材料科学基础各章复习要点

材料科学基础各章复习要点
材料科学基础各章复习要点

材料科学基础各章复习要点

第一章晶体结构

名词解释:

(1)类质同晶和同质多晶

(2)萤石型和反萤石型

(3)二八面体和三八面体

(4)正尖晶石和反尖晶石

主要内容:

1、单质金属原子形成晶体时结构上的差异(A1、A

2、A3型)

2、从晶体结构特点说明金属或合金在力学性能上表现出良好的塑性和延展性

3、通过8-m规则说明金刚石的晶体结构特点

4、NaCl型晶体结构特点,为什么AX型化合物大多具有NaCl型结构?

在AX型晶体结构中,一般阴离子X的半径较大,而阳离子A的半径较小,所以X做紧密堆积,A填充在其空隙中。大多数AX型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有NaCl型结构;并且NaCl型晶体结构的对称性较高,所以AX型化合物大多具有NaCl型结构。

5、CsCl型结构特点;立方ZnS和六方ZnS晶体结构差异;

6、金红石和萤石型晶体结构特点。CaF2晶体结构与性能的关系。

7、刚玉(α-Al2O3)型结构特点。

8、ABO3 (钙钛矿、钛铁矿、碳酸钙)晶体结构特点;AB2O4尖晶石型结构特点

9、BaTiO3的铁电效应,为什么钛酸钙不存在自发极化现象?

10、硅酸盐晶体结构共同特点

11、五类硅酸盐晶体结构特点,Si/O, 典型代表名称和分子式

12、绿宝石、堇青石结构与性能关系

13、滑石、叶腊石晶体结构特点,结构与性能关系

14、高岭石、蒙脱石晶体结构特点及与性能的关系

15、α-方石英、α-鳞石英晶体结构差异

16、O2-作而心立方堆积时,根据电价规则,在下面情况下,空隙内各需填入何种价态的阳离子,并对每一种结构举出一个例子。(a) 所有四面体空隙位置均填满;(b) 所有八而体空隙位置均填满;(c) 填满一半四面体空隙位置;(d) 填满一半八面休空隙位置。

第二章晶体结构缺陷

名词解释

(1)弗伦克尔缺陷和肖特基缺陷

(2)刃位错和螺位错

(3)热缺陷和杂质缺陷

(4)置换型固溶体和填隙型固溶体

(5)点缺陷和线缺陷

主要内容:

1、缺陷反应方程式写法

2、热缺陷浓度计算

3、杂质缺陷、固溶体及固溶分子式

4、非化学计量化合物结构缺陷(半导体)种类、形成条件、缺陷浓度、电导率与气体压力的关系。

5、连续置换型固溶体的形成条件

6、影响形成间隙型固溶体的因素

7、组分缺陷(补偿缺陷):不等价离子取代

形成条件、特点(浓度取决于掺杂量和固溶度)

缺陷浓度的计算、与热缺陷的比较

8、固溶体的研究与计算

写出缺陷反应方程——固溶式、算出晶胞的体积和重量——理论密度(间隙型、置换型)——和实测密度比较

9、(a)MgO晶体中,肖脱基缺陷的生成能为6eV(9.612×10-19J),计算在25℃和1600℃时热缺陷的浓度。(b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。

10、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求FexO中的空位浓度及x值。

第三章熔体与玻璃体

1、描述硅酸盐熔体结构的聚合物理论要点

2、聚合物的形成大致分为三个阶段

3、硅酸盐熔体粘度与组成的关系

4、碱金属离子R+硅酸盐熔体粘度的影响

5、硼硅酸盐系统中的硼反常现象

6、极性共价键的物质易形成玻璃的原因。

7、晶子学说和无规则网络学说

8、硅酸盐玻璃和硅酸盐晶体的结构特点

9、石英玻璃和石英晶体的结构特点

10、玻璃结构参数的计算,计算结构参数的意义。

第四章固体的表面与界面

1、离子晶体的表面结构特点

2、玻璃的表面结构特点

3、影响润湿的因素

4、p125 7-2

5、粘土颗粒荷电的原因

6、粘土胶团结构

7、粘土泥浆中引入电解质溶液为什么能使泥浆流动性增加?

8、粘土具有可塑性的原因

9、瘠性料的悬浮与塑化的方式

第五章相图

?判断初晶区

?判断化合物的性质。根据化合物组成点是否落在其初晶区内,判断化合物性质是一

致熔或不一致熔。 ?

划分副三角形; ?

标出界线上的温降方向; ?

