(整理)材料的光学性能测试.

(整理)材料的光学性能测试.
(整理)材料的光学性能测试.

材料科学实验讲义

(一级实验指导书)

东华大学材料科学与工程中心实验室汇编

2009年7月

一、实验目的和要求

1、掌握透过率、全反射和漫反射测定的基本原理;

2、掌握透过率、全反射和漫反射测定的操作技能;

3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。

4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。

二、实验原理

光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。

在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。

目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍:

1、有机物的紫外—可见吸收光谱:

分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

*

σ

π

n

π

σ

轨道

*

σ

轨道

*

π

非键轨道

轨道

π

轨道

σ

图1 有机物的电子跃迁

相应的外层电子和价电子有三种:σ电子、π电子和n 电子。通常情况下,电子处于低的能级(成键轨道和非键轨道)。当用合适能量的紫外光照射分子时,分子可能吸收光的能量,而又低能级跃迁到反键*轨道。在紫外可见光区,主要有下列几种跃迁类型:

①N→V跃迁:电子又成键轨道跃迁到反键轨道,包括σ→σ*;π→π*跃迁。

②N→Q跃迁:分子中未成键的n 电子跃迁到反键轨道,包括n→σ*;n→π*跃迁。

③N→R跃迁:σ电子逐级跃迁到各高能级,最后脱离分子,使分子成为分子离子的跃迁。(光致电离)

④电荷迁移跃迁:当分子形成配合物或分子内的两个大π体系相互接近时,外来辐射照射后,电荷可以由一部分转移到另一部分,而产生电荷转移吸收光谱。

可见,有机化合物一般主要有4种类型的跃迁:n→π*、π→π*、n→σ*和σ→σ*。各种跃迁所对应的能量大小为n→π*< π→π*< n→σ*< σ→σ*。

2、无机化合物的紫外吸收光谱:

产生无机化合物紫外、可见吸收光谱的电子跃迁形式,一般分为两大类:电荷迁移跃迁和配位场跃迁。许多无机配合物有电荷迁移跃迁所产生的电荷迁移吸收光谱。

电荷迁移跃迁:指络合物吸收了可见-紫外光后,电子从中心离子的某一轨道跃迁到配位体的某一轨道,或从配位体的某一轨道跃迁到与中心离子的某一轨道。所产生的吸收光谱称为电荷迁移吸收光谱。(相当于内氧化还原反应)。一般可表示为:

M n+-L b-→ M(n+1)+-L(b+1)-(hν)

[Fe3+-SCN-]2+→[Fe2+-SCN]2+

(这就是配合物λmax=490nm为血红色原因)

金属配合物的电荷转移吸收光谱,有三种类型:

(1) 电子从配体到金属离子:相当于金属的还原。

(2) 电子从金属离子到配体:产生这种跃迁的必要条件是金属离子容易被氧化(处于低氧化态),配位体具有空的反键轨道,可接受从金属离子转来的电子,如吡啶、2,2'-联吡啶,1,10-二氮杂菲及其衍生物等,这类试剂易与可氧化性的Ti(III)、Fe(II)、V(II)、Cu(I)等结合,生成有色配合物,反应过程中,电子从主要定域在金属离子的d 轨道,转移到配位体的π轨道上。

(3) 电子从金属到金属:配合物中含有两种不同氧化态的金属时,电子可在其间转移,这类配合物有很深的颜色,如普鲁士蓝KFe[Fe(CN)6],硅(磷、砷)钼蓝H8[SiMo2O5(Mo2O7)5]等。

过度金属离子与含生色团的试剂反应所生成的配合物以及许多水合无机离子,均可产生电荷迁移跃迁。

如,Fe2+--1,10邻二氮菲及Cu+--1,10邻二氮菲配合物。

又如,Fe3+OH-→ Fe2+HO(hν)

此外,一些具有d10电子结构的过度元素形成的卤化物及硫化物,如AgBr、HgS 等,也是由于这类跃迁而产生颜色。

电荷迁移吸收光谱出现的波长位置,取决于电子给予体和电子接受体相应电子轨道的能量差。若中心离子的氧化能力越强,或配位体的还原能力越强,则发生跃迁时需要的能量越小,吸收光波长红移。

电荷迁移吸收光谱的ε一般在103~104之间,其波长通常处于紫外区。

(4) 配位场跃迁

配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配体的存在下,过度元素五个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。

当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d 或f轨道,这两类跃迁分别称为d - d 跃迁和f - f 跃迁。由于这两类跃迁必须在配体的配位场作用下才可能发生,因此又称为配位场跃迁。例如[Co(NH3)5X]n+的吸收光谱,其中d - d 跃迁属配位场跃迁。

配位场跃迁吸收光谱的ε一般在10-1~102之间,其波长通常处于可见区。ε较小,所以在定量分析上用途不大,但可用于研究无机化合物的结构及键合理论。

这里还要特别强调有一类化合物半导体,按照能带理论,其导带是部分被填充的。其最高被占用轨道和最低未填充轨道之间的能量差称为带隙,其吸收光谱不再是吸收峰而是一个吸收带边界。如我们常常说锐钛矿相的二氧化钛的带隙为3.2eV,吸收波长在387nm或以下的光。氧化锌的带隙为3.37eV,吸收波长在370nm或以下的光。硒化镉则有点不同,其往往也有一个较明显的吸收峰,其较大的晶粒带隙为1.8eV,吸收波长在688nm或以下的光。但硒化镉晶粒的吸收光谱具有明显的尺寸效应如:晶粒尺寸为5.6nm,其吸收带边界为610nm;晶粒尺寸为4.1nm,其吸收带边界为560nm;晶粒尺寸为2.8nm,其吸收带边界为505nm (S. Neeleshwar, et al. Size-dependent properties of CdSe quantum dots, Physical Review B 2005, 71, 201307(R)),相应的吸收光谱如图2所示。

3、紫外-可见吸收光谱(UV-vis)及漫反射光谱(DRS)

物质受光照射时,通常发生两种不同的反射现象,即镜面反射和漫反射。镜面反射如同镜子反射一样,光线不被物质吸收,反射角等于入射角,反射光束是平行的。图3为镜面反射和漫反射的示意,注意较粗糙的表面主要发生漫反射,对于很多粉末样

