715根号0、59=0、55(MM)第二种方法:计算方法:E形铁芯以中间舌为计算舌宽的。计算公式:输出功率:P2=UI考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0、7~0、9,一般功率大的取大值)每伏匝数计算公式:N(每伏匝数)=4、510(的5次方)/BS(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。S=铁芯舌的面积,单位是平方CM)如硅钢片质量一般可选取10000高斯,那么可简化为:N=45/S计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。初级不用加余量。由电流求线径:I=P/U (I=A,P=W,U=V)以线径每平方 MM≈2、5~2、6A选取。第三种方法:计算方法首先要说明的是变压器的截面积是线圈所套住位置的截面积、如果你的铁心面积(线圈所套住位置)为32*34=1088mm2= 10、88cm2 我没有时间给你计算、你自己算、呵呵!给你个参考,希望对你有帮助:小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,你的铁心截面=3、5╳1、6=5、6平方厘米故,每伏匝数=55/5、6=9、8匝2,求线圈匝数初级线圈 n1=220╳9、8=2156匝次级线圈n2=8╳9、8╳1、05= 82、32 可取为82匝次级线圈匝数计算中的1、05是考虑有负荷时的压降3,求导线直径你未说明你要求输出多少伏的电流是

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛. 1。1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等. 1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

小型单相变压器的绕制资料

实训八、小型单相变压器的绕制 小型单相变压器的绕制分设计制作和重绕修理制作两种,无论那种,其绕制工艺都是相同的。设计制作是将使用者的要求作为依据,以满足要求进行设计计算后再绕制;而重绕修理制作是以原物参数作为依据,进行恢复性的绕制。下面先学习设计制作方式的变压器绕制。 一、小型单相变压器的设计制作 小型单相变压器的设计制作思路是:由负载的大小确定其容量;从负载侧所需电压的高低计算出两侧电压;根据用户的使用要求及环境决定其材质和尺寸。经过一系列的设计计算,为制作提供足够的技术数据,即可做出满足需要的小型单相变压器。 (一)设计计算 1、计算变压器输出容量2S 输出容量的大小受变压器二次侧供给负载量的限制,多个负载则需要多个二次侧绕组,各绕组的电压、电流分别为22I U 、,33I U 、,44I U 、,..,则2S 为 ++=33222I U I U S (VA ) 2、估算变压器输入容量1S 和输入电流1I 对小型变压器,考虑负载运行时的功率损耗(铜耗及铁耗)后,其输入容量1S 的计算式为 η2 1S S = (VA ) 式中:η——变压器效率,始终小于1,kVA 1以下的变压器9.0~8.0=η。 输入电流I 1的计算式为 11 1) 2.11.1(U S I -= (A ) 式中:U 1——一次侧电压的有效值,V 。 3.变压器铁心截面积的计算及硅钢片尺寸的选用 (a)截面积的计算 小型单相变压器的铁心多采用壳式,铁心中柱放置绕组。铁心的几何形状如图1-11-1所示。它的中柱横截面 Fe A 的大小与变压器输出容量S 2的关系为 2S k A Fe =(cm 2) 式中:k ——经验系数,大小与S 2有关,可参考表1-11-1

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

单项变压器的设计说明

1. 变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换等,变压器常用的铁心形状一般有E型和C型铁心。 变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的 能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。当交流变压器U 1 加到一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中产生感应 电动势。这时如果二次侧与外电路的负载接通,便有交流I 2流出,负载端电压即为U 2 。原 绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为N 1,副绕组匝数为N 1 。 图(1)变压器结构示意图 图(2)变压器简化电路图1.1电压变换 当一次绕组两端加上交流电压U 1时,绕组中通过交流电流I 1 ,在铁心中将产生既与一 次绕组交链,又与二次绕组交链的主磁通Φ,主磁通在一次绕组中产生感应电动势e1。u1、i1、e1等的参考方向的设定与交流铁心线圈电路相同。 E1=-j4.44N1fΦ(1-1)