判断界线的性质; ?

确定无变量点性质; ?

分析冷却析晶路程

第六章 扩散

1、固体中扩散的特点

2、菲克定律(宏观现象)

菲克第一定律:稳态扩散

菲克第二定律:不稳态扩散

稳定扩散和不稳定扩散的定义;菲克二定律的表达式及物理意义。

3、菲克第一定律的应用:氢气在钢瓶中的泄露问题(扩散通量表达式,如何减小泄露?)

4、扩散系数的物理意义(从D = γ.λ2.τ解释扩散系数和哪些因素有关)

5、各种晶体结构中空位、间隙扩散系数表达式:D=D 0exp(-Q/RT)

6、扩散推动力(化学位梯度)

7、扩散系数的一般热力学关系式 会推导

8、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?

9、影响扩散的因素 比较D 表面 D 晶面 D 晶内的相对大小

第七章 固相反应

1、固相反应的定义、泰曼温度

2、固相反应的转化率

3、固相反应的一般动力学关系(反应的总阻力=各个分阻力之和)

4、固相反应的特点 (化学反应动力学范围、扩散动力学范围)

能够导出杨德尔方程

明确杨德尔方程、金斯特林格方程、卡特方程的适用条件

5、如果要合成MgAl2O4,可提供选择的原料为MgCO3、Mg(OH)2、MgO 、Al2O3·3H2O 、γ-Al2O3、α- Al2O3,从提高反应速率的角度出发,选择什么原料较好?

第八章 相变

1、相变的概念

2、相变的分类

3、一级相变、二级相变

4、相变过程中的亚稳态 ,相变过程的推动力,明确相变为什么需要过冷或过热。

6、晶核的形成条件、临界晶核r k 。(要有△T )

能够导出均匀成核和非均匀成核的临界半径和临界自由能。(注意:一定搞清式中每一个符号代表什么)

7、影响成核速率的因素:核坯的数目、质点加到核坯上的速率

均匀成核:Iv=P·D )ex p(*RT

G G B I M K S S ?+?-=

非均匀成核:

8、晶体生长速率与哪些因素有关

9、成核与晶体生长相比,需要更大的△T(能够解释晶体成核和生长与过冷度的关系)

10、总结晶速度方程

11、分相现象、分相的概念及判断

明确亚稳区和不稳区的分相特点

12、试讨论非均匀成核的活化能与接触角θ的关系,并证明当接触角θ为90度时,非均匀活化能的是均匀成核活化能的一半。

第九章烧结

1、烧结的概念、定义

2、烧成与烧结、烧结与固相反应

3、烧结的推动力(过剩的表面能 G)

4、烧结的模型

(烧结初期的动力学关系、颈部增长率与烧结收缩率之间的关系)

5、固态烧结的类型、特点、公式(与时间、粒径的关系)

蒸发-凝聚传质过程的特点(△L/L=0)影响扩散传质的因素如何促进烧结

6、液态烧结的类型、特点、公式(与时间、粒径的关系)

7、液相烧结与固相烧结的异同点

8、晶粒生长与二次再结晶的概念

9、能否通过延长烧结时间来提高产品的致密度

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

材料科学基础第三章答案

第三章 1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。 2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol) 3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程 5. 铸件组织有何特点? 6. 液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么? 7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10. 分析纯金属生长形态与温度梯度的关系。 11. 什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12. 简述纯金属晶体长大的机制。13. 试分析单晶体形成的基本条件。 14. 指出下列概念的错误之处,并改正。(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

材料科学基础第一章全部作业

(一) 1 谈谈你对材料学科及材料四要素之间的关系的认识 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 画出立方晶系中(011),(312),[211],[211],[101],(101) 7, 画出六方晶系中(1120),(0110),(1012),(110),(1012) 8. 原子间的结合键共有几种?各自特点如何? 9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),() 123,(130),[211],[311];

10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。 11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。 12. 标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),()123,(130),[211],[311]; b)六方晶系()2111, ()1101,()3212,[2111],1213????。 13 在体心立方晶系中画出{111}晶面族的所有晶面。 14 画出<110>晶向族所有晶向