品,将其压片后其表面是粗糙的,可通过一个积分球的附件来测定粗糙表面的漫反射光谱。积分球是一个内壁涂有高反射率的物质(如硫酸钡)球形附件,可将压片后粉末的漫反射光谱收集起来,通过光电倍增管来定量测定光信号的强弱。

300400500600700

2.8nm

4.1nm

5.6nm

Wavelength(nm)A b s o r b a n c e (a r b . u n i t )

图2 氯仿介质中不同晶粒尺寸的硒化镉的吸收光谱

(插入的图为硒化镉的高分辨透射电镜照片

)

图3 镜面反射和漫反射的区别

对于粒径极小的超细粉体,主要发生的是漫反射。漫反射满足 Kubelka-Munk 方程式: S K R R =-∞∞2)1(2 (1)

式(1)中K 为吸收系数,与吸收光谱中的吸收系数的意义相同,S 为散射系数,R ∞表示无限厚样品的反射系R 的极限值。实际上,反射系数R 通常采用与一已知的高反射系数(R ∞≈1)标准物质比较来测量,测定R ∞(样品)/R ∞(标准物)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。常用的标准物质为硫酸钡粉末。

三、实验设备

采用北京普析通用的TU-1901型双光束紫外-可见分光光度计,仪器配有IS19-1积分球,积分球的直径约为60mm 。

主要的功能有:

1、吸光度测量:为用户提供单点或多点读数的功能,测量1~10个波长处的吸光度或透过率并可按设定的公式进行科学度算。还可计算平均值及四则运算结果。

2、光谱扫描:为用户提供指定波段范围的扫描功能,支持Abs、T% 和能量方式。可进行重复扫描。按设定的波长范围进行吸光度或透过率的谱图扫描并可进行各种数据处理,如峰值检出,导数光谱,谱图运算等。多通道光谱测量,彩色曲线显示与打印,配各种数据处理功能,能满足各行各业的需求。

3、定量计算:单波长,双波长,三波长及微分定量,定量测定的工作曲线制作更加方便,可实现多达20点的1~4次曲线回归,对吸光度非线性样品也可实现准确测定。用户可根据不同的需要进行选择。

4、时间扫描:为用户提供定点波长的时间扫描功能。在设定的1~10个波长处进行吸光度或透过率的时间扫描并可进行各种数据处理,如峰值检出,谱线微分,谱线运算等。用户可根据不同的需要对扫描时间、间隔时间和采样点进行设置。同时,还可以对时间增量进行设置。时间扫描与光谱扫描类似,都具有重复扫描的功能。

5、性能指标

波长范围190nm~900nm

波长准确度±0.3nm(开机自动校准)

波长重复性0.1nm

光谱带宽TU-1900: 2nm;TU-1901: 0.1nm、0.2nm、0.5nm、1.0nm、2.0nm、5.0nm 杂散光≤0.010%T(220nm,NaI:340nm,NaNO2)

光源转换自动切换(可在320nm~380nm波段范围内任意设定)

光度方式透过率、吸光度、反射率,能量

光度范围-4.0~4.0Abs

光度准确度±0.002Abs (0~0.5Abs)、±0.004Abs (0.5~1.0Abs)、±0.3%T (0~100%T) 光度重复性0.001Abs (0~0.5Abs)、0.002Abs (0.5~1Abs)

基线平直度±0.001Abs

基线漂移0.0004Abs/h(500nm,0Abs预热后)

噪声±0.0004Abs

主机

光源插座型长寿命溴钨灯及氘灯(更换灯后无须调整)

检测器光电倍增管

样品室可选配八联样品池架,积分球附件等

体积587×562×260mm

重量30kg

四、实验内容和实验步骤

1、胶体的消光光谱

实际上胶体对光仍有部分散射,所以标准的样品池得到的是消光光谱而不是吸收光谱。在前面已经提到,锐钛矿相的二氧化钛吸收波长为387nm 及以下的光,但其胶体仍在可见光区有“吸收”,解释其原因。作为对比,可将二氧化钛粉末分散成悬浊液,测定其消光光谱,比较两者的差异。吸收光谱测定间接半导体的带隙的原理如下:

图4 不同浓度的二氧化钛胶体的UV-vis 消光光谱

图4为不同浓度的二氧化钛胶体的UV-vis 消光光谱,没有稀释的光谱中二氧化钛的浓度约为10.0g/L 。

从图4的消光光谱可以看出,二氧化钛胶体的浓度为10.0g/L ,在可见光区A 值并不为零,这部分主要是二氧化钛纳米晶的团聚体对光的散射引起的。经过1:5稀释后,在可见光区的消光现象大大减弱,主要是稀释后团聚体的相对浓度变小。在团聚体的尺寸不改变的前提下,消光和吸收都遵循下面的公式: c A 110303.23ρα?= (2) 其中α是摩尔吸光吸收,A 是吸光或消光度,ρ、l 、c 分别为二氧化钛的密度(锐钛矿相二氧化钛的密度是3.84g/cm 3)、光程长和二氧化钛胶体的浓度(以g/L 计)。经过1:125到1:500的比例稀释后,得到了类似与溶液的吸收光谱,它们对应的吸收带边界的起始点约为340nm ,对应的带隙为3.65eV 。 hv

E hv B g d 2

1)(-=α (3)

hv E hv B g i 2

)(-=α (4)

式(3)式(4)中B d 、B i 和h ν分别表示直接半导体的吸收常数、间接半导体的吸收常数和照射光的能量。二氧化钛属于间接半导体,结合公式(2)和(4)可以得到下面的公式: )()(21g i E hv B hv -=?α (5)

作图后可计算出尺寸为5nm 左右的锐钛矿相二氧化钛的间接带隙为 3.34到

3.46eV ,与所选择的外推线段有关。用图4的间接半导体外推都能得到二氧化钛带隙的数据,用公式(5)更准确,其结果如图5所示。所以我们可以认为尺寸为5nm 的二氧化钛晶粒有0.12到0.25eV 的蓝移,表现出了尺寸效应。关于二氧化钛胶体的尺寸效应,可以参考文献(N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem., 1995, 99, 16646-16654)。

