电大离散数学作业答案任务

电大离散数学作业答案任务
电大离散数学作业答案任务

04任务_0010

1. 设无向图G的邻接矩阵为

则G的边数为( ).

A. 1

B. 6

C. 7

D. 14

2. 无向图G存在欧拉回路,当且仅当().

A. G中所有结点的度数全为偶数

B. G中至多有两个奇数度结点

C. G连通且所有结点的度数全为偶数

D. G连通且至多有两个奇数度结点

3. 设图G=,v V,则下列结论成立的是 ( ) .

A. deg(v)=2|E|

B. deg(v)=|E|

C.

D.

4. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).

A. e-v+2

B. v+e-2

C. e-v-2

D. e+v+2

5. 若G是一个汉密尔顿图,则G一定是( ).

A. 平面图

B. 对偶图

C. 欧拉图

D. 连通图

6. 以下结论正确的是( ).

A. 无向完全图都是欧拉图

B. 有n个结点n-1条边的无向图都是树

C. 无向完全图都是平面图

D. 树的每条边都是割边

7. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树

叶数为( ).

A. 8

B. 5

C. 4

D. 3

8. 设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).

图四

A. (a)是强连通的

B. (b)是强连通的

C. (c)是强连通的

D. (d)是强连通的

9. 图G如图二所示,以下说法正确的是( ).

A. a是割点

B. {b,c}是点割集

C. {b, d}是点割集

D. {c}是点割集

10. 无向树T有8个结点,则T的边数为( ).

A. 6

B. 7

C. 8

D. 9

电大 离散数学作业7答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1或T . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如 果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q )→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 (P ∧Q ∧R)∨(P ∧Q ∧?R) . 4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ?x(P(x) ∧Q(x)) . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) ∨A(b)) ∨((B(a) ∧B(b)) . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值为 0(F) . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 设P :今天是晴天。 姓 名: 学 号: 得 分: 教师签名:

离散数学作业答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (PQ)R . 3.含有三个命题变项P ,Q ,R 的命题公式PQ 的主析取范式是 (PQR) (PQR) . 4.设P(x):x 是人,Q(x):x 去上课,则命题“有人去上课.” 可符号化为 (x)(P(x) →Q(x)) . 5.设个体域D ={a, b},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) A(b)) (B(a) B(b)) . 6.设个体域D ={1, 2, 3},A(x)为“x 大于3”,则谓词公式(x)A(x) 的真值为 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 . 8.谓词命题公式(x)(P(x) Q(x) R(x ,y))中的约束变元为 X . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 1.解:设P :今天是天晴; 则 P . 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 解:设P :小王去旅游,Q :小李去旅游, 则 PQ . 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. 解:设P:明天天下雪 。 Q:我去滑雪 则 P Q . 4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 7.解:设 P :他去旅游,Q :他有时间, 则 P Q . 5.请将语句 “有人不去工作”翻译成谓词公式. 11.解:设P(x):x 是人,Q(x):x 去工作,

电大离散数学作业3答案(集合论部分)

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= A B {{3},{2,3},{1,3},{1,2,3}},A?B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, ∈ R? x ∈ > y 且 =且 ∈ < {B , , x A y A y B x } 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}. 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y y x∈ = < > ∈ x , , x , 2 {B y A 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是反自反性. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素, ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>}. 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>}.

(完整版)离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、 数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1 .命题公式P (Q P)的真值是T或1 ______ . 2?设P:他生病了,Q:他出差了. R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P V Q)-R 3. ____________________________________________________________ 含有三个命题变项P,Q,R的命题公式P Q的主析取范式是__________________ _(P Q R) (P Q R)_ 4. 设P(x): x是人,Q(x): x去上课,则命题“有人去上课.” 可符号化为— x(P(x) Q(x))_ 5. 设个体域D = {a, b},那么谓词公式xA(x) yB(y)消去量词后的等值式为 (A(a) A(b)) (B(a) B(b))_ 6 .设个体域D = {1,2, 3},A(x)为“x大于3”,则谓词公式(x)A(x)的真值为F 或0 ________________ . 7.谓词命题公式(x)((A(x) B(x)) C(y))中的自由变元为 ________ . 8 .谓词命题公式(x)(P(x) Q(x) R(x,y))中的约束变元为x _______ . 三、公式翻译题 1 .请将语句“今天是天晴”翻译成命题公式

