水泥水化反应

水泥水化反应
水泥水化反应

水泥原料无水

C3S——硅酸三钙3(CaO·SiO2)

C2S——硅酸二钙2(2CaO·SiO2)

C3A——铝酸三钙3CaO·Al2O3

C4AF——铁相固溶体4CaO·Al2O3·Fe2O3

水化作用后产物

C-S-H——水化硅酸钙3CaO·2SiO2·3H2O (胶体)

CH ——氢氧化钙Ca(OH)2(晶体)

C3AH6——水石榴石 3 CaO·Al2O3 ·6 H2O(晶体)

AFt ——三硫型水化硫铝酸钙,简称钙矾石Ca6Al2(SO4)3(OH)12·26 H2O AFm——单硫型水化硫铝酸钙Ca4Al2(OH)12 SO4 ·6H2O

水泥在干态时主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙以及少量的硫酸化物(钾盐、钠盐)、石膏(二水硫酸钙)组成。在水泥水化过程中,C3A C3S和C2S与水泥中其它组分发生复杂的水化反应,生成钙矾石即三硫型水化硫酸铝钙型AFt,单硫型水化硫酸铝钙AFm,氢氧化钙CH和硅酸钙C-S-H凝胶。

硅酸盐水泥的水化是一个非常复杂的、非均质的多相化学反应过程。自加水开始,水泥的水化反应就会一直进行,水泥基材料的结构会随着水泥水化反应逐渐演变,由流动状态逐渐变为塑性状态,最后到凝结硬化状态。

通过水泥的水化反应,使得松散的水泥粉体颗粒变成了具有胶结性的水泥浆体,进而粘结各种不同粒径的粗细骨料,形成了混凝土这种水泥基体材料。

水泥的水化作用就是它们之间的复杂化学反应,生成结晶性较好的水化晶体:AFt AFm CH 还有结晶性不好的无定形C—S-H

AFt AFm CH 呈针状、棒状、无序态,这是造成水泥脆性的根本原因

水泥混凝土水化过程的化学反应式:

3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体)

2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体)

3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体)

4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体)

硅酸盐水泥4种熟料矿物成分中,主要的强度贡献者是C3S和C2S,它们在水泥中含量最多,占水泥重量的75%,因此它们的水化进程对水化物组成以及水泥石结构产生决定性影响,它们生成的水化产物主要是:水化硅酸钙和氢氧化钙(游离的对强度有害)。

氢氧化钙CH是一种六方板状晶体,其强度很低,稳定性极差,在侵蚀条件下是首先遭到侵蚀的组成,而且它们多在水泥石和集料的界面处富集,并组晶成粗大晶粒,因此界面的黏结力下降,成为水泥基材料中的最薄弱环节。因此,CH是水泥耐久性差的主要根源,也是水泥裂缝的发源地。(CH是对水泥强度有害的)

硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下:

①硅酸三钙水化C3S——C-S-H+CH

硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙CH。

3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2

②硅酸二钙的水化C2S——C-S-H+CH

β-C2S的水化与C3S相似,只不过水化速度慢而已。

2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2

所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H 凝胶。但CH生成量比C3S的少,结晶却粗大些。

③铝酸三钙的水化C3A——AFm 或AFt

铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。

在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。

最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。

若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。

④铁相固溶体的水化C4AF水化产物与C3A类似

水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。

错误:(3)应是Al2

普通硅酸盐水泥技术要求

普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P.O。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替。 掺非活性混合材料时,最大掺量不得超过水泥质量10%。 P.C 42.5R水泥 P.C:复合硅酸盐水泥; 42.5:28天抗压强度≥42.5MPa; R :早强型,3天强度较同强度等级水泥高。 如果速凝剂是合格的,以掺加4%为宜,多掺会影响强度 II级粉煤灰,细度小于25%,烧失量小于8%,需水量比小于105% 高效减水剂 高效减水剂对水泥有强烈分散作用,能大大提高水泥拌合物流动性和混凝土坍落度,同时大幅度降低用水量,显著改善混凝土工作性。但有的高效减水剂会加速混凝土坍落度损失,掺量过大则泌水。高效减水剂基本不改变混凝土凝结时间,掺量大时(超剂量掺入)稍有缓凝作用,但并不延缓硬化混凝土早期强度的增长。 能大幅度降低用水量从而显著提高混凝土各龄期强度。在保持强度恒定时,则能节约水泥10%或更多。

氯离子含量微少,对钢筋不产生锈蚀作用。能增强混凝土的抗渗、抗冻融及耐腐蚀性,提高了混凝土的耐久性。 聚羧酸 1、掺量低、减水率高:减水率可高达35%,可用于配制高强以及高性能混凝土。 2、坍落度轻时损失小:预拌混凝土2h坍落度损失小于15%,对于商品混凝土的长距离运输及泵送施工极为有利。 3、混凝土工作性好:用PC聚羧酸系高性能减水剂配制的混凝土即使在高坍落度情况下,也不会有明显的离析、泌水现象,混凝土外观颜色均一。对于配制高流动性混凝土、自流平混凝土、自密实混凝土、清水饰面混凝土极为有利。用于配制高标号混凝土时,混凝土工作性好、粘聚性好,混凝土易于搅拌。 4、与不同品种水泥和掺合料相容性好:与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性问题。 5、混凝土收缩小:可明显降低混凝土收缩,显著提高混凝土体积稳定性及耐久性。 6、碱含量极低:碱含量≤0.2%。 7、产品稳定性好:低温时无沉淀析出。 8、产品绿色环保:产品无毒无害,是绿色环保产品,有利于可持续发展。 9、经济效益好:工程综合造价低于使用其它类型产品