图5 (α h ν)1/2对h ν作图求出二氧化钛晶粒的能隙

图5为以(α h ν)1/2对 h ν作图求出二氧化钛晶粒的能隙。样品为TALH 在100oC 水解24h 所得到的沉淀经水洗三遍后在分散在去离子水中,经过150oC 水热处理的二氧化钛湿沉淀经过超声分散后所得胶体并经过1:125稀释,二氧化钛的浓度约为0.08g/L 。

实验步骤:

(1) 观察所本实验室提供的二氧化钛胶体和悬浊液的外观差别,并作好实验记录。

(2) 在做吸收光谱时,所使用的是标准样品台,所使用的是1cm 的标准石英比色皿。在使用前检查石英比皿外观是否清洁,如不清洁需要用专用清洗剂清洗并用擦镜纸擦干净。

(3) 安装专门作液体样品的标准样品台后,确认样品台下面的钮子开关已拨至右边位置,打开光度计主机电源开机。

(4) 点击Windows 界面【开始】键,选择程序项目中的【紫外窗口】,运行【TU-1900配置】软件,显示界面如下,选择【附件】中的【标准样品池】项,选择结束后确认退出。运行紫外窗口下【TU-1901 UVWIN 】程序进行整机初始化。

(5) 仪器自检结束后,选择参数设置。

* 选择【应用】菜单的【光谱测量】项,仪器进入光谱扫描功能。

* 选择【配置】菜单的【参数】项,弹出扫描参数设置窗口,如图6所示。

图6 扫描参数设置

* 在扫描参数窗口,设置波长范围,开始波长为850nm,结束波长为230nm。光度方式选择A。然后确认退出。

* 选择【应用】功能中的【暗电流校正(0%T)】项,在“请在样品池空白比色皿”的提示下,将空白比色皿,然后确认进行暗电流校正。

* 校正结束后,提示是否保存校正结果,确认保存并返回。

(6) 基线校正

暗电流校正完后,在工作波段范围内做基线校正,过程如下:

* 将装有参比溶剂的比色皿分别放在两个样品池中。

* 用鼠标将主菜单功能设到“应用菜单”。选择“基线校正(100%T)”。并确认。

(7) 测量:记录0.00A线以便确认0.00A线的平直度,最后开始测量二氧化钛胶体样品和二氧化钛悬浊液样品。

注意:在整个测量操作期间,小心不能触摸附件内的镜面

(8) 保存数据,也可将数据转换为TXT文件,在其它绘图软件上作图。

(9) 注意比较两个谱图的差异,并分析差异的原因(二氧化钛的浓度是相同的,为何有如次大的差异?)。

(10) 将样品池中的样品倒出,洗净。

(11) 关闭电脑主机,关闭分光光度计主机。准备下一组实验。

2、无机非金属粉末的漫反射光谱

实验步骤:

(1) 断开光度计主机电源。

(2) 打开样品室盖,上提并移去标准样品室架,然后将该附件安装上并压牢。

(3) 将附件的电缆线接到光度计的前部下侧的前放板的接口上。并拧紧固定螺钉。

(4) 将前放板上的钮子开关拨到左边(积分球)位置。图7示意了积分球附件的接线,打开光度计主机电源。

主机

积分球附件

电缆线

开关

图7 积分球安装

注意:

①绝对禁止用手触摸镜子,积分球附件的放置环境要绝对防尘。

②积分球附件要轻拿轻放,大的机械震动会引起积分球内壁硫酸钡涂层的剥落。 ③当要使用标准样品室时,将钮子开关拨至右边位置。

(5) 操作:应首先把两个标准白板分别装在积分球的样品光和参比光两侧的出口位置,将钮子开关拨至左边位置,点击Windows 界面【开始】键,选择程序项目中的【紫外窗口】,运行【TU-1900配置】软件,显示界面如下,选择【附件】中的【积分球】项,同时选择样品池设置中的【S/R 】项,漫反射测量请选择【R/S 】项,光谱带宽选择 5.0nm ,选择结束后确认退出。操作界面如图8所示。运行紫外窗口下【TU-1901 UVWIN 】程序进行整机初始化。

图8 积分球安装后启动电脑主机设置附件

(6) 基本操作

①首先将标准白板安装在积分球的样品光和参比

光两侧的出口处,标准白板是用随机配给的硫酸钡粉

末压制而成的。它们可以用随机配给的滚花头螺钉固

定在积分球上(如图9所示)。

②暗电流校正

整机自检正常进入后,对全波段(850nm ~230nm)

进行暗电流校正(0%R 校正),过程如下:

* 选择【应用】菜单的【光谱测量】项,仪器

进入光谱扫描功能。

* 选择【配置】菜单的【参数】项,弹出扫描

参数设置窗口,如图10所示。

* 在扫描参数窗口,设置波长范围,开始波长

为850nm ,结束波长为230nm 。光度方式选择R%。

然后确认退出。

图9

标准白板的安装 图10 扫描参数设置

* 选择【应用】功能中的【暗电流校正(0%T)】项,在“请在样品池插入黑挡块”的提示下,将样品光侧的标准白板取下,或用光栏测量时,将光栏板安上,然后确认进行暗电流校正。

* 校正结束后,提示是否保存校正结果,确认保存并返回。

③基线校正

暗电流校正完后,在工作波段范围内做基线校正,过程如下:

* 在样品光和参比光两侧安好标准白板。用光栏测量时,应将光栏板和样品侧的标准白板重叠安上。

* 用鼠标将主菜单功能设到“应用菜单”。选择“基线校正(100%T)”。并确认。

④测量

建议用户记录100%R线以便确认100%R线的平直度,最后开始测量未知样品。

注意:在整个测量操作期间,小心不能触摸附件内的镜面

(7) 漫反射测量:

①对全波段进行暗电流校正。

②对工作波段进行基线校正,而后将样品光侧的标准白板换为待测样品,进行测量(见图11)。

图11 漫反射测量图12 压装粉末样品

③对于粉末样品,用玻璃棒将它们压

制到粉末样品架上,并且压制的粉末要完

全充满整个样品槽内(如图12)。

(8) 光学结构:该附件的光学系统如图

13所示,样品光以0°角进入积分球,而参

比光以8°角进入积分球,利用光度计主机

的R/S光通道交换功能,可在样品光侧测

得漫反射,而在参比光侧测得全反射和透

射。

各部件说明:①积分球球体,②积分

球球体固定螺钉,③光电倍增管(安装在积

图13 光学系统

参比光

样品光

分球支板下面),④样品光侧的样品支架,⑤参比光侧的样品支架,⑥反射镜M1,⑦反射镜M2,⑧反射镜M3,⑨光电倍增管信号线。

图14 各部件的说明

(9) 按照图12所示,将二氧化钛粉末在仪器专用的槽中压成片,注意压实,避免粉末脱落污染仪器。先试着垂直放置,粉末不会落下就可以取下左边的标准白板,将待测样品装上。