离散数学(大作业)与答案

一、请给出一个集合A,并给出A上既具有对称性,又具有反对称性的关系。(10分)解:A={1,2} R={(1,1),(2,2)} 二、请给出一个集合A,并给出A上既不具有对称性,又不具有反对称性的关系。(10分)集合A={1,2,3} A上关系{<1,2>,<2,1>,<1,3>},既不具有对称性,又不具有反对称性 三、设A={1,2},请给出A上的所有关系。(10分) 答:A上的所有关系: 空关系,{<1,1>,<1,2>,<2,1>,<2,2>} {<1,1>} {<1,2>} {<2,1>} {<2,2>} {<1,1>,<1,2>} {<1,1>,<2,1>} {<1,1>,<2,2>} {<1,2>,<2,1>} {<1,2>,<2,2>} {<2,1>,<2,2>} {<1,1>,<1,2>,<2,1>} {<1,1>,<1,2>,<2,2>}

{<1,2>,<2,1>,<2,2>} {<1,1>,<2,1>,<2,2>} 四、设A={1,2,3},问A 上一共有多少个不同的关系。(10分) 设A={1,2,3},A 上一共有2^(3^2)=2^9=512个不同的关系。 五、证明: 命题公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。(10分) 证明:设公式G 的合取范式为:G ’=G1∧G2∧…∧Gn 若公式G 恒真,则G ’恒真,即子句Gi ;i=1,2,…n 恒真 为其充要条件。 Gi 恒真则其必然有一个原子和它的否定同时出现在Gi 中,也就是说无论一个解释I 使这个原子为1或0 ,Gi 都取1值。 若不然,假设Gi 恒真,但每个原子和其否定都不同时出现在Gi 中。则可以给定一个解释I ,使带否定号的原子为1,不带否定号的原子为0,那么Gi 在解释I 下的取值为0。这与Gi 恒真矛盾。 因此,公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。 六、若G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。证明:n ≤2m C ,其中2m C 表 示m 中取2的组合数。(10分) 证明:如果G=(P,L)为完全图,即对于任意的两点u 、v (u ≠v ),都有一条边uv ,则此时对于元数为m 的P(G),L(G)的元数取值最大为C m 2。因此,若G=(P,L)为一有限图,设P(G)的元数为m ,则有L(G)

电大离散数学作业答案05作业答案

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.)

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

电大离散数学作业答案作业答案

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数 之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n ?2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。” 2.如下图所示的图G 存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 3.如下图所示的图G 不是欧拉图而是汉密尔顿图. 答:正确。因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V 中的非空子集1V ,都有)(1V G P -??V 1?。其中)(1V G P -是从图中删除1V 结点及其关联的边。 4.设G 是一个有7个结点16条边的连通图,则G 为平面图. 答:错误。若G 是连通平面图,那么若63,3-≤≥v e v 就有, 而16>3×7-6,所以不满足定理条件,叙述错误。 5.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面. 姓 名: 学 号: 得 分: 教师签名: G