水泥水化机理

4.1水泥的水化机理 从化学角度来看,水泥的水化反应是一个复杂的溶解沉淀过程,在这一过程中,与单一成分的水化反应不同,各组分以不同的反应速度同时进行水化反应,而且不同的矿物组分彼此之间存在着互相影响。水泥中最多的熟料矿物是硅酸盐化合物,是制约水泥水化性质及相关性能的关键组分。水泥中的硅酸盐熟料矿物的主要成分为硅酸三钙和硅酸二钙。 (1)硅酸三钙(C3S)的水化 硅酸三钙是水泥熟料中的含量最多的组分,通常占材料总量的50%左右,有时高达60 %。硅酸钙的水化产物的化学组成成分不稳定,常随着水相中钙离子的浓度、温度、使用的添加剂、养护程度而发生变化,而且形态不固定,通常称为“C-S-H”凝胶。 C3S在常温下发生水化反应,可大致用下列方程式表述: 硅酸三钙的水化速率很快,其水化过程根据水化放热速率随时间的变化,可以将C3S的水化过程划分为五个阶段,各阶段的化学过程和动力学行为如表1.1所示。 表1.1 C3S水化各阶段的化学过程和动力学行为时期早期中期后期 反应阶段诱导前期诱导期加速期减速期稳定期 化学过程初始水解, 离子进入溶 液 继续溶解, 早期C-S-H 稳定水化产 物开始生长 水化产物继 续生长,微 结构发展 微结构组件 密实 动力学行为反应很快反应慢反应快反应变慢反应很慢(2)硅酸二钙的水化 C2S也是水泥主要熟料矿物组分之一,水化过程与C3S相似,也有诱导期、加速期,但是水化速率特别慢。C2S的水化反应可大致用下列方程表述:

(3)铝酸三钙的水化 C3A是水泥熟料矿物的重要组分之一,其水化产物的组成与结构受溶液中的氧化铝、氧化钙浓度的影响很大,它对水泥的早期水化和浆体的流变性能起着重要的作用。纯水中C3A的水化:大量的研究结果表明,C3A遇水后能够立即在表面形成一种具有六边形特征的初始胶凝物质粒子,开始时其结晶度很差也很薄,呈不规则卷层物,随着水化时间的推移,这些卷层物生长成结晶度较好的,成分为C4AH19和C2AH8济的六边形板状物。这种六边形水化物是亚稳的,并能转化成立方形稳定的晶体颗粒。常温下C3A在纯水中的水化反应可用下式表示: 有石膏存在时C3A的水化:在水泥浆体中,熟料中的C3A实际上是在和有石膏存在的环境中水化的,C3A在Ca(OH)2饱和溶液中的水化反应可以表述为C3A+CH+12H=C3AH13。当处于水泥浆体的碱性介质中时,C3AH13在室温下能稳定存在,其数量增长也很快,这是水泥浆体产生瞬时凝结的主要原因之一。(4)铁铝酸四钙的水化 铁铝酸四钙的水化与铝酸三钙的水化过程相似,只是反应速率很慢,而且产物是含铁和铝的共同产物。

硅酸盐水泥和普通水泥的区别

硅酸盐水泥和普通水泥的区别 硅酸盐水泥和普通硅酸盐水泥(简称普通水泥) 共同特点: 早期强度较高;凝结硬化速度快(前者比后者还要快) 2、水化热较大(前者比后者还要大得多) 3、耐冻性差 4、耐热性较差 5、耐腐蚀及耐水性较差 适用范围:前者适用于快硬早强的工程、高强度等级砼。不适用于大体积砼工程(发热量比普通水泥大得多,不用)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。后者适用于地上、地下及水中的大部分砼结构工程。不适用于大体积砼(实际施工时一般视这个大体积到底有多大以及它的重要性,或者采取控温措施后还是经常用的,至少西南地区是这样)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。 复合硅酸盐水泥主要特征:早期强度低,耐热性好,抗酸性差。采用粉煤灰和煤矸石做为混合材,系绿色建材产品,享受国家税收优惠,早期和后期强度稳定,水化热低,适用于一般工业与民用建筑,是一种经济型水泥。 普通硅酸盐水泥主要特征:早期强度高,水化热高,耐冻性好,耐热性差,耐腐蚀性差,干缩性较小。适用范围:制造地上、地下及水中的混凝土,钢筋混凝土及预应力混凝土结构,受循环冻融的结构及早期强度要求较高的工程,配制建筑砂浆。不适用于大体积混凝土工程和受化学及海水侵蚀的工程。 凡由硅酸盐水泥熟料、6%-15%的混合材料及适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥。国家标准对普通硅酸盐水泥的技术要求有:(1)细度筛孔尺寸为80μm的方孔筛的筛余不得超过10%,否则为不合格。(2)凝结时间初凝时间不得早于45分钟,终凝时间不得迟于10小时。(3)标号根据抗压和抗折强度,将硅酸盐水泥划分为325、425、525、625四个标号。 普通硅酸盐水泥由于混合材料掺量较少,其性质与硅酸盐水泥基本相同,略有差异,主要表现为:(1)早期强度略低(2)耐腐蚀性稍好(3)水化热略低(4)抗冻性和抗渗性好(5)抗炭化性略差(6)耐磨性略差 复合硅酸盐水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥重复。 水泥一般分普通硅酸盐水泥、掺混合材料的硅酸盐水泥和特殊水泥。普通硅酸盐水泥:由石灰石、粘土、铁矿粉按比例磨细混合,这时候的混合物叫生料。然后进行煅烧,一般温度在1450度左右,煅烧后的产物叫熟料。然后将熟料和石膏一起磨细,按比例混合,才称之为水泥。 掺混合材料的硅酸盐水泥是在普通硅酸盐水泥里按比例和一定的加工程序加入其他物质以达到特殊效果,如矿渣水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥等等。这些水泥的原料就比原来的普通硅酸盐水泥要多一些活性混合材料或非活性混合材料。特殊水泥在材料阶段和制作工艺上有些不同,如高铝水泥(铝酸盐水泥)的材料是铝矾土、石灰石经过煅烧得到熟料,然后磨细成为铝酸盐水泥的。其他有一些特性水泥用途较小,如白色水泥,主要用于装饰工程,材料是纯高岭土、纯石英砂、纯石灰石,在合适的温度煅