dt d 1 11N -e u Φ == (1-2) dt d 222N e u Φ =-= (1-3) 变压器一、二次绕组的电动势之比称为变压器的电压比,K 为变比。 K N N E E U U 2 1 2121=== (1-4) K U U 1 2= (1-5) 说明只要改变原、副绕组的匝数比,也就是改变N1、N2,就能按要求改变电压。 1.2电流变换 变压器在工作时,二次电流I 2的大小主要取决于负载阻抗模|Z 1|的大小,而一次电流I 1的大小则取决于I 2的大小。 又因 2211I U I U = (1-6) 所以 21 2 1I I U U = (1-7) 说明变压器在改变电压的同时,亦能改变电流。 小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。

小型单相变压器的设计

电机学课程设计 总结报告 课题名称:小型变压器的设计 学生姓名: 学号: 专业:电气工程及其自动化班级: 指导老师:

目录 目录_____________________________________________________ 1 摘要_________________________________________________ 2 一、变压器的基本结构_____________________________________ 3 二、变压器的工作原理____________________________________ 4 1.电压变换 ___________________________________________ 4 2.电流变换 ___________________________________________ 5 三、设计内容____________________________________________ 5 1、额定容量的确定_____________________________________ 5 2、铁心尺寸的选定____________________________________ 6 3、计算绕组线圈匝数___________________________________ 8 4、计算各绕组导线的直径并选择导线_____________________ 9 5、计算绕组的总尺寸,核算铁芯窗口的面积 _____________ 100 四设计实例____________________________________________ 11 4.1 设计要求_________________________________________ 11 4.2计算变压器参数____________________________________ 12 五总结_________________________________________________ 15 参考文献________________________________________________ 15 附录

单级PFC高频变压器设计及参数计算详解

单级PFC高频变压器设计及参数计算详解 由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF>0.95 THD<25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve Po:输出功率;100:常数;Fs:开关频率;Ve:磁芯体积。 在这里,Po=Vo*Io=48*1.28=61.44;工作频率选择:50000Hz;则: Ve=Po/(100*50000) =61.4/(100*50000)=12280 mmm PQ3230的Ve值为:11970.00mmm,这里由于是调频方式工作。完全可以满足需求。可以代入公式去看看实际 需要的工作频率为:51295Hz。 第二步:计算初级电感量。 最小直流输入电压:VDmin=176*1.414=249V。 最大直流输入电压:VDmax=265*1.414=375V。 最大输入功率:Pinmax=Po/ef=61.4/0.9=68.3W(设计变压器时稍微取得比总效率高一点)。 最大占空比的选择: 宽电压一般选择小于0.5,窄电压一般选择在0.3左右。考虑到MOS管的耐压,一般不要 选择大于0.5 ,220V供电时选择0.3比较合适。在这里选择:Dmax=0.327。 最大输入电流: Iinmax=Pin/Vinmin=68.3/176=0.39 A 最大输入峰值电流:Iinmaxp=Iin*1.414=0.39*1.414=0.55A MOS管最大峰值电流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A 初级电感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3 =0.327*0.327*176/(2*0.39*50000)*1000 =482.55 uH 取500uH。 第三步:计算初级匝数NP: 查磁芯资料,PQ3230的AL值为:5140nH/N^2,在设计反激变压器时,要留一定的气息。选择0.6倍的AL值比较合适。在这里AL我们取:

《电机与拖动》课程设计_小型单相变压器设计

小型單相變壓器的設計和繞制 班級: 08機電3班 姓名: ***** 學號: 04040803034 指導教師: ***** 日期: 6月25日

目錄 一、小型單相變壓器簡介 二、變壓器的工作原理 三、變壓器的基本結構 四、設計內容 五、實例計算 六、結論 七、心得體會

一、小型單相變壓器簡介 變壓器是通過電磁耦合關係傳遞電能的設備,用途可綜述為:經濟的輸送電能、合理的分配電能、安全的使用電能。實際上,它在變壓的同時還能改變電流,還可改變阻抗和相數。小型變壓器指的是容量1000V.A 以下的變壓器。最簡單的小型單相變壓器由一個閉合的鐵心(構成磁路)和繞在鐵心上的兩個匝數不同、 彼此絕緣的繞組(構成電路)構成。這類變壓器在生活中的應用非常廣泛。 二、變壓器的工作原理 變壓器的功能主要有:電壓變換;阻抗變換;隔離;穩壓(磁飽和變壓器)等,變壓器常用的鐵心形狀一般有E 型和C 型鐵心。變壓器是利用電磁感應原理將某一電壓的交流換成頻率相同的另一電壓的交流電的能量的變換裝備。變壓器的主要部件是一個鐵心和套在鐵心上的兩個繞組,如圖(1)所示。一個繞組接電源,稱為原繞組(一次繞組、初級),另一個接負載,稱為副繞組(二次繞組、次級)。原繞組各量用下標1表示,副繞組各量用下標2表示。原繞組匝數為1N ,副繞組匝數為2N 。 圖(1)變壓器結構示意圖 理想狀況如下(不計電阻、鐵耗和漏磁),原繞組加電壓1u ,產生電流1i ,建立磁通 ,沿鐵心閉合,分別在原副繞組中感應電動勢21e e 和。

(1) 電壓變換 當一次繞組兩端加上交流電壓1u 時,繞組中通過交流電流1i ,在鐵心中將 產生既與一次繞組交鏈,又與二次繞組交鏈的主磁通φ。 (1-1) (1-2) (1-3) (1-4) 說明只要改變原、副繞組的匝數比,就能按要求改變電壓。 (2)電流變換 變壓器在工作時,二次電流2I 的大小主要取決於負載阻抗模|1Z |的大小,而一次電流1I 的大小則取決於2I 的大小。 2211I U I U = 又 (1-5) K I I U U I 22121== ∴ (1-6) 說明變壓器在改變電壓的同時,亦能改變電流。小型變壓器的原理:小型單相變壓器一般是指工頻小容量單相變壓器。 三、 變壓器的基本結構 1、鐵心:鐵心是變壓器磁路部分。為減少鐵心內磁滯損耗渦流損耗,通常鐵心用含矽量較高的、厚度為0.35或0.5mm 、表面 塗有絕漆的熱軋或冷軋矽鋼片疊裝而成。鐵心分為鐵柱和鐵軛兩部分,鐵柱上套裝有繞組線圈,鐵軛

施工临时供电变压器容量计算方法

施工临时供电变压器容量计算方法一(估算) 施工临时供电变压器容量计算方法一(估算)--参见《袖珍建筑工程造价计算手册》 变压器容量计算公式: P =K0(K1∑P1/ (cos?×η)+K2∑P2+K3∑P3+K4∑P4) P 施工用电变压器总容量(KVA) ∑P1电动机额定功率(KW) ∑P2电焊机(对焊机)额定容量(KVA) ∑P3室内照明(包括空调)(KW) ∑P4 室外照明(KW) (K0取值范围为1.05~1.1,取1.05) K1、K2、K3、K4为需要系数,其中: K1:电动机:3~10台取0.7,11~30台取0.6,30台以上取0.5。K2:电焊机:3~10台取0.6,10台以上取0.5。 K3:室内照明:0.8 K4:室外照明:1.0。

cos?:电动机的平均功率因素,取0.75 η:各台电动机平均效率,取0.86 照明用电量可按动力用电总量的10%计算。 有效供电半径一般在500m以内。 施工用电量及变压器容量计算书实例(估算之二) 一.编制依据 《施工现场临时用电安全技术规范》JGJ46-2005 《工程建设标准强制性条文》 《建筑工程施工现场供电安全规范》GB50194--93 《建筑施工现场安全规范检查标准》JGJ59-99 《电力工程电缆设计规范》GB50217 《简明施工计算手册》第三版(江正荣、朱国梁编著) 二.施工现场用电初步统计 1)计算公式 工地临时供电包括施工及照明用电两个方面,参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-17)如下: P =η(K1∑P1/ cos?+K2∑P2+K3∑P3+K4∑P4) 其中

相关文档
最新文档