慕课 离散数学 电子科技大学 课后习题十 答案

作业参考答案——10-特殊图 1.(a)(c)(d)是欧拉图,(a)(b)(c)(d)(e)可以一笔画,(a)(b)(c)(d)(e)(f)(g)是 哈密顿图。 2.根据给定条件建立一个无向图G=,其中: V={a,b,c,d,e,f,g} E={(u,v)|u,v∈V,且u和v有共同语言} 从而图G如下图所示。 a b c d e f g 将这7个人围圆桌排位,使得每个人都能与他两边的人交谈,就是在图G 中找哈密顿回路,经观察上图可得到两条可能的哈密顿回路,即两种方案:abdfgeca和acbdfgea。 3.证明(法一):根据已知条件,每个结点的度数均为n,则任何两个不相邻 的结点v i,v j的度数之和为2n,而图中总共有2n个结点,即deg(v i)+ deg(v j)?2n,满足哈密顿图的充分条件,从而图中存在一条哈密顿回路,当然,这就说明图G是连通图。 证明(法二):用反证法,假设G不是连通图,设H是G的一个连通分支,由于图G是简单图且每个结点的度数为n,则子图H与G-H中均至少有n+1个结点。所以G的结点数大于等于2n+2,这与G中结点数为2n矛盾。所以假设不成立,从而G是连通图。 4.将n位男士和n位女士分别用结点表示,若某位男士认识某位女士,则在 代表他们的结点之间连一条线,得到一个偶图G,假设它的互补结点子集V1、V2分别表示n位男士和n位女士,由题意可知V1中的每个结点度 1

数至少为2,而V2中的每个结点度数至多为2,从而它满足t条件t=1,因此存在从V1到V2的匹配,故可分配。 5.此平面图具有五个面,如下图所示。 a b c d e f g r1r2 r3 r4 r5 ?r1,边界为abca,D(r1)=3; ?r2,边界为acga,D(r2)=3; ?r3,边界为cegc,D(r3)=3; ?r4,边界为cdec,D(r4)=3; ?r5,边界为abcdefega,D(r5)=8;无限面 6.设该连通简单平面图的面数为r,由欧拉公式可得,6?12+r=2,所以 r=8,其8个面分别设为r1,r2,r3,r4,r5,r6,r7,r8。因是简单图,故每个面至少由3条边围成。只要有一个面是由多于3条边所围成的,那就有所有面的次数之和 8∑ i=1 D(r i)>3×8=24。但是,已知所有面的次数之和等于边数的两倍,即2×12=24。因此每个面只能由3条边围成。 2

电大离散数学形考作业答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word 文档 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f,c} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且所有结点的度数全为偶 数 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤∣S ∣ . 7.设完全图K n 有n 个结点(n ?2),m 条边,当n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=?v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路. 答:不正确,图G 是无向图,当且仅当G 是连通,且所有结点度数均为偶数,这里不能确定图G 是 否是连通的。 2.如下图所示的图G 存在一条欧拉回路. 答:错误。? 因为图G 为中包含度数为奇数的结点 3.如下图所示的图G 不是欧拉图而是汉密尔顿图. 姓 名: 学 号: 得 分: 教师签名: G

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数 理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题 目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识 点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地 完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答 过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界 面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)- A B P(B )={{3},{1,3},{2,3},{1,2,3}},A? B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} . 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具有对 称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭 包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.)

国开放大学离散数学本离散数学作业答案

国开放大学离散数学本离 散数学作业答案 The pony was revised in January 2021

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题

1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= {{1,2},{2,3},{1,3}, A B {1,2,3}} ,A B= {< 1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3, 2> } . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为 {< 2,2>,<2,3>,<>,<> } .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y x y x∈ ∈ < > = A , , 2 , y {B x 那么R-1= {< 6,3>,<8,4> } . 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是反自反性. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素 , ,则新得到的关系就具有对称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有2 个.