水泥水化反应

水泥原料无水 C3S——硅酸三钙3(CaO·SiO2) C2S——硅酸二钙2(2CaO·SiO2) C3A——铝酸三钙3CaO·Al2O3 C4AF——铁相固溶体4CaO·Al2O3·Fe2O3 水化作用后产物 C-S-H——水化硅酸钙3CaO·2SiO2·3H2O (胶体) CH ——氢氧化钙Ca(OH)2(晶体) C3AH6——水石榴石 3 CaO·Al2O3 ·6 H2O(晶体) AFt ——三硫型水化硫铝酸钙,简称钙矾石Ca6Al2(SO4)3(OH)12·26 H2O AFm——单硫型水化硫铝酸钙Ca4Al2(OH)12 SO4 ·6H2O 水泥在干态时主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙以及少量的硫酸化物(钾盐、钠盐)、石膏(二水硫酸钙)组成。在水泥水化过程中,C3A C3S和C2S与水泥中其它组分发生复杂的水化反应,生成钙矾石即三硫型水化硫酸铝钙型AFt,单硫型水化硫酸铝钙AFm,氢氧化钙CH和硅酸钙C-S-H凝胶。 硅酸盐水泥的水化是一个非常复杂的、非均质的多相化学反应过程。自加水开始,水泥的水化反应就会一直进行,水泥基材料的结构会随着水泥水化反应逐渐演变,由流动状态逐渐变为塑性状态,最后到凝结硬化状态。 通过水泥的水化反应,使得松散的水泥粉体颗粒变成了具有胶结性的水泥浆体,进而粘结各种不同粒径的粗细骨料,形成了混凝土这种水泥基体材料。 水泥的水化作用就是它们之间的复杂化学反应,生成结晶性较好的水化晶体:AFt AFm CH 还有结晶性不好的无定形C—S-H AFt AFm CH 呈针状、棒状、无序态,这是造成水泥脆性的根本原因 水泥混凝土水化过程的化学反应式: 3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体) 2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体) 3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体) 4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体) 硅酸盐水泥4种熟料矿物成分中,主要的强度贡献者是C3S和C2S,它们在水泥中含量最多,占水泥重量的75%,因此它们的水化进程对水化物组成以及水泥石结构产生决定性影响,它们生成的水化产物主要是:水化硅酸钙和氢氧化钙(游离的对强度有害)。 氢氧化钙CH是一种六方板状晶体,其强度很低,稳定性极差,在侵蚀条件下是首先遭到侵蚀的组成,而且它们多在水泥石和集料的界面处富集,并组晶成粗大晶粒,因此界面的黏结力下降,成为水泥基材料中的最薄弱环节。因此,CH是水泥耐久性差的主要根源,也是水泥裂缝的发源地。(CH是对水泥强度有害的)

石灰石对水泥水化过程的影响

石灰石对水泥水化过程的影响-中国水泥技术网 2010-4-1 作者: 摘要:EN标准(EN 197)规定波特兰水泥中石灰石粉(主要为方解石)的掺加量最多可达5%,而全世界范围内,在特种水泥中石灰石的掺加量都要高得多。然而人们关注着富含石灰石的水泥的性能问题。由于尚未充分了解石灰石粉添加剂的作用:石灰石粉到底是一种活性添加剂还是惰性填充材料,或者是二者共存,所以目前还不能对此做些什么。本文展示如何辅以有针对性的试验进行计算来说明具有活性低含量方解石的作用。本文提供的发现显示了现代热动力学作为研究水泥浆体矿物学的一种有效方法的功能。 1 引言和基本原则 水泥生产商在生产具有较高早期强度和优良耐久性的优质水泥的同时,承受着降低成本和减少排放的压力。在这种情况下,常采用石灰石粉部分地替代水泥,并且经证明含量至少达到5%时是无害的:石灰石粉是EN 197标准允许的一种添加剂。由于按照该标准,所用石灰石中碳酸钙的含量不能低于70%(许多商用石灰石超过了此限值),因此,采用方解石进行模拟分析是合理的。 石灰石通常与熟料共同粉磨,由于其硬度比熟料小,所以粉磨之后的石灰石粒径的分布范围较广,但是其平均粒径明显比熟料的更细。由此产生的石灰石细粉无疑能改善固体颗粒与水混合后的固结性。然而物理堆积的优化过程相当复杂,不仅取决于石灰石粉的掺加量,还取决于所使用的粉磨设备类型以及熟料、石灰石的相对易磨性,由于这些都是变量,因此需要不同工厂各自进行评估。 Ingram和Daugherty对石灰石粉的物理作用作了评述。随后,Livesey等和Vuk等报道了石灰石水泥的强度发展。Tsivilis等人报道了加入石灰石粉后的混合物的渗透性,并将其与混合物基体的碳化速度和钢筋的潜在腐蚀性联系起来进行了分析。Uchikawa 等人在检查混凝土时发现由于石灰石粉的加入会使孔结构细化,并声称石灰石粉不具有火山灰活性,因此,对氢氧钙石含量也没有影响另一面,Catinaud等人指出,由于碳铝酸盐的形成,石灰石粉会阻止AFt(钙矾石)向AFm(单硫型硫铝酸盐)转化。这正与Sawicz、Henig和Kuzel等人的结果相一致,他们认为石灰石粉阻止了钙矾石向单硫酸盐转变,取而代之的则是单碳铝酸盐和半碳铝酸盐的形成。由以上文献可以看出,对于石灰石粉在波特兰水泥混合物中的活性还没有达成统一认识。 借助于选择的几种矿物活性实验以及热力学计算,我们再次对石灰石粉的活性进行检测,实

