高速SI测量方法(10G信号)

高速SI测量方法(10G信号)
高速SI测量方法(10G信号)

高速SI测量方法 (2)

1 前言 (2)

2 SFI (2)

2.1 SFI标准 (2)

2.2 电气特性 (2)

2.3 测试仪器 (5)

2.4 测试方法 (5)

2.4.1 搭建测试环境 (5)

2.4.2 启动DUT (7)

2.4.3 选择BCM#模式 (7)

2.4.4发送PRBS码 (7)

2.4.5 调节预加重参数 (7)

2.4.6 调节预加重驱动 (8)

2.4.7 保存结果 (9)

2.5 测试命令 (9)

2.6 测试结果 (9)

3 XFI (10)

3.1 XFI标准 (10)

3.2 电气特性 (10)

3.3 测量仪器 (12)

3.4 测试方法 (13)

3.4.1 测试环境搭建 (13)

3.4.2 启动DUT (15)

3.4.3 选择BCM#模式 (15)

3.4.4 发送PRBS码 (15)

3.4.5 调节预加重参数 (15)

3.4.6保存测试结果 (16)

3.5 测试命令 (16)

3.5.1 MAC_TX TEST (16)

3.5.2 PHY_TX TEST (16)

3.6.测试结果 (16)

4 KR (18)

4.1 测试方法 (20)

4.2 测试命令 (20)

4.3 测试结果 (21)

5.总结 (24)

5.1 测试注意事项 (24)

5.2 眼图测试总结 (25)

高速SI测量方法

1 前言

在速率达到10Gbps 高速设计中,尽管我们在电路设计上按照标准设计,但在信号的传输过程仍不可避免会受到串扰等的影响,由此我们需要去做信号完整性分析,以验证我们设计的正确性,而眼图是一种可对数字信号传输作定性分析的有效手段。以下所介绍就是关于10G信号接口SFI、XFI、KR的SI测量方法。

2 SFI

2.1 SFI标准

SFF-8431定义了SFI的电气特性及测试方法。

2.2 电气特性

在SFF-8431中SFI被定义了以下三种模型:

①Host System

Figure1---Host Compliance Board

②ASIC/SerDes

Figure 2---ASIC/SerDes Test Board

③Module

Figure 3---Module Compliance Board

以上三种模型对应的定义了如下测试点:

Figure 4---SFI Reference Points

而在我们的设计应用中,我们需要验证IC的transmitter和receiver 的信号经过SFP+ Module connector后的信号质量.而ASIC/SerDes和Module模型分别定义对ASIC和Module本身的

电气特性,并未考虑信号经过connector的情况,与我们的实际应用不符。所以我们设计模型为Host System.测试点为B点和C点,但因目前尚没有设备从外部输入信号,C点暂无法测试,以B点作为测试参考点。以下是B点和C点的定义:

B点:Host output at the output of the Host Compliance Board.

C点:Host input at the input of the Host Compliance Board.

所以我们对SFI眼图的测量结果必须符合以下的spec要求:

Figure 5---SFP+ Host Transmitter Output Jitter and Eye Mask Specifications at B

2.3 测试仪器

SFI的测试需要一套与之匹配的测试制具和测试仪器,测试用具如下: ① SFI测试制具

Figure 6---SFI测试制具

②10G示波器及采样模块80E04

③时钟恢复模块CR125A

2.4 测试方法

2.4.1 搭建测试环境

Figure 7---测试环境图

2.4.2 启动DUT

2.4.3 选择BCM#模式

2.4.4发送PRBS码

PRBS是Pseudo Random Binary Sequence的缩写,即“伪随机二进制序列”的意思。PRBS 码具有“随机”特性,是因为在PRBS码流中,二进制数“0”和“1”是随机出现的,但是它又和真正意义上的随机码不同,这种“随机”特性只是局部的,即在周期内部,“0”和“1”是随机出现的(码流生成函数与初始码确定后,码流的顺序也是固定的),但各个周期中的码流却是完全相同的,所以我们称其为“”伪随机码。PRBS码的周期长度与其阶数有关,常用的阶数有7、9、11、15、20、23、31,也就是我们常说的PRBS7、PRBS9、PRBS11、PRBS15、PRBS20、PRBS23、PRBS31。

在对高速信号链路进行误码测试时,基本上都是利用PRBS码流来模拟真实的线网码流环境,因为在线网中,所有的数据都是随机出现的,没有任何规律可言,而PRBS码流在一定程度上具有这种“随机数据”特性,二进制“0”和“1”随机出现,其频谱特征与白噪声非常接近。PRBS 码流的阶数越高,其包含的码型就越丰富,就越接近真实的线网环境,测试的结果就越准确。芯片厂商Broadcom提供以下七种PRBS等级,并推荐我们使用PRBS15测试。

Figure 8--- PRBS Select

2.4.5 调节预加重参数

预加重技术在信号发送前对其进行预扭曲,以使接收器上的信号质量如同原始发送的质量。发送端芯片一般会具备预加重调节功能,需要去调节预加重为最优值以确保接收端信号眼图最优化。芯片厂商Broadcom提供16个不同的预加重等级,每个等级包含两个可调节参数post tap

和main tap,分别对应下图的X和Y,通过输入不同的预加重等级,观察眼图效果,可找到最优的一个参数。

Figure 9---Typical Values Versus Setting (SFI TX Preemphasis)