北京大学2017秋课件作业【离散数学】及答案

2017秋课件作业 第一部分集合论 第一章集合的基本概念和运算 1-1设集合A={{2,3,4},5,1},下面命题为真是(选择题)[A] A.1∈A;B.2∈A;C.3∈A;D.{3,2,1}?A。 1-2A,B,C为任意集合,则他们的共同子集是(选择题)[D] A.C;B.A;C.B;D.?。 1-3设S={N,Z,Q,R},判断下列命题是否正确(是非题) (1)N?Q,Q∈S,则N?S,[错](2)-1∈Z,Z∈S,则-1∈S。[错] 1-4设集合B={4,3}∩?,C={4,3}∩{?},D={3,4,?},E={x│x∈R并且x2-7x+12=0},F={4,?,3,3},试问:集合B与那个集合之间可用等号表示(选择题)[A] A.C; B.D; C.E; D. F. 1-5用列元法表示下列集合:A={x│x∈N且3-x〈3}(选择题)[D] A.N; B.Z; C.Q; D.Z+ 1-6为何说集合的确定具有任意性?(简答题) 答:按研究的问题来确定集合的元素。我们所要研究的问题当然是随意的呗。之所以,集合的定义(就是集合成分的确定)当然带有任意性哪。 第二章二元关系 2-1设A={1,2,3},A上的关系R={〈1,2〉,〈2,1〉}∪IA, 试求:(综合题) (1)domR=?;(2)ranR=?;(3)R的性质。 (4)商集A/R=?(5)A的划分∏=?(6)合成运算(R。R)=? 答:R={<1,2>,<1,3>,<2,3>,<1,1>,<2,2>,<3,3>}; (1)DomR={R中所有有序对的x}={3,2,1}; (2)RanR={R中所有有序对的y}={2,1,3}; (3)R的性质:自反,反对称,传递性质.这时,R不是等价关系。 (4)商集A/R={{1,2,3},{2,3},{3}}。由于R不是等价关系,所以,等价类之间出现交集。这是不允许的。请看下面的划分问题。 (5)A的划分∏={{1,2,3},{2,3},{3}};也由于R不是等价关系,造成划分的荒谬结果:出现交集。试问:让“3”即参加第一组,又参加第二组,她该如何分配呢!!! 所以,关系R必须是等价关系。至于作业中,此两题应说:因为R不是等价关系,此题无解。 2-2设R是正整数集合上的关系,由方程x+3y=12决定,即 R={〈x,y〉│x,y∈Z+且x+3y=12}, 试给出dom(R。R)。(选择题)[B] A.3; B.{3}; C.〈3,3〉; D.{〈3,3〉}。

离散数学 作业及答案

2011-2012学年第一学期离散数学作业及参考答案---信息安全10级5-1 1.利用素因子分解法求2545与360的最大公约数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最大公约数的方法 gcd(a,b) = p1min(a1,b1)p2min(a2,b2)pn min(an,bn) 360=2332515090 2545=2030515091 gcd(2545,360) =2030515090=5 2.求487与468的最小公倍数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最小公倍数的方法 lcm(a,b) = p1max(a1,b1)p2max(a2,b2)pn max(an,bn) ab=gcd(a, b)﹡lcm (a, b) 487是质数,因此gcd(487,468)=1 lcm(487,468)= (487*468)/1=487*468=227916 3.设n是正整数,证明:6|n(n+1)(2n+1) 证明:用数学归纳法: 归纳基础:当n=1时,n(n+1)(2n+1)=1*2*3=6,6|6 归纳假设:假设当n=m时,6|m(m+1)(2m+1) 归纳推导:当n=m+1时, n(n+1)(2n+1)=(m+1)(m+1+1)[2(m+1)+1] =(m+1)(m+2)(2m+3) = m(m+1)(2m+3)+2(m+1)(2m+3) = m(m+1)(2m+1+2)+2(m+1)(2m+3) = m(m+1)(2m+1)+2 m(m+1)+ 2(m+1)(2m+3) = m(m+1)(2m+1)+ 2(m+1)(m+2m+3) = m(m+1)(2m+1)+ 2(m+1)(3m+3) = m(m+1)(2m+1)+ 6(m+1)2 因为由假设6|m(m+1)(2m+1)成立。 而6|6(m+1)2 所以6|m(m+1)(2m+1)+ 6(m+1)2 故当n=m+1时,命题亦成立。 所以6| n(n + 1)(2n + 1) 5-2 1 已知 6x ≡7 (mod 23),下列式子成立的是( D ): A. x ≡7 (mod 23) B. x ≡8 (mod 23) C. x ≡6 (mod 23) D. x ≡5 (mod 23) 2 如果a ≡b (mod m) , c是任意整数,则(A ):