水泥水化反应

就是水泥水化反应公式。 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。 C3S——硅酸三钙 C3A——铝酸三钙 水泥混凝土水化过程的化学反应式: 3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体) 2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体) 3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体) 4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体)

【揭秘混凝土】第25篇:水化反应究竟需要多少水

【揭秘混凝土】第25篇:水化反应究竟需要多少水 水泥必须与水发生水化反应才能产生强度。如果水少了,水化反应无法充分进行,水泥石中会有大量没有水化或水化不充分的矿物颗粒,影响强度。但如果水多了,对水泥石的强度和耐久性都会产生负面影响。随着水化反应的进行,拌合物中最初被水占据的空间逐步会被水化生成物填充。但如果用水量超过水泥用量的35%(重量比)(水灰比为35%)时,水化生成物就不能将拌合水所占据的空间全部填充,而会留下一些孔隙。 如图1所示,这两个试件中的水泥用量完全相同,但水灰比不同。当将可蒸发的水全部蒸发后,两个试件的重量完全相同。从图中可见,尽管两个试件的重量相同,但体积相差很大。原因就是在水化过程中相同重量的水泥结合的水量是相同的,因此水灰比越大,剩余水就越多,这些剩余水被蒸发掉之后,留下的孔隙就越多,试件的体积也就越大。 在水泥石中,水基本上是以自由水和结合水的形式存在。自由水是指那些没有参与水化反应的拌合水。结合水是指与水泥基材料发生水化反应而成为固体水化物一部分的化学结合水和那些被吸附在固体颗粒表面的物理吸附水。化学结合水和物理吸附水是很难被明确区分开的,因此有科学家用“可蒸发水”和“不可蒸发水”来区分水泥石中的水。 “可蒸发水”是指将水泥石加热到105摄氏度时,能够从中蒸发出来的水。“不可蒸发水”是指在这个温度下仍然存留在水泥石中的水。其实,一部分结合水在这样的温度下也是可能被蒸发出

来的。因此,“可蒸发水”既包括全部的自由水,也包括部分结合水。换句话说,“不可蒸发水”都是结合水,而结合水不一定都是“不可蒸发水”。 普通硅酸盐水泥材料中不同组分充分完成水化反应后,其生成物中“不可蒸发水”的含量是不同的。或者说,不同组分进行充分水化反应的需水量是不同的。详见表1: 从表1中可以看出,普通硅酸盐水泥组分中,铝酸三钙和铁铝酸四钙充分完成水化反应需水量最大,水灰比接近40%。考虑到普通硅酸盐水泥中的硅酸三钙和硅酸二钙的含量占到绝大部分,因此充分完成水化反应所需的水灰比要远小于40%,一般仅为22%--25%。

水泥水化反应公式

水泥水化反应公式

水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca( OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca( OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,

先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。

(1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃Fe3O4 3. 铜在空气中受热:2Cu + O2 加热2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃2P2O5 7. 硫粉在空气中燃烧:S + O2 点燃SO2 8. 碳在氧气中充分燃烧:C + O2 点燃CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃2CO2 + 3H2O

水泥水化

水泥水化 目录 强度 水泥水化热会产生什么影响? 水泥水化反应公式 水泥水化过程,分为化学反应和物理化学反应. 编辑本段强度 初期强度取决于3CaO.SIO2后期强度为2CaO.SIO2,含量在75--82% 编辑本段水泥水化热会产生什么影响? 对于一般建筑、小体积工程来说,可以不考虑水泥的水化热,甚至可以加快水泥的水化硬化! 但是对于大体积工程来说,比如大坝,桥梁等,水化热来不及释放越积越多会造成膨胀开裂等毁灭性后果!所以有专用的大坝水泥、低水化热水泥!有的还要使用其他冷却方法!编辑本段水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H 凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。 水泥水化深度 熟料矿物或水泥的水化速率常以单位时间内的水化程度或水化深度来表示。水化程度是指在一定时间内发生水化作用的量和完全水化量的比值;而水化深度是指已水化层的厚度。水化速率必须在颗粒粗细、水灰比以及水化温度等条件基本一致的情况下才能加以比较。右图为一球形颗粒(平均直径dm)的水化深度示意图。其中阴影表示已经水化部分。根据上述水化程度的定义,并假定在水化过程中能始终保持球形.且密度不变,即可导出水化深度h和水化程度a之间的关系: ?? ??