(10) 在电脑主上点击“开始”,仪器开始自动扫描并记录。

(11) 实验结果与数据处理:得到的是反射率,可以在软件的工作界面上转换成A 模式,这也是国际上专业论文中常用的表示方法。将图直接粘贴到WORD中,也可转换成TXT文件,再用作图软件绘图。

(12) 影响实验结果的因素:漫反射光谱有很好的重复性,只要粉末压实结果有很好的重现性。

4.玻璃、有机玻璃和透明胶片的透过率和全反射测量:

(1) 按照无机非金属粉末的漫反射光谱中的(1)到(6)操作做好测定的准备工作。需要注意的是第(5)步中应选中样品池设置中的【S/R】项,而在漫反射测量需选择【R/S】项。运行紫外窗口下【TU-1901 UVWIN】程序进行整机初始化。

(2) 全反射测量:全反射测定也是测定R%,玻璃的反射率在可见光区为10%左右。基线校正结束后,把样品侧的标准白板更换为待测样品(如图15所示),并用样品压板固定。若用光栏测量,应将样品固定(粘)在光栏板上,再将光栏板用滚花头螺钉固定在

积分球上。

(3) 玻璃、有机玻璃和透明胶片的透过率测量:基线校正结束后,将待测样品固定在积分球的入射窗(见图16),对于薄片型样品,用户可用配件固定样品。

图15 全反射测量图16 透过率测量

五、实验数据处理和思考题

1、将的胶体的消光光谱保存,也可将两张谱图叠在一幅图中,直接粘贴到WORD中。

光谱的数据也可转换成TXT文件,再用作图软件绘图。胶体有很好的稳定性,实验结果有很好的可重现性。悬浮液并不稳定,倒入样品池之前需要振荡尽量保持较好的悬浮性。解释悬浮液消光光谱再现性差的原因。

2、胶体与悬浮液的二氧化钛浓度相同,为何其消光光谱有较大的差异,结合实验原理

来讨论哪个对光的散射更强?

3、根据数据结果来求二氧化钛的带隙(间接半导体)?

4、记录粉末的漫反射光谱,粉末的DRS光谱明显不同于胶体和悬浮液的消光光谱,

为什么?

5、玻璃、有机玻璃和透明胶片都有一定程度的全反射,这对有些应用是不利的,查阅

文献看看有哪些方法可减少这些材料的全反射(电视机屏幕、显示器屏幕的全反射影响视觉效果,玻璃全反射引起的光污染等)?

6.在玻璃、聚合物膜中选择一个材料,测定并记录其透过率和全反射率。注意透过率与全反射测定样品的放置位置是不同的。同一个样品选择两种模式测定的结果也会有差异,为什么?

七、实验报告撰写要求

在试验报告撰写时,除常规内容外,还应讨论下列内容:

1、解释吸收光谱和消光光谱的区别,这什么情况下吸收光谱等同于消光光谱?

2、胶体的概念是什么?根据瑞利散射原理,介质中颗粒的大小与光的波长接近时,散

射率最高。胶体中仍有一些散射,部分悬浮液的散射较胶体中更强烈。实验中提供的二氧化钛颗粒尺寸约为400到800nm,结合这些知识讨论实验结果

3、透过率和全反射率是不同的,光照射到一个介质中后,入射光的能量等于透过光+

反射+散射(漫反射)的能量之和,注意用这些知识解释思考题6。

材料的光学性能测试

材料科学实验讲义 (一级实验指导书)东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

GB T 5137.2-2002汽车安全玻璃试验方法第2部分:光学性能试验

GB/T 5137.2-2002 (2002-12-20发布,2003-05-01实施) 前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”; 本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

塑料力学性能测试标准大全-

塑料力学性能测试标准 GB/T 1039-1992塑料力学性能试验方法总则 plastics--General rules for the test method of mechannlcal properties GB1040 塑料拉伸试验方法 Plastics--Determination of tensile properties GB/T_1041-1992 塑料压缩性能试验方法 Plastics--Determination of compressive properties GB/T 1043-93 硬质塑料简支梁冲击试验方法 Plastics--Determination of charpy impact strength of rigid matericals GB/T 14153-1993硬质塑料落锤冲击试验方法通则 General test method for impact resistance of rigid plastics by means of falling weight GB/T 14484-1993 塑料承载强度试验方法 Test method for bearing strength of plastics GB/T 14485-1993 工程塑料硬质塑料板材及塑料件耐冲击性能试验方法、落球法Standard methods of testing for impact resistance of plats and pats made from englneering plastics by a ball(falling ball GB/T 15047-1994 塑料扭转刚性试验方法 Test method for stiffness proporties in tirsion of plastics GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法 Cellular plastics,rigid--Determination of compressive creep GB/T 12027-2004 塑料-薄膜和薄片-加热尺寸变化率试验方法 Plastics--film and sheeting-Determination of dimensional change on heating GB/T 2013525-1992 塑料拉伸冲击性能试验方法 Test method for tensile-impact property of plastics GB/T 11999-1989塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法 Plastics--Film and sheeting--Determination of tear resistance--Elmendorf method GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法 Cellular plastics--Tear resistance test for flexible materials