电大离散数学作业答案作业答案

电大离散数学作业答案作 业答案 RUSER redacted on the night of December 17,2020

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n 2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。” 2.如下图所示的图G 存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 姓 名: 学 号: 得 分: 教师签名:

离散数学作业标准答案

离散数学作业 一、选择题 1、下列语句中哪个就是真命题(C )。 A.我正在说谎。 B.如果1+2=3,那么雪就是黑色的。 C.如果1+2=5,那么雪就是白色的。 D.严禁吸烟! 2、设命题公式))((r q p p G →∧→=,则G 就是( C )。 A 、 恒假的 B 、 恒真的 C 、 可满足的 D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。 A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元 4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>} B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>} C.R={<1,1>,<2,2>,<3,3>,<1,4>} D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>, <3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。 A.单射而非满射 B.满射而非单射 C.双射 D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算 D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算 7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D ) b b b a a a b a * a b b b a a b a * 8( A )

电大-离散数学-形成性考核册-作业(二)答案

离散数学形成性考核作业(二) 图论部分 本课程形成性考核作业共4次,内容由中央电大确定、统一布置。本次形考作业是第二次作业,大家要认真及时地完成图论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。 第3章 图的基本概念与性质 1.计算出下图2.1的结点数与边数,并说明其满足握手定理 . 图2.1 习题1的图 满足握手定理。 。 边数为为,按逆时针给结点编号解:结点数为6 212022323)deg()deg()deg()deg()deg()deg(6. ,,,,,6654321654321?==+++++=+++++v v v v v v v v v v v v 2.试分别画出下列图2.2(a )、(b )、(c )的补图 . 图2.2 习题2的图 即可。 要画出补图 的补图的方法。此题只上面给出的是求已知图成的图就是它的补图。 个结点和新颜色的边构由,阶完全图原图添加边成阶图,用另一种颜色把是成的图就是它的补图。 个结点和新颜色的边构由, 阶完全图原图添加边成阶图,用另一种颜色把是成的图就是它的补图。 个结点和新颜色的边构由, 阶完全图原图添加边成阶图,用另一种颜色把是解:444)(555)(555)(455K c K b K a 3.找出下图2.3中的路、通路与圈.

图2.3 习题3的图 4 114.][典型例题例:本题应对应书中注意在根据定义找出。要先将结点标号,、基本回路(圈),就要找出所有的基本路径回路(圈)。 之间的基本路径、基本指出哪两个点 基本回路(圈),并且此题应是求基本路径、路径,也就是通路。 解:书中定义的路就是P 4.设G 为无向图,|G |=9,且G 每个结点的度数为5或6,试证明G 中至少有5个6度结点或至少有6个5度结点. 度的结点。 个度的结点或至少有个中至少有于是,。 时,当; 时,当; 时,当;时,因此,有下述情况:当必为奇数。 , 是偶数。再由握手定理即偶数, 奇度数结点的个数应是度的结点。由定理知,个度的结点,则有 个,如果设有知解:设56652)9(74)9(56)9(38)9(1,45225)9(6)9(5)9(69),,(G x x x x x x x x x m x m x x x x x n m n G =-==-==-==-=-==?-+?--== 5.设有向图D =如图2.4所示 , 图2.4 习题5的图 试问图中是否存在长度分别为3, 4, 5, 6的回路,如存在,试找出. .,,,,,,,,,,,6; ,,,,,,,,,5;,,,,,,,4;,,,,,365436543122551122551122334455112233551122551????????????????????????????????????v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v 的回路:长度为的回路: 长度为的回路: 长度为的回路: 长度为的回路。 ,,,给出一个长度为下面以边序列的形式各的回路。 ,,,解:存在长度为