2.4.6 调节预加重驱动

当发现调节预加重后,眼图eye heigh不够,仍然闭合时,我们还可以通过调节预加重驱动来改善眼图。

2.4.7 保存结果

2.5 测试命令

Dxs-3600> DLkg

Debug# bcm

Bcm# ---进入bcm模式

Bcm# phy raw c45 4 1 0xffff 0 ---打开MDC/MDIO访问SFI寄存器

Bcm# phy raw c45 4 1 0xcd14 0x4284 ---发送PRBS15

Bcm# phy raw c45 4 1 0xca05 0x0050 ---调节预加重参数为等级0

Bcm# phy raw c45 4 1 0xca02 0xb800 ---调节预加重参数为等级0

Bcm# phy raw c45 4 1 0xca01 0xff08 ---调节预加重驱动参数为0xff08

2.6 测试结果

经过初期测试并debug后,24个10G SFP+ Port 的SFI眼图全部符合设计要求,预加重最优为等级5。以下图例:

图1为眼图不好的情况,jitter较大,有数据落在MASK内

图2为调节预加重后,眼图得到改善。

Figure10

Figure11

3 XFI

3.1 XFI标准

SFF_INF_8077i中定义了XFI的电气特性和测试方法。

3.2 电气特性

同样,在SFF_INF_8077i标准中对XFI也定义了以下三种模型:

① Host System

② ASIC/SerDes

③ Module

对应的定义了以下测试点:

Figure12---

A: SerDes transmitter output at ASIC/SerDes package pin on a DUT board

B: Host system SerDes output across the host board and connector at the Host Compliance

Test Card

B’: XFP transmitter input across the Module Compliance Test Board

C: Host system input at the Host Compliance Test Card input

C’: XFP module output across the Module Compliance Test Board

D: ASIC/SerDes input package pin on the DUT board

而在我们的实际设计应用中,参考模型为:

对应的SEPC要求如下:

Figure 13--- XFI ASIC/SerDes Receiver Input Jitter Specifications at D

模型二:Host System(QSFP+ Module)

对应的SEPC要求如下:

Figure 14--- XFI Host Transmitter Output Jitter Specifications at B 3.3 测量仪器

a) XFI 测试制具1(ASIC/SerDes 模型)

Figure15

b)XFI测试制具2(Host System模型)

Figure16

C) 10G示波器及采用模块80E04

d)时钟恢复模块CR125A

3.4 测试方法

XFI的测试过程与SFI类似,只是测试制具略有不同,预加重控制寄存器不同,测试命令不同。另外,对于ASIC/SerDes模式,分别在MAC和PHY的输入端测试,需要将差分线路上的AC-coupling cap负载一端断开并作为测试点。对于Host System与SFI测试方式一样。 3.4.1 测试环境搭建

Figure17 测试环境图

3.4.2 启动DUT

3.4.3 选择BCM#模式

3.4.4 发送PRBS码

3.4.5 调节预加重参数

同样,芯片厂商也提供MAC端32个预加重等级和PHY端16个预加重等级,如下

Figure18---MAC 预加重等级

Figure19---PHY预加重等级

3.4.6保存测试结果

3.5 测试命令

3.5.1 MAC_TX TEST

Dxs-3600>

Dxs-3600>DLkg

Debug#bcm

Bcm# ---进入bcm模式

Bcm# phy raw c45 4 1 0xffff 0 ---打开MDC/MDIO访问SFI寄存器

Bcm# phy raw c45 4 1 0xcd14 0x4284 ---发送PRBS15

Bcm# phy int xe0 0x1f 0x82e0

Bcm# phy int xe0 0x12 0xA370 ---调节预加重参数为等级8

3.5.2 PHY_TX TEST

Dxs-3600>

Dxs-3600>DLkg

Debug#bcm

Bcm# ---进入bcm模式

Bcm# phy raw c45 4 1 0xffff 0 ---打开MDC/MDIO访问SFI寄存器

Bcm# phy raw c45 4 1 0xcd14 0x4284 ---发送PRBS15

Bcm# phy raw c45 4 1 0xc90b 0xD000

Bcm# phy raw c45 4 1 0xc90c 0x1020---调节预加重参数为等级2 3.6.测试结果

以下为测试结果图例:

图一:ASIC/SerDes 模型 MAC_TX TEST

图二:ASIC/SerDes模型 PHY_TX TEST

图三:Host System模型 MAC_TX TEST

Figure20

Figure 21

Figure 22

4 KR

10G-KR在我们的设计应用于stacking port,带宽为120G,使用CXP Module,0.5m的无源cable。

所以KR在实际应用时,信号路径比较长,并在module处无驱动源,如下图:

Figure 23实际设计应用图

所以这种情况下,即便调节发送端芯片预加重,但在接收端的眼图仍然是闭合的,使得我们无法用眼图去验证我们设计的正确性。

Figure 24--- KR接收端眼图

但因为芯片接收端采用了均衡技术,系统才可以正常工作。所以我们要采用另外的方法去验证设计的正确性。

芯片厂商Boardcom提供一种验证BER(Bit Error Rate)的测试方法,BER是最基本的link质量验证方法,而PRBS测试可以有效评估BER验证,PRBS的测试没有标准判定pass/fail,只能是一个参考,当然error bit越小越好,margin越大越好。

以下节选自 Broadcom Warpcore Debugging Guide:

4.1 测试方法

The general steps in configuring the device for PRBS testing