15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210 16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。 17. 标出具有下列密勒指数的晶面和晶向: 立方晶系(421),()123,(130),[211],[311]; 18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。 19.画出面心立方晶体中(111)面上的[112]晶向。 20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体 的致密度、{111}晶面的面密度以及{110}晶面的面间距。 21.表示立方晶体的(123),[211],()012 22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213???? 23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120] 24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向 25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。假设原子半径为r ,计算八面体间隙的半径。 26.画出密排六方晶格中的(0001),()1120,()1100,()1210 27.立方晶系中画出(010),(011),(111),(231),[231],[321] 29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。(4分) 30.写出立方晶系{}110、{}123晶面族的所有等价面 31.立方晶胞中画出以下晶面和晶向:()102,(112),(213) ,[110], 32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210????,0111???? 33.写出立方晶系{}100、{}234晶面族的所有等价面 34.画出立方晶胞内(111),[112], 35.画出六方晶胞内(1011),[1123]

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

材料科学基础作业解答

第一章 1.简述一次键与二次键各包括哪些结合键这些结合键各自特点如何 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别稳态与亚稳态结构的区别 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

材料科学基础课后作业第三章

3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的w Ni=90%,另一个铸件的w Ni=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为什么?找出消除偏析的措施。 答: 合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分配系数为k0=Cα/C L。对一给定的合金系,溶质原子再分配系数与合金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距成正比。当w Ni=50% 时,液相线与固相线之间的水平距离更大,固相与液相成分差异越大;同时其凝固结晶温度比w Ni=90%的结晶温度低,原子扩散能力降低,所以比偏析越严重。 一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化退火来消除偏析。 3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi=50%的合金在520℃时开始凝固出成分为w Sb=87%的固相。w Bi=80%的合金在400℃时开始凝固出成分为w Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的名称; 2)从相图上确定w Sb=40%合金的开始结晶终了温度,并求出它在400℃时的平衡相成分及其含量。

解:1 )相图如图所示; 2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左右),350℃(左右) 固、液相成分w Sb(L) =20%, w Sb(S)=64% 固、液相含量: %5.54%10020-6440-64=?=L ω %5.45%100)1(=?-=L S ωω 3-7.根据下列实验数据绘出概略的二元共晶相图:組元A 的熔点为1000℃,組元B 的熔点为700℃;w B =25%的合金在500℃结晶完毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;w B =50%的合金在500℃结晶完毕后,则由40%的先共晶α相与60%的(α+β)共晶体组成,而此合金中的α相总量为50%。 解:由题意由(α+β)共晶含量得 01.03226--25.0?=+)()()(αβααωωωB B B 6.0--5.0=+)()()(αβααωωωB B B

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

材料科学基础第七章答案

第七章答案 7-1略 7-2浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。 7-3欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。已知CaO肖特基缺陷形成能为6eV。 解:掺杂M3+引起V’’Ca的缺陷反应如下: 当CaO在熔点时,肖特基缺陷的浓度为: 所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为 ,即 7-4试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。 解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为 根据可得到CaO在1145℃和1650℃的扩散系数的比值为: ,将值代入后可得,Al2O3的计算类推。

7-5已知氢和镍在面心立方铁中的扩散数据为cm2/s和 cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。 解:将T=1000℃代入上述方程中可得,同理可知 。 原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。 7-6在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的 一半,问需要多长时间(已知D1600℃=8×10-12cm2/s;当时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。 其中=0,,所以有0.5=,即=0.5,把=10-3cm,D1600℃=8×10-12cm2/s代入得t=s。 7-7 Zn2+在ZnS中扩散时,563℃时的扩散系数为3×10-4cm2/s;450℃时的扩散系数为1.0×10-4cm2/s,求:(1)扩散活化能和D0;(2)750℃时的扩散系数;(3)根据你对结构的了解,请从运动的观点和缺陷的产生来推断活化能的含义;(4)根据ZnS和ZnO相互类似,预测D随硫的分压而变化的关系。 解:(1)参考7-4得=48856J/mol,D0=3×10-15cm2/s; (2)把T=1023K代入中可得=cm2/s; 7-8实验测得不同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s (782℃)、1.3×10-8cm2/s(838℃)。(1)请判断该实验结果是否符合;(2)请计算扩散活化能,并求出在500℃时碳的扩散系数。