材料性能测试

材料性能测试 拉伸:1.什么是弹性变形?弹性变形有何特点?弹性变形的实质是什么? 概念:材料受载后产生变形,卸载后这部分变形消失,材料恢复到原来状态的性质,性能指标有弹性模量、比例极限和弹性极限、弹性比功等。 特点:弹性变形的重要特征是其可逆性,即金属在外力作用下,先产生弹性变形,当外力去除后,变形随即消失而恢复原状,表现为弹性变形可逆性特点。在弹性变形过程中,不论是在加载期还是卸载期,应力应变之间都保持单值线性关系,且弹性变形量比较小,一般不超过1%。本质:材料产生弹性变形的本质,概括说来,都是构成材料的原子(离子、分子)自平衡位置产生可逆位移的反映。原子弹性位移量只相当于原子间距的几分之一,所以弹性变形量小于 2、如何解释金属材料的弹性变形过程? 3、弹性变形与弹性极限有何区别?弹性极限与弹性模量的区别。前者是材料的强度指标,它敏感地取决于材料的成分、组织及其他结构因素。而后者是刚度指标,只取决于原子间的结合力,属结构不敏感的性质。 4、什么是弹性比功?提高材料弹性比功的途径有哪些? 5、什么是屈服?影响屈服强度的因素有哪些?内在因素:晶体结构(位错阻力不同)。晶界和亚结构(细晶强化、晶界强化),溶质元素(固溶强化),第二相(第二相强化),外在因素有温度、应变速率和应力状态等。6.。什么是应变硬化?金属材料的应变硬化有何意义?意义1)应变硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全;2)应变硬化和塑性变形适当配合可使金属进行均匀塑性变形;3)应变硬化是强化金属的重要工艺手段之一,可以单独使用,也可与其他强化方法联合使用,对多种金属进行强化,尤其对于那些不能热处理强化的金属材料;4)应变硬化还可以降低塑性,改善低碳钢的切削加工性能。 7、细化金属晶粒既可提高强度,又可提高塑性,这是为什么?8、什么是超塑性?产生超塑性的条件是什么?超塑性有何特点?9、什么是韧性断裂、脆性断裂?各有何特点?(1)韧性断裂:①明显宏观塑性变形;②裂纹扩展过程较慢; ③断口常呈暗灰色纤维状。④塑性较好的金属材料及高分子材料易发生韧断。脆性断裂:①无明显宏观塑性变形;②突然发生,快速断裂;③断口宏观上比较齐平光亮,常呈放射状或结晶状④淬火钢、灰铸铁、玻璃等易发生脆断。 10、什么是解理断裂、剪切断裂?各有何特点?剪切断裂:①切应力下,沿滑移面滑移分离而造成的断裂。②分为纯剪切断裂和微孔聚集型断裂。③纯剪切断裂:断口呈锋利的楔形。④微孔聚集型断裂:宏观上呈暗灰色、纤维状;微观上分布大量“韧窝”。解理断裂:①正应力下,原子间结合键破坏,沿特定晶面,脆性穿晶断裂。②微观特征:解理台阶、河流花样和舌状花样。③裂纹源于晶界。11、试用双原子作用力模型推导材料的理论断裂强度。 12、试述Griffith裂纹理论分析问题的出发点及思路,指出该理论的局限性。13、什么是应力状态软性系数?利用最大切应力与最大正应力的比值表示它们的相对大小,称为应力状态软性系数,记为α14、比较布氏、洛氏、维氏硬度试样的优缺点及应用范围。15、什么是冲击韧度?低温脆性?蓝脆?冲击韧性:材料在冲击载荷下吸收塑性变形功和断裂功的能力,是材料强度和塑性的综合表现。低温脆性现象:在低温下,材料的脆性急剧增加,实质:温度下降,屈服强度急剧增加16、影响冲击韧性和韧脆转变温度的因素有哪些?17、什么是磨损?磨损包括哪几种类型18、磨损过程包括哪几个阶段?各阶段有何特点?19、提高材料耐磨性的途径有哪些?20、什么是蠕变?按照蠕变速率的变化情况,可将蠕变过程分为哪三个阶段?各个阶段的特点是什么?21、蠕变变形机理包括哪几种?22、影响金属高温力学性能的因素主要有哪些?23.什么是热膨胀?热传导?极化?大多数物体都会随温度的升高而发生长度或体积的变化,这一现象称为热膨胀。材料的内部存在温度梯度时,热能将从高温区流向低温区,这一过程称为热传导。极化:介质在外加电场的作用下产生感应电荷的现象.24.电介质有哪些主要的性能指标?介电常数、介电损耗、介电强度.25. 什么是介电损耗?电介质为什么会产生介电损耗?电介质材料在交变电场作用下由于发热而消耗的能量称为介电损耗。原因:电导(漏导)损耗:通过介质的漏导电流引起的电流损耗。极化损耗:电介质在电场中发生极化取向时,由于极化取向与外加电场有相位差而产生的极化电流损耗。介电损耗越小越好。26. 什么是透光率和雾度?透光率是指透过材料的光通量与入射材料的光通量的百分比。雾度是由于材料内部或外表面光散射造成的云雾状或浑浊的外观,是散射光通量与透过材料总光通量的百分比。27.透光性与透明性有何区别与联系?①透光率表征材料的透光性,但透光性与透明性是两个不同的概念。②透光性只是表示材料对光波的透过能力。③透明性却是指一种材料可使位于材料一侧的观察者清晰无误地观察到材料另一侧的物体的影像。④只有透光率高且雾度小的材料才是透明性好的材料。28. 金属材料均匀腐蚀和局部腐蚀程度的指标有哪些?均匀腐蚀:腐蚀速率的质量指标。腐蚀速率的深度指标.局部腐蚀:腐蚀强度指标;腐蚀的延伸率指标。29. 金属腐蚀的防护措施有哪些?30. 什么是老化?高分子材料在加工、使用、贮存过程中,受到光、热、氧、潮湿、水分、机械应力和生物等因素影响,引起微观结构的破坏,失去原有的物理机械性能,最终丧失使用价值,这种现象称为老化。31. 材料热稳定性的衡量指标是什么?测试方法有哪些?热稳定性是材料的重要性能。高分子受热分解破坏,物理机械性能丧失。通常用热分解温度来衡量其热稳定性。热重分析(TGA)差热分析(DTA)差示扫描量热(DSC)

材料的光学性能测试10页word

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月 一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子

材料技术性能及检测标准

材料技术性能及检 测标准 1

一.砼用砂: 1.执行标准:JGJ52-92<普通砼用砂质量标准及检验方法> 3.检验项目: 若受检单位能够提供法定检测单位出具的,能够证明该批砂子合格的检测报告原件,则只做以下必检项目: 颗粒级配;含泥量;泥块含量;CI-含量检验 若无证明材料,或法定单位检测报告与产品不符(有较大差异)时则应对该批材料进行: 1)颗粒级配 2)表观密度 3)紧密和堆积密度 4)含水率 5)含泥量 6)泥块含量 7)有机物含量 8)云母含量 9)轻物质含量 10) 坚固性 11) 硫化物及硫酸盐含量 12) CI-含量 13) 碱活性(根据双方商定)检验 2