水泥水化反应公式

水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H 凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A 作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。

(1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃Fe3O4 3. 铜在空气中受热:2Cu + O2 加热2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃2P2O5 7. 硫粉在空气中燃烧:S + O2 点燃SO2 8. 碳在氧气中充分燃烧:C + O2 点燃CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃2CO2 + 3H2O 二.几个分解反应: 13. 水在直流电的作用下分解:2H2O 通电2H2↑+ O2 ↑ 14. 加热碱式碳酸铜:Cu2(OH)2CO3 加热2CuO + H2O + CO2↑ 15. 加热氯酸钾(有少量的二氧化锰):2KClO3 ==== 2KCl + 3O2 ↑ 16. 加热高锰酸钾:2KMnO4 加热K2MnO4 + MnO2 + O2↑ 17. 碳酸不稳定而分解:H2CO3 === H2O + CO2↑ 18. 高温煅烧石灰石:CaCO3 高温CaO + CO2↑ 三.几个氧化还原反应: 19. 氢气还原氧化铜:H2 + CuO 加热Cu + H2O 20. 木炭还原氧化铜:C+ 2CuO 高温2Cu + CO2↑ 21. 焦炭还原氧化铁:3C+ 2Fe2O3 高温4Fe + 3CO2↑ 22. 焦炭还原四氧化三铁:2C+ Fe3O4 高温3Fe + 2CO2↑ 23. 一氧化碳还原氧化铜:CO+ CuO 加热Cu + CO2 24. 一氧化碳还原氧化铁:3CO+ Fe2O3 高温2Fe + 3CO2 25. 一氧化碳还原四氧化三铁:4CO+ Fe3O4 高温3Fe + 4CO2 =========================================================== ============= 四.单质、氧化物、酸、碱、盐的相互关系 (1)金属单质+ 酸-------- 盐+ 氢气(置换反应) 26. 锌和稀硫酸Zn + H2SO4 = ZnSO4 + H2↑ 27. 铁和稀硫酸Fe + H2SO4 = FeSO4 + H2↑

硅酸盐水泥的技术要求

硅酸盐水泥的技术要求 1、细度:水泥颗粒越细,比表面积越大,水化反应越快越充分,早期和后期强度都较高。国家规定:比表面积应大于300平方米/千克,否则为不合格。 2、凝结时间:为保证在施工时有充足的时间来完成搅拌、运输、成型等各种工艺,水泥的初凝时间不宜太短;施工完毕后,希望水泥能尽快硬化,产生强度,所以终凝时间不宜太长。硅酸盐水泥的初凝时间不得早于45分钟,终凝时间不得迟于390分钟。 3、体积安定性:水泥浆体在凝结硬化过程中,体积变化的均匀性称为体积安定性。如果体积变化不均匀即体积安定性不良,容易产生翘曲和开裂,降低工程质量甚至出现事故。引起体积安定性不良的原因有:(1)水泥石中含有过多的游离氧化钙和游离氧化镁。它们属于过火的氧化钙和氧化镁,熟化很慢,在水泥凝结硬化后才逐渐熟化,熟化时体积膨胀,使已硬化的水泥产生开裂和翘曲。(2)石膏掺量过多,在硬化的水泥石中,石膏继续与水化铝酸钙作用,产生很大的膨胀性,引起水泥石开裂。 4、强度与标号:硅酸盐水泥的强度主要取决于水泥熟料矿物的比例和水泥的细度。根据3天和28天的抗折强度和抗压强度将硅酸盐水泥分为42 5、525、625、725等四个标号。 2、凝结时间:为保证在施工时有充足的时间来完成搅拌、运输、成型等各种工艺,水泥的初凝时间不宜太短;施工完毕后,希望水泥能尽快硬化,产生强度,所以终凝时间不宜太长。硅酸盐水泥的初凝时间不得早于45分钟,终凝时间不得迟于390分钟。 3、体积安定性:水泥浆体在凝结硬化过程中,体积变化的均匀性称为体积安定性。如果体积变化不均匀即体积安定性不良,容易产生翘曲和开裂,降低工程质量甚至出现事故。 硅酸盐水泥与普通硅酸盐水泥有哪些强度等级 水泥强度等级是按规定龄期(3d、28d)的水泥标准试块的抗压强度和抗折强度划分的。 水泥强度等级值是水泥标准试块28d抗压强度(MPa)的数值,例如:水泥标准试块28d抗压强度值为42.5MPa,则其强度等级为42.5。某一强度等级水泥同时要达到规定抗压强度与抗折强度。如果其中一项小于规定值,则水泥应降低一级使用,例如:普通水泥52.5强度等级,3d抗压强度达不到22MPa,则应降为42.5强度等级使用。 硅酸盐水泥分42.5R、52.5、52.5R、62.5、六个强度等级,各强度等级水泥各龄期强度列表硅酸盐水泥各龄期强度列表1-1。 硅酸盐水泥各龄期强度值表1—1 水泥强度等级抗压强度(MPa)抗折强度(MPa) 3d 28d 3d 28d

矿渣水泥和普通硅酸盐水泥的优缺点

矿渣水泥和普通硅酸盐水泥的优缺点 矿渣硅酸盐水泥: 优点:凝结时间稳定,初凝一般在2:30~4:00小时;终凝一般在4:30~6:30小时,强度稳定,水化热低,耐水性和抗碳酸盐性能与硅酸盐水泥相近,在淡水和硫酸盐水泥中的稳定性优于硅酸盐水泥,耐热性较好,与钢筋的粘结力也很好。缺点:抗大气性及抗冻性不及硅酸盐水泥;和易性较差,泌水量大,所以不宜于冬天露天施工使用,因此在施工中要采取相应措施:加强保潮养护,严格控制加水量,低温施工时采用保温养护等,也可以加入一些外加剂。如:减水剂、元明粉(Na2SO4)、明矾石粉、三乙醇胺等,以提高矿渣水泥的早期强度。 根据上述矿渣水泥的性能特点,矿渣水泥可代替硅酸盐水泥广泛使用于地面及地下建筑,制造各种混凝土和钢筋混凝土制品构件。由于抗蚀性较好,可用于水工及海工建筑;由于水化热低,可用于大体积混凝土工程;由于耐热性较好,可用于高温车间,温度达300~400℃的热气体通道等。普通硅酸盐水泥: 优点:早期强度高,凝结时间早于矿渣硅酸盐水泥,抗大气性及抗冻性优于矿渣水泥,泌水量小,因此冬季使用较矿渣水泥好。由于凝结时间快、早期强度发挥好,适用于高层建筑及大体积砼工程、重要工程等。运输、贮存当中应注意的