材料科学基础第三章

材料科学基础大作业——第3章凝固 2015年 月 日 班级: 姓名: 学号: 分数: 一、解释下列概念及术语: 1、结晶 2、过冷度 3、相起伏 4、均匀形核 5、晶粒度 6、形核率 7、形核功 8、枝晶偏析 9、成分过冷 10、临界形核半径 二、填空题 1. 过冷度的大小与金属的本性、纯度和冷却速度有关。金属不同,过冷度大小 同;金属的纯度越高,过冷度越 ;金属及其纯度确定后,过冷度大小主要取决于冷却速度,冷却速度越大,过冷度越 。 2. 金属和非金属,在结晶时均遵循相同的规律,即结晶过程是 和 的过程。 3. 根据热力学条件,金属发生结晶的驱动力为液态金属和固相金属的 之差。此差值与过冷度呈 比。 4.液态金属的晶胚能否形成晶核,主要取决于晶胚半径是否达到了临界形核半径的要求。此半径与过冷度呈 比。 5. 均匀形核时,过冷度△T 和理论结晶温度T m 之间的关系为 。形核功△G k 与过冷度△T 的平方呈 比,即过冷度越大,形核功越 。 6. 形核率可用12N N N ? =表示,其中N 1为受 影响的形核率因子,N 2为受 影响的形核率因子。 7. 工业生产中,液态金属的结晶总是以 形核方式进行,其所需过冷度一般不超过 ℃。 8. 决定晶体长大方式和长大速度的主要因素是晶核的 和其前沿液体中的 。 9. 光滑界面又称为 界面,粗糙界面又称为 界面,其杰克逊因子α值范围分别为 和 。 10.晶体长大方式主要为 长大机制、 长大机制和 长大机制。其中,大部分金属均以 长大机制进行。 11.在正的温度梯度下,光滑界面的界面形态呈 状;粗糙界面的界面形态为 界面。在负的温度梯度下,一般金属和半金属的界面都呈 状。杰克逊因子α值较高的物质保持 界面形态。 12、金属结晶后晶粒内部的成分不均匀现象叫 ;因初晶相与剩余液相比重不同而造成的偏析叫 。 三、判断题

材料科学基础第一章习题答案

材料科学基础第一章习题答案 1. (P80 3-3) Calculate the atomic radius in cm for the following: (a) BCC metal with a 0=0.3294nm and one atom per lattice point; and (b) FCC metal with a 0=4.0862? and one atom per lattice point. Solution: (a) In BCC structures, atoms touch along the body diagonal, which is 3a 0 in length. There are two atomic radii from the center atom and one atomic radius from each of the corner atoms on the body diagonal, so 340r a = 430a r ==0.14263nm=1.4263 810-?cm (b) In FCC structures, atoms touch along the face diagonal of the cube, which is

02a in length. There are four atomic radii along this length —two radii from the face-centered atom and one radius from each corner, so 240r a =, 420 a r ==1.44447 ?=1.44447810-?cm 2.(P80 3-4) determine the crystal structure for the following: (a) a metal with a0=4.9489?, r=1.75?, and one atom per lattice point; and (b) a metal with a0=0.42906nm, r=0.1858nm, and one atom per lattice point. Solution: We know the relationships between atomic radii and lattice parameters are 430 a r =

材料科学基础习题与答案

第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因? 2. 从结构、性能等面描述晶体与非晶体的区别。 3. 谓理想晶体?谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数? 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。)谓配位数?谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等面比较有异同? 5. 固溶体和中间相的类型、特点和性能。谓间隙固溶体?它与间隙相、间隙化合物之间有区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么? 6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3 Cu 的原子数。 7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。当铁由bcc 转变为fcc 时,其密度改变的百分比为多少? 9. 谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如? 10. 在面心立晶胞中画出[012]和[123]晶向。在面心立晶胞中画出(012)和(123)晶面。 11. 设晶面()和(034)属六晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个

材料科学基础第一章部分知识点

材料科学基础第一章部分知识点

1. 晶体及其特征 晶体:晶体是内部质点在三维空间成周期性重复排列的固体,即晶体是具有格子构造的固体。特征: 1) 自范性:晶体具有自发地形成封闭的凸几何多面体外形能力的性质,又称为自限性. 2) 均一性:指晶体在任一部位上都具有相同性质的特征. 3) 各向异性:在晶体的不同方向上具有不同的性质. 4) 对称性:指晶体的物理化学性质能够在不同方向或位置上有规律地出现,也称周期性. 5) 最小内能和最大稳定性 2. 晶体结构与空间点阵 ?晶体格子:把晶体中质点的中心用直线联起 来构成的空间格架即晶体格子,简称晶格。 ?结点:质点的中心位置称为晶格的结点。 ?晶体点阵:由这些结点构成的空间总体称为 晶体点阵(空间格子或空间点阵)。结点又叫阵点。点阵中结点仅有几何意义,并不真正代表任何质点。 晶体中质点排列具有周期性和对称性