二.砼用卵石(碎石): 1.执行标准:JGJ53-92<普通砼用卵石(碎石)质量标准及检验方法> 3.检验项目: 若受检单位能够提供法定检测单位出具的,能够证明该批卵石(碎石)合格的检测报告原件,则只做以下必检项目: 颗粒级配;含泥量;泥块含量;压碎指标;针片状含量 若无证明材料,或法定单位检测报告与产品不符(有较大差异)时则 应对该批材料进行: 1) 颗粒级配 2) 表观密度 3) 紧密和堆积密度 4) 含泥量 5) 泥块含量 6) 有机物 7) 针片状含量 8) 坚固性 10) 压碎指标 11) 硫化物及硫酸盐含量 12) 碱活性(根据双方商定)。 3

三.混凝土试块: 1.执行标准:GBJ107-87<砼强度检验评定标准> 3.检验项目:抗压强度。 四.砂浆试块: 1.执行标准:JGJ70-90<建筑砂浆基本性能测试方法> 3.检验项目:立方体拉压强度。 六.烧结普通砖: 1.执行标准:GB/T5101-1998<烧结普通砖> 3.检验项目: 若受检单位能够提供法定检测单位出具的,能够证明该批烧结普通砖合格的检测报告原件,则只做以下必检项目: 外观质量;尺寸偏差;抗压强度 若无证明材料,或法定单位检测报告与产品不符(有较大差异)时则应对该批材料进行: 1) 尺寸偏差 2) 外观质量 3) 抗压强度 4) 冻融 5) 泛霜 4

光学高分子材料简述及性能指标

光学高分子材料简述及性能指标 光学高分子材料种类繁多,应用也不尽相同,但一般都包含三大类技术指标:光学性能、机械性能、热学性能。 光学性能主要包括折射率和色散、透过率、黄色指数及光学稳定性。 折射率和色散是光学材料的最基本性能。在透镜设计中,为使透镜超薄和低曲率必须寻求高折射率的光学材料,而校正色差要求有两组阿贝数不同的材料,即冕牌系列(低色散,阿贝数>50)和火石系列(高色散,阿贝数<40)。光学玻璃的折射率和色散有较大的选择余地,而光学塑料的选择范围却十分有限,尤其是冕牌系列光学塑料。透明塑料折射率的测定最常用的方法是折射仪法。阿贝折射仪是最广泛用于测定折射率的折射仪。 透过率是表征树脂透明程度的一个重要性能指标,一种树脂的透过率越高,其透光性就越好。透过率的定义为:透过材料的光通量(T2)占入射到材料表面上的光通量(T1)的百分率。任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以超过95%。 聚合物光学材料在紫外和可见光区的透光性和光学玻璃相近,在近红外以上区域不可避免的出现碳氢振动所引起的吸收。通常,光学塑料在可见光区透光率的损失主要由以下三个因素造成:光的反射;光的散射;光的吸收。 黄色指数是无色透明材料质量和老化程度的一项性能指标,由分光光度计的读数计算而得,描述了试样从无色透明或白色到黄色的颜色变化。这一实验最常用于评价一种材料在真实或模拟的日照下的颜色变化。而对于透明塑料材料来说,由于原料纯度或加工条件等因素的影响,可能自身带有一定颜色。 光学树脂如同多数有机物质一样存在着耐候和耐老化问题,因此树脂的结构和加工工艺以及使用环境对树脂的光学性能有较大的影响。在一定使用期限内,光学参数的稳定性尤为关键,这个指标直接决定产品的使用性能。采用人工加速老化中的全紫外线老化的方法检测树脂的光学稳定性。全紫外线老化法主要模拟阳光中的紫外线.全紫外线强度比相应太阳紫外强度高几倍。正是短波紫外线对有机材料老化起了主要作用,这样会大大地提高了老化加速率,也是全紫外老化的最突出优点。同时可以进行温度、湿度、雨淋等环境因素的模拟。这一老化方法其紫外强度等参数可以监控,试验重复性好。 韧性(耐冲击性能)和表面硬度(耐磨性)是光学高分子材料的重要机械性能。 冲击强度是衡量材料韧性的一种强度指标。冲击强度是使材料在冲击力的作用下折断,通常把折断时截面吸收的能量定义为材料的冲击韧性。冲击实验主要有弯曲梁式(摆锤式)冲击、落锤式冲击和高速拉伸试验三类。 无定型聚合物的韧性主要与其分子结构有关。主链上酯键、醚键、碳-碳键可以自由旋转,因而材料具有较好的韧性,如PC是光学塑料中抗冲击性能最好的材料;带有较大

(整理)材料的光学性能测试.

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

塑料性能解析

塑料性能解析 橡塑包括PE、PP、PVC、ABS、PC、PA、POM、PBT、PET、TPE、TPO、TPR、TPU等材料;这些材料,一般都需要进行常规或特定的测试:如老化测试,其中包括:人工气候老化试验(氙弧灯、碳弧灯、紫外灯)、自然气候暴晒试验、盐雾试验、湿热试验、高低温试验、臭氧试验、热氧老化试验等; 力学性能、电学性能方面的测试,包括:拉伸、撕裂、弯曲、压缩、冲击、热变形温度、维卡软化温度、熔融指数、氧指数、表面电阻、体积电阻、击穿电压、光泽、透光率、雾度、燃烧性能等。 但真正系统完整的资料,能找到的估计并不多,所以就有了这篇文章的目的。这篇文章对于销售而言,可以快速了解塑料的基本性质;对于做品质的朋友,能加深对于自己工作的一认识;对于研发的朋友,也有一些参考性的建议。 机械力学性能 1.密度与比重 塑料的比重是在一定的温度下,秤量试样的重量与同体积水的重量之比值,单位为 g/cm3,常用液体浮力法作测定方法. 在质量相同的条件下,密度越轻,根据ρ=m/V,比重越小,在等体积,价格相同的情况下,比重越小的材料可以制造的产品越多,单个产品的材料成本也就越低,而且可以减少产品的重量,节省运输等费用。所以,比重是非常重要的属性。特别是在塑料代替金属等材料的时候,是特别大的一个优势。 2. 拉伸/弯曲 在拉伸性能的测试中,通常的测试项目为拉伸应力、拉伸强度、拉伸屈服强度、断裂伸长率、拉伸弹性模量,弯曲模量/弯曲强度等。 拉伸测试:测定高聚物材料的基本物性,对材料施加应力后,测出变形量,求出应力,应力应变曲线是最普通的方法。将样条的两端用器具固定好,施加轴方向的拉伸荷重,直到遭破坏时的应力与扭曲。 弹性模量:E=( F/S)/(dL/L)(材料在弹性变形阶段,其应力和应变成正比例关系)弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。 弹性模量的意义:弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反应。 强度:材料在载荷作用下抵抗塑性变形或被破坏的最大能力。 屈服强度:材料发生明显塑性变形的抗力 拉伸强度:在拉伸试验中,试样直至断裂为止所承受的最大拉伸应力。