事项: 由于水泥是水硬性胶凝材料,因此在运输和贮存中要注意防淋、防潮、要妥善保管,施工现场库存量不易太多,存放时间不易过长,检验合格存放期达一个月后,应经复检合格再使用,以免超期变质、强度降低、凝结时间变长,给施工质量带来不必要的损失。 石膏矿渣水泥砂浆、砼表面易起砂、石灰矿渣水泥强度低、碱—矿渣水泥易吸湿性、施工不方便问题、Na+易产生碱骨料反应问题、在空气中干缩大等用矿渣等工业废渣与碱性和硫酸盐激发剂,磨制成的碱—矿渣水泥(或称碱—矿渣胶凝材料)。它有一些优良性能和节能特点,但却存在一些难以克服的缺点,例如碱骨料反应问题、干缩性大的问题、水泥本身的易吸湿性问题,施工中由于其砂浆和砼粘性大、难以操作问题,对人身和设备的腐蚀问题以及原材料(工业废渣)的来源问题等,故不可能广泛地推广生产和使用。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]

水泥的化学成分与水化原理

二. 水泥的化学成分与水化原理 2.1 硅酸盐水泥的定义: 把适当成分的“生料”如:石灰石、白玺、粘土等,在窑里煅烧至部分熔融,得以硅酸盐为主要成分的水泥“熟料”;再掺入一定比例的石膏与矿渣或火山灰、粉煤灰等混合料一起磨成细粉,即成硅酸盐水泥。随着原料种类的不同和各成分比例不同及混合料的不同种类掺入,就形成不同品种的硅酸盐水泥。在国外就叫“波特蓝”水泥。 2.2硅酸盐水泥熟料的化学成分与性能: 2.2.1 硅酸盐水泥熟料中的几种主要化学成分: 硅酸盐水泥熟料的典型化学成分含量见如下附表《1》:% CaO(一氧化钙) SiO 2(二氧化硅) AI 2 O 3 (三氧化二 铝) Fe 2O 3 (三氧化二铁) MgO(氧化镁) SO 3 (氧化硫) Na 2O(氧化钠) K 2 O(氧化钾)TiO 2 (氧化钛) Mn 2O 3 (氧化锰) P 2 O 5 (氧化磷) 另外也可能含有极少量的其他杂质。水泥熟料中各氧化物的含量对水泥的性质有很大影响: 2.2.1.1 CaO(一氧化钙):是水泥熟料中最主要的成分。在水泥熟料煅烧过程 中与其他酸性氧化物(如:SiO 2、AI 2 O 3 、Fe 2 O 3 等)化合反应生成C 3 S、C 2 S、C 3 A、C 4 AF(见 下面第2.3条)等矿物复盐活性化合物。经煅烧未被化合的CaO称为“游离钙”。

在水泥中单独存在的“游离钙”,其水化反应不能在水泥硬化过程中完成,而是在水泥硬化后才能与水化合生成Ca(HO) 2 并在水化过程中发生体积膨胀,降低混凝土的内应力甚至破坏混凝土结构。其含量多、少是影响水泥安定性的重要原因之一。因此国家标准中要求水泥熟料内CaO含量不得超过1%。 2.2.1.2 SiO 2(二氧化硅):也是水泥熟料所含主要成分之一。SiO 2 经过煅烧可 与CaO进行化合反应,生成C 3S和C 2 S矿物,是影响水泥强度的主要成分之一。 如果SiO 2含量低,水泥熟料中硅酸盐矿物成分少,水泥强度就低;但SiO 2 含量 高时,虽然水泥后期强度有显著提高并使其抗硫酸盐侵蚀性能增强,但水泥凝结速度和早期强度增进率都会变慢。SiO 2 含量不仅影响水泥性能,同时对水泥熟料的煅烧也有影响。其含量少时,熟料煅烧会结大块,影响操作;但其含量大时,会使熟料烧成困难,易于“粉化”。 2.2.1.3 AI 2O 3 (三氧化二铝):在水泥熟料的煅烧过程中,它与CaO和Fe 2 O 3 可 化合生成C 3A或C 4 FA。当其含量高时可使水泥的凝结及硬化速度变快,但后期强 度增长缓慢,并使水泥的抗硫酸盐性能降低。原因是C 3 A与硫酸盐化合反应生成 硫铝酸盐(钟乳石),易溶于水而造成水泥石的破坏。同时C 3 A含量高的水泥水化热高,放热速度也快,不适用于大体积混凝土和抗硫酸盐混凝土。 2.2.1.4 Fe 2O 3 (三氧化二铁):经煅烧可与CaO和AI 2 O 3 化合生成C 4 AF。在水泥 生料中增加氧化铁含量,能降低水泥熟料的煅烧温度。但含量高时会使水泥的凝结过程和硬化过程变慢(缓凝),后期强度仍能长期增长,并能增强水泥的抗硫酸盐侵蚀性能。 2.2.1.5 MgO(氧化镁):是水泥原料中的不良杂质(后述)。 2.2.1.6 SO 3(硫酐):水泥中的SO 3 仅少部分来自水泥熟料,大部分是在水泥熟 料磨细时掺入的石膏(CaSO 4 )。适量的石膏,可有利于调节水泥凝结时间;但含量过多时,会破坏水泥的体积安定性。 2.2.1.7 K 2O、Na 2 O (碱分):即氧化钾、氧化钠,在水泥中是有害成分,能 导致水泥凝结时间变换不定;也能引起水泥石的表面风化(起霜)。若混凝土骨料内含有碱分时,混凝土将出现“碱骨料反应”。若水泥中含有碱分,即使骨料内不含碱分,水泥中的碱分也会与骨料中的酸性物质反应,在混凝土内部引起膨胀(碱集料反应)。 2.2.1.8 TiO 2(氧化钛):一般含量很少,不超过0.3%。少量TiO 2 可促进熟料 的很好结晶。 2.2.1.9 Mn 2O 3 (氧化锰):一般含量很少,也未发现其对水泥有何不良影响。 2.2.1.10 P 2O 5 (磷酐):在水泥中含量极微小,若含量能达到1~2%时,能起到 显著的缓凝作用。 2.3 水泥熟料中的矿物成分:

普通硅酸盐水泥与复合硅酸盐水泥的区别

请教一下,工地上常用的水泥是普通硅酸盐水泥(PO),那么复合硅酸盐水泥(PC)能否在主体结构中使用呢?如果不可以,那么复合硅酸盐水泥主要应用在什么地方? 有没有相关的规范或标准 复合硅酸盐水泥用在抹灰.铺贴地板砖这些部位比较好 凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。 适用于工业和民用建筑等工程以及港航工程及地下隧道等. 产品性能稳定,后期强度增进率大,和易性好,干缩率小.水化热低,耐腐蚀性好. 既然复合硅酸盐水泥和普通硅酸盐水泥都能在工业和民用建筑中使用,而现实情况由于复合硅酸盐水泥水泥熟料较少而价格便宜,那么为何目前工地施工大部分还是使用普通硅酸盐水泥?是否更应采用使用复合硅酸盐水泥呢? 我们工地之前曾经发现包商在主体结构中使用价格更加低廉的复合硅酸盐水泥而责令其停止使用,如真如上述所说,复合硅酸盐水泥不仅价格低廉而且产品性能稳定,那么我们之前的做法是否欠妥了呢? 可能是地区差别吧我们这的PC要比PO贵啊 PC的性能要比PO强请仔细研读两种材料的性能说明. PO早期强度高,有利于模板周转;PC晚期强度可利用,工民建中大体积混凝土可以考虑。 PO早期强度高比较适合砌筑;PC做砌筑使用就要注意一次砌筑墙体的高度要控制好,也不能说一定不可以用,相对来说,PC干縮率小,对墙体裂缝的控制也很有益啊。 复合水泥不够稳定,所以一直以来很少用到结构上,但是从去年水泥新规出来以后,对复合水泥的掺料种类和量都做了规定,相信在不久的将来,肯定会用的越来越多, 08年6月1日实施水泥新规,PO32.5水泥取消了,复合硅酸盐总体的特点是:水化热低、抗渗好但耐磨性差、后期强度增强、保养时间、条件要更好,普通硅酸盐的早期强度高、耐磨,适用的范围更广,现在公路水稳层适用32.5是没有了,适用PC32.5更要注意保养

硅酸盐水泥水化机理研究方法

硅酸盐水泥水化机理研究方法 陈灏 唐山今实达科贸有限公司河北063020 摘要:水泥的水化是水泥的重要特性,水泥水化机理的研究对水泥的生产和使用、对水泥成功应用于复杂建筑体系都有着十分重要的作用,对混凝土和外加剂的研究也有着重要的指导意义。本文介绍了硅酸盐水泥的基本性能及几个水泥水化机理的研究方法并指出其中一些方法优缺点及未来研究方向。 关键词:硅酸盐水泥;水泥水化研究方法 中图分类号:TQ172文献标识码:A文章编号: 随着国际水泥产业的不断发展,人们对硅酸盐水泥及其各矿物的水化反应机理、水化反应产物、水化反应热力学、水化反应动力学以及各反应物的特性和环境条件对水化作用等进行了深人的研究和探讨。 一、硅酸盐水泥的基本性能 凡以硅酸钙为主的硅酸盐水泥熟料,5%以下的石灰石或粒化高炉矿渣,适量石膏磨细制成的水硬性胶凝材料,统称为硅酸盐水泥。国际上统称为波特兰水泥。硅酸盐水泥的主要矿物组成是:硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙。硅酸盐水泥有以下基本性能与应用: 1、凝结硬化快,早期强度及后期强度高,适用于有早强要求的混凝土、冬季施工混凝土,地上地下重要结构的高强混凝土和预应力混凝土工程。 2、抗冻性好,适用于严寒地区水位升降范围内遭受反复冻融循环的混凝土工程。 3、水化热大,不宜用于大体积混凝土工程,但可用于低温季节或冬期施工。 4、耐腐蚀性差,不宜用于经常与流动淡水或硫酸盐等腐蚀介质接触的工程,也不宜用于经常与海水、矿物水等腐蚀介质接触的工程。 5、耐热性差,不宜用于有耐热要求的混凝土工程。 二、硅酸盐水泥水化机理的研究方法 水泥加适量水拌和后,便形成能粘结砂石料的可塑性浆体,随后通过凝结硬化逐渐变成有强度的石状体。同时还伴随着水化放热和体积变化的现象。这说明产生了复杂的物理、化学与物理化学力学的变化。这个过程比较复杂,因此叫水化理论。下面从不同角度介绍水化机理的研究方法: 1、从动态的角度研究水泥浆体的性质和水泥水化进程。 很多研究者通过测定水泥浆体的物理、化学性质随时间的变化来跟踪和纪录水化进程,并分析这些性质与水化进程、反应速率等的相关性,进而对水化特性及机理进行解释。经过努力研究,目前已经找到了水化浆体中与水化历程相关的许多性质,如:力学性质、电动学性质、离子浓度、放热量和水化产物的物相生成、胶凝程度、结晶度、孔分布、微观结构、体积变化等,从而使得测定研究水化的方法多种多样。 (1)水化动力学法 水泥和水拌和后,硬化水泥浆体中固、液、气三相同时存在,并发生一系列物理化学变化。基于前人研究出的用于描述多相体系中物理化学变化特征的数学方程,Bezjak等研究得出了硬化水泥浆体中各主要组分水化的数学模型。基于前人建立的硬化水泥浆体各组分的水化模型,nabic、Krstulovie等进一步研究了水泥的水化过程,并建立数学模型来描述水化程度与水化速率的关系进而得出水化程度与时间的关系。