晶体的周期性:整个晶体可看作由结点沿三个不同的方向按一定间距重复出现形成的,结点间的距离称为该方向上晶体的周期。同一晶体不同方向的周期不一定相同。可以从晶体中取出一个单元,表示晶体结构的特征。取出的最小晶格单元称为晶胞。晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。 3. 晶胞与晶胞参数 晶胞—晶体中的重复单元,平行堆积可充满三维空间,形成空间点阵 ?晶胞类型: ?固体物理学原胞:仅反映周期性最小的 ?结晶学原胞:反映周期性和对称性, 不一定是最小的。 ?不同晶体的差别:不同晶体的晶胞,其形状、 大小可能不同;围绕每个结点的原子种类、 数量、分布可能不同。 选取结晶学晶胞的原则: 1.单元应能充分表示出晶体的对称性; 2.单元的三条相交棱边应尽量相等,或相等的 数目尽可能地多; 3.单元的三棱边的夹角要尽可能地构成直角;

材料科学基础第一章

材料科学基础大作业——第1、2章晶体结构 2015年9月9日 班级:姓名:学号:分数: 一、名词解释: 固溶体、中间相、空间点阵、结合力、晶体、晶胞、固溶强化、相、正常价化合物、电子化合物、合金,各向异性、多晶型性、晶界、亚结构 二、填空 1. 金属键没有性和性。 2. 由于原子间结合力和结合能的存在,金属原子趋于规则紧密的排列。原子间最大结合力对应着金属的。键能决定了金属的和。 3. 自然界中的晶体结构各不相同,根据晶胞的和可将晶体结构分为14中空间点阵,归属于个晶系。其中最典型的三中晶体结构分别为bcc 、fcc 和hcp 。 4.能够反映晶胞中原子排列紧密程度的两个参数为和。其中fcc和hcp的两个参数均相同,分别为和。bcc的两个参数非别为和。 5. fcc和hcp的堆垛方式分别为ABCABC……和ABAB……,当某些晶面堆垛顺序发生局部差错即产生晶体缺陷时,可能在fcc晶体结构中出现hcp 的特征。 6. bcc、fcc和hcp三种晶体结构中均存在四面体和八面体两种晶格间隙,间隙原子通常溶解于体间隙。 7. [221]与(221)的位置关系为。[110]和(001)的位置关系为。 8. 塑性变形时,滑移通常沿着密排面和密排方向进行。bcc的密排面为,密排方向为。fcc的密排面为,密排方向为。 9. 铁的三种同素异构体分别为、和。 10.点缺陷主要包括三种类型,分别为、和。无论哪类点缺陷都会造成其周围出现一个涉及几个原子间距范围的弹性畸变区,称为。 11.小角度晶界指的是相邻两晶粒的位向差小于。其中对称倾侧晶界是由一系列相隔一定距离的型位错所组成,扭转晶界由相互交叉的位错所组成。 12.具有不同的两相之间的分界面称为相界。其中界面能最高的是界面,应变能最高的界面是界面。 三、判断 1. 晶体区别于非晶体的一个重要特征就是晶体有固定的熔点,二者之间在任何情况下都不能进行转变,即晶体不可能转变为非晶体,非晶体也不可能转变为晶体。() 2. bcc和fcc均属于立方晶系,hcp属于六方晶系。(错) 3. bcc、fcc和hcp晶胞内分别包含有2、4、6个原子,因其原子数不同,所以其间隙的数量亦不相同。(错)

[精品]材料科学基础第三章答案.doc

笫三章 I.试述结晶相变的热力学条件、动力学条件、能量及结构条件。2.如 果纯银凝固时的最大过冷度与其熔点(tm=1453°C)的比值为0.18, 试求其 凝固驱动力。(△H = -18075J/mol) 3.已知Cu的熔点tm= 1083°C,熔化潜热Lm=1.88xl03J/cm3,比表面能0=1.44x105 J/cm3。 (1)试计算Cu在853°C均匀形核吋的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界品核中的原子数。4.试推导杰克逊(K.A.Jackson)方程5.铸件组织有何特点?6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?7.已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3, 试计算在LDPE及HDPE中“资自由空I'u厂的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10.分析纯金属生长形态与温度梯度的关系。 II.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12.简述纯金属晶体长大的机制。13.试分析单晶体形成的基本条件。 14.指出下列概念的错误之处,并改正。(1)所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2)金属结晶时,原子从液相无序排列到固相有序排列,使体系爛值减少,因此是一个自发过程。(3)在任何温度下,液体金属中出现的最大结构起伏都是品胚。(4)在任何温度下,液相中出

相关文档
最新文档