塑料薄膜的性能测试方法

塑料薄膜的性能测试方法 塑料薄膜、复合膜具有不同的物理、机械、耐热以及卫生性能。当塑料薄膜应用为包装材料时,需要根据包装物以及应用环境的不同,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法,优先选择ISO、ASTM、以及我国国家标准、行业标准,如BB/T 标准、QB/T标准、HB/T标准等等。 GBT 2918-1998 《塑料试样状态调节和试验的标准环境》等同国际标准ISO 291:1997《塑料一状态调节和试验的标准环境》,提出了各种塑料及各类试样在相当于实验室平均环境条件的恒定环 境条件下进行状态调节和试验的规范,并给出标准实验环境定义,是大部分塑料性能测试方法引用的标准。 1.规格、外观测试方法 塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要;外观直接影响商品形象;其厚度则又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.1厚度测定 塑料一般具有一定的弹性,因此其厚度测定一般需要施加一定的接触负荷。 GB/T6672-2001《塑料薄膜和薄片厚度测定机械测量法》等同采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械

测量法》。规定了机械法测量法即接触法测量塑料薄膜或薄片样品厚度的试验方法,但不适用于压花材料的测试。 1.2.长度、宽度 塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。 GB/T 6673-2001《塑料薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 1.33.外观 塑料薄膜的外观检验一般采取在自然光下目测。 外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。 2.物理机械性能测试方法 2.1拉伸性能 塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。采用拉力试验机进行测试。 GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于厚度大于1mm的材料热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。

包装材料塑料薄膜性能的测试方法

包装材料塑料薄膜性能的测试方法 包装材料塑料薄膜性能的测试方法 信息来源:软包装 在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同的物理、机械、耐热以及卫生性能。人们根据包装的不同需要,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法。优先选择ISO国际标准、国际先进组织标准,如ASTM、TAPPI等和我国国家标准、行业标准,如BB/T标准、QB/T标准、HB/T标准 等等。 笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下。 规格、外观 塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要。有些薄膜的外观与货架效果紧密相连,外观有问题直接影响商品销售。而厚度又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作 出规定,相应的要求检测方法一般有: 1.厚度测定 GB/T6672-2001《塑料薄膜和薄片厚度测定 机械测量法》该非等效采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械测量法》。适用于薄膜和薄片的厚度的测定,是采用机械法测量即接触法,测量结果是指材料在两个测量平面间测得的结果。测量面对试样施加的负荷应在0.5N~1.0N之间。该方 法不适用于压花材料的测试。 2.长度、宽度 GB/T 6673-2001《塑料薄膜与片材长度和宽度的测定》非等效采用国际标准ISO4592:1992《塑料-薄膜和薄片-长度和

宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。 塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。 标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状 态下保持一定的时间,待尺寸稳定后在进行测量。 3.外观 塑料薄膜的外观检验一般采取在自然光下目测。外观缺陷在GB/T 2035《塑料术语及其定义》中有所规定。缺陷的大小一般需用 通用的量具,如钢板尺、游标卡尺等等进行测量。 物理机械性能 1.塑料力学性能——拉伸性能 塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。 塑料拉伸性能试验的方法国家标准有几个,适用于不同的塑料拉伸性能试验。 GB/T 1040-1992《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑 料制品。适用于厚度大于1mm的材料。 GB/T13022-1991《塑料薄膜拉伸性能试验方法》是等效采用国际标准ISO1184-1983《塑料薄膜拉伸性能的测定》。适用于塑料薄膜和厚度小于1mm的片材,该方法不适用于增强薄膜、微孔片材、微孔膜的拉伸性能测试。 以上两个标准中分别规定了几种不同形状的试样,和拉伸速度,可根据不同产品情况进行选择。如伸长率较大的材料,不宜采用太宽的试样;硬质材料和半硬质材料可选择较低的速度进行拉伸试验,软质材料选用较高的速度进行拉伸试验等等。 2.撕裂性能 撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂的性能。 GB/T 16578-1996《塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法》是等效采用国际标准ISO 6383-1:1983《塑料-薄膜和薄片-耐撕裂性能的测定

材料现代分析与测试 第六章 材料光学性能分析汇总

第六章 材料光学性能分析 第一节 透射光谱和吸收光谱 材料的光学性能主要包括对光的折射、反射、吸收、透射以及发光等诸多方面,光学性能与材料的某些应用领域密切相关,比如用作反射镜、光导纤维窗口、透镜、棱镜、滤光镜、激光探测器件等。鉴于篇幅,本章着重介绍折射率、色散、透过、吸收以及激发、发射、亮度、效率等发光性能的测试。 一、基本概念 光作为一种能量流,在穿过介质时,能引起介质的价电子跃迁或影响原子的振动而消耗能量。 即使在对光不发生散射的透明介质如玻璃或水溶液中,光也会有能量的损失,即光的吸收。 1.吸收光谱 设有一厚度为x 平板材料,入射光强度设为I 0,通过此材料后光强度为I ′。选取其中一薄层,并认为光通过此薄层的吸收损失-dI 正比于此处光强度 I 和薄层厚度dx ,即: 则可得到光强度随厚度呈指数衰减规律,即朗伯特定律: α为物质对光的吸收系数,单位为cm-1。 α的大小取决于材料的性质和光的波长。对于相同波长的光波,α越大,光被吸收得越多,能透过的光强度就越小。 α随入射光波长(或频率)变化的曲线,叫作吸收光谱。 2.透射光谱 透光性是表征材料被光穿透能力的高低,透光性的好坏可用透过率指标T 来衡量。 透过率T 是指光通过材料后,透过光强度占入射光强度的百分比。剩余光强度应是从初始入射光强度I 0中扣除造成光能衰减的表面上的反射损失、试样中的散射损失和吸收损失等。 一般地,反射、吸收和透过的关系可用下式表示: dI I dx α-=??'0x I I e α-=?2(1)exp() T R d α=--?