通用硅酸盐水泥的特性与应用

通用硅酸盐水泥的特性与应用 2013级土木工程系土木工程专业1班*** 摘要 通用硅酸盐类水泥的品种很多,不同的水泥间的差别也较大,可以满足各种工程的不同需要。其主要区别是混合材料的品种和掺量不同。合理选择水泥种类有助于质量保证。 关键词:硅酸盐水泥特性应用 1前言 水泥按照其用途和性能,可分为通用水泥、专用水泥、特性水泥。通用水泥是指大量用于一般土木建筑工程的水泥。工程中最常用的硅酸盐类水泥,主要有硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐类水泥六大类,统称为通用硅酸盐水泥。 2硅酸盐水泥(波特兰水泥) 2.1定义 根据国家标准《通用硅酸盐水泥》(GB175-2007)[1]规定,凡由硅酸盐水泥熟料、0-5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,统称为硅酸盐水泥。硅酸盐水泥分两种类型,不掺加混合材料的称I型硅酸盐水泥,其代号为P·I;在硅酸盐水泥熟料粉磨时掺加不超过水泥质量5%的石灰石或粒化高炉矿渣混合材料的称II型硅酸盐水泥,其代号为P·II。 2.2硅酸盐水泥特点 2.2.1硅酸盐水泥的优点与应用 硅酸盐水泥强度等级较高,主要用于重要结构的高强度混凝土和预应力混凝土工程。硅酸盐水泥凝结硬化较快,硬化后的水泥石密实,耐冻性优于其他通用水泥,适用于要求凝结快、早期强度高、冬季施工及严寒地区遭受反复冻融的工程。抗碳化能力强。空气中的二氧化碳与水泥石中的氢氧化钙反应生成碳酸钙的

过程叫碳化。硅酸盐水泥碱性强,密实度高,因此抗碳化能力强,适用于二氧化碳浓度较高的环境,如翻砂、铸造车间等,特别适用于重要的钢筋混凝土结构及预应力混凝土及工程。干缩小。硅酸盐水泥加硬化过程中形成大量的水化硅酸钙凝胶,使水泥石密实,游离水分少,不易产生干缩裂纹,可用于干燥环境中的混凝土工程。耐磨性好。硅酸盐水泥强度高,耐磨性好,适用于有耐磨要求的混凝土工程,比如路面与地面工程。 2.2.2硅酸盐水泥的缺点与分析 1腐蚀性差。硅酸盐水泥石中含有大量的氢氧化钙和水化铝酸钙,易引起软水、酸类和盐类的腐蚀。因此,它不适用于经常与流动的淡水接触及有水压作用的工程,也不适用于受海水、其它腐蚀性介质等作用的工程。2水化热高。硅酸盐水泥熟料中硅酸三钙和铝酸三钙含量高,早期放热量大,放热速度快,早期强度高,用于冬季施工常可避免冻害。但高放热量对大体积混凝土工程不利,如无可靠的降温措施,不宜用于大体积混凝土工程3耐热性差。硅酸盐水泥石在温度为250摄氏度时,水化物开始脱水,水泥石强度下降,当温度达到七百摄氏度以上时,水化产物分解,水泥石结构开始破坏。因此硅酸盐水泥不宜单独用于有耐热、高温要求的混凝土工程。3湿热养护效果差。硅酸盐水泥,在常规养护条件下硬化快、强度高,但是经过蒸汽养护后再经自然养护28天测得的抗压强度往往低于未经蒸汽养护的28天的抗压强度。 3普通硅酸盐水泥 3.1定义 普通硅酸盐水泥简称为普通水泥、普通硅酸盐水泥是指熟料和石膏组分大于或等于80%且小于95%,掺加大于5%且不超过20%的粒化高炉矿渣、火山灰质混合材料、粉煤灰、石灰石等活性混合材料,其中允许用不超过水泥质量8%的非活性混合材料或不超过水泥质量5%的窑灰代替活性混合材料,共同磨细制成的水硬性胶凝材料,其代号为P·O。 3.2特点与应用 普通硅酸盐水泥由于掺入了少量混合材料,故某些活性性能与硅酸盐水泥相比稍有差异。普通硅酸盐水泥被广泛用于各种混凝土和钢筋混凝土工程,是我国目前主要的水泥品种之一。 4矿渣硅酸盐水泥 4.1定义

相关文档
最新文档