吉林大学离散数学课后习题答案

第一章集合论基础 §1.1 基本要求 1. 掌握集合、子集、超集、空集、幂集、集合族的概念。懂得两个集合间相等和包含关系 的定义和性质,能够利用定义证明两个集合相等。熟悉常用的集合表示方法。 2. 掌握集合的基本运算:并、交、余、差、直乘积、对称差的定义以及集合运算满足的基 本算律,能够利用它们来证明更复杂的集合等式。 3. 掌握关系、二元关系、空关系、全域关系、相等关系、逆关系的概念以及关系的性质: 自反性、对称性、反对称性、传递性。会做关系的乘积。了解关系的闭包运算:自反闭包、对称闭包、传递闭包。 4. 掌握等价关系、等价类、商集的概念,了解等价关系和划分的内在联系。 5. 掌握部分序关系、部分序集、全序关系、全序集的概念以及部分序集中的特殊元素:最 大元、最小元、极大元、极小元、上确界、小确界的定义。能画出有限部分序集的Hasse 图,并根据图讨论部分序集的某些性质。 6. 掌握映射、映像、1-1映射等概念,会做映射的乘积。了解可数集合的概念,掌握可数 集合的判定方法。 7. 了解关系在数据库中的应用(数据的增、删、改)以及划分在计算机中的应用。

§1.2 主要解题方法 1.2.1 证明集合的包含关系 方法一.用定义来证明集合的包含关系是最常用也是最基本的一种方法。要证明A?B,首先任取x∈A,再演绎地证出x∈B成立。由于我们选择的元素x是属于A的任何一个,而非特指的一个,故知给出的演绎证明对A中含有的每一个元素都成立。当A是无限集时,因为我们不能对x∈A,逐一地证明x∈B成立,所以证明时的假设“x是任取的”就特别重要。 例1.2.1 设A,B,C,D是任意四个非空集合,若A?C,B?D,则A×B?C×D。 证明:任取(x,y) ∈A×B,往证(x,y) ∈C×D。 由(x,y) ∈A×B知,x∈A,且y∈B。又由A?C,B?D知,x∈C,且y∈D,因此,(x,y) ∈C×D。故,A×B?C×D。 方法二.还有一种证明集合包含关系的方法,基于集合的交和并运算的两个基本性质 A?B?A?B=A?A?B=B 以及一些已经证出的集合等式。现在我们就用此方法将上例再证一次。 由下面例1.2.2证明的结论有(A×B)?(C×D)=(A?C)×(B?D),若A?C,B?D,则A?C=A,B?D=B,因此,(A×B)?(C×D)=A×B。因此,A×B?C×D。 1.2.2 证明集合的相等 方法一.若A,B 是有限集,要证明集合A=B当然可以通过逐一比较两集合所有元素均一一对应相等即可,但当A,B 是无限集时,一般通过证明集合包含关系的方法证得A?B,B?A即可。 例1.2.2 设A,B,C,D是任意四个集合,求证(A×B)?(C×D)=(A?C)×(B?D)。 证明:首先证明(A×B)?(C×D)?(A?C)×(B?D)。任取(x,y)∈(A×B)?(C×D),则(x,y)∈(A×B),且(x,y)∈(C×D),故x∈A,y∈B,x∈C,y∈D,即x∈A?C,y∈B?D,因此,(x,y)∈(A?C)×(B?D)。 由于以上证明的每一步都是等价的,所以上述论证反方向进行也是成立的。故可证得(A?C)×(B?D)?(A×B)?(C×D)。 因此,(A×B)?(C×D)=(A?C)×(B?D)。 方法二. 还有一种证明集合相等的方法,可以通过已证出的集合等式,通过相等变换将待证明的等式左(右)边的集合化到右(左)边的集合,或者两边同时相等变换到同一集合。 例1.2.2 设A,B,C是三个集合,已知A?B=A?C,A?B=A?C,求证B=C。 证法1:使用反证法。假设B≠C,则必存在x,满足x∈B,且x?C,或者x?B,且x∈C。不妨设x∈B,且x?C,

相关文档
最新文档