T——透过率;R——反射系数;α——吸收系数; d——试样厚度,单位cm。 透过率T随波长变化的曲线即称为透射光谱曲线。 透射光谱曲线可用分光光度计来测定。 光强的大小用光透过试样照到光电管上产生的电流的大小来表示。 某个波长的光通过空气(作为空白样)后的光强设为I0,再通过一定厚度的试样后的光强设为I′,即可通过I′/ I0得到针对该波长的透过率Tλ,如此依次测得其他各波长的透过率就可得到透过率T随波长变化的透射光谱。 二、光谱测试 1.测试仪器:分光光度计 图6-1 721型分光光度计的光学系统示意图 1—光源2, 8—聚光透镜3—反射镜4—狭缝5, 12—保护玻璃6—准直镜7—色散棱镜9—比色皿10—玻璃试样11—光门13—光电管 2.透射光谱测试 由光源发出的连续辐射光线,经过聚光透镜汇聚到反射镜,转角90°反射至狭缝内。由此入射到单色器内准直镜的焦面上,被反射后,以一束平行光射向色散棱镜(棱镜背面镀铝),光在棱镜中色散,入射角在最小偏角时,入射光在铝面上反射后按原路返回至准直镜,再反射回狭缝,经聚光透镜再次聚光后进入比色皿中,透过试样到光电管。光电管所产生的电流大小表示试样的透过率,直接从微安表读出,从而可得T—λ曲线,即透射光谱。

常用塑胶性能测试标准

常用塑胶性能测试标准 燃性测试 UL 94*总体可燃性UL94等级是应用最广泛的塑料材料可燃性能标准。它用来评价材料在被点燃后熄灭的能力。根据燃烧速度、燃烧时间、抗滴能力以及滴珠是否燃烧可有多种评判方法。每种被测材料根据颜色或厚度都可以得到许多值。当选定某个产品的材料时,其UL等级应满足塑料零件壁部分的厚度要求。UL等级应与厚度值一起报告,只报告UL等级而没有厚度是不够的。UL 94等级总结: HB厚度<3mm的水平试样缓慢燃烧,燃烧速度<76mm/min。 V-0垂直试样在10秒内停止燃烧;不允许有液滴。 V-1垂直试样在30秒内停止燃烧;不允许有液滴。 V-2垂直试样在30秒内停止燃烧;允许有燃烧物滴下。 5V对试棒燃烧5次,每次火焰都大于V测试中的火焰,每次持续5秒。燃烧在60秒内停止。 5VB试样板被烧穿(产生一个洞)。 5VA试样板未被烧穿(没有产生洞)-UL最高等级。 UL 94 HB*水平测试过程 对可燃性有安全方面的要求时,不允许使用HB材料。通常情况下HB级的材料不能于电器,但机械或装饰品除外。有时,人们会有误解:非FR材料(或没有打算用作FR材料的材料)不会自动满足HB的要求。尽管最不严格,UL 94 HB仍是一个可燃性分类等级,必须经测试检测。 UL 94 V0,V1和V2*垂直测试过程 垂直测试(见图14-17)使用与HB检测中相同的试样。燃烧时间、发光时间、何时开始滴落以及下面的棉花是否被引燃都应注明。燃烧滴落被认为是燃烧扩散的主要原因,也是区分V1与V2的标准。 图14-17 UL 94 V0,V1,V2垂直测试过程 UL 94-5V*垂直测试过程 UL 94-5V是所有UL测试中最严格的(见图14-18)。 图14-18 UL 94-5V垂直测试过程 它包括两个步骤: 步骤一: 垂直安装一个标准可燃性试棒,使其经受五次127mm火焰,每次持续5秒。如果此后试棒燃烧时间短于60秒且液滴不引燃下面的棉花,则通过测试。整个过程要对

材料性能试验相关标准及测试方法

材料力学性能试验标准及测试方法 1.拉伸实验 [1]标准 金属拉伸试件按国标GB/T6397-1986《金属拉伸试验试样》[1] 标准ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能;ASTM D638用于测定试件的拉伸强度和拉伸模量[2]; 2.压缩试验 [1]标准 压缩试件按国标GB/T7314-1987《金属压缩实验试样》[1] ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法) [3]。 3.弯曲试验 [1]标准 ASTM D7624用于测定聚合物基复合材料的弯曲刚度与强度性能[2]。 4.剪切试验 [1]标准 ASTM D5379适用大部分的纤维增强型复合材料[2]。 5.层间断裂 [1]标准 ASTM D5528和JIS K7086,仅适用于单向分层测试。其他的还未有相关标准[2]。 6.冲击试验 [1]标准 金属材料按照GB/T229-1994加工成V形缺口或U形缺口[1] 目前复合材料在冲击后的损伤性能表征主要是损伤阻抗( Damage Resistance) 和损伤容限( Damage To tolerance)。 目前关于损伤阻抗和损伤容限的测试标准有ASTM D6264-98(04)和ASTM D7136 /D7136M-05标准。D6264-98用来测量纤维增强复合材料对集中准静态压痕力的损伤阻抗;D7136用来测量材料对落锤冲击试件的损伤阻抗[2]。

7.疲劳试验 [1]疲劳极限测试标准 单点试验按照航标HB5152-1980规定;升降试验法按照国标GB/T3075-1982和GB/T4337-1984[1]。 参考文献 [1]金保森.材料力学实验.2005 [2]郑锡涛.液体成形复合材料力学性能测试方法研究进展.2010 [3]JM 惠特尼.纤维增强复合材料试验力学.1990 [4]J.M.霍奇金森.先进纤维增强复合材料性能测试.2005

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

相关文档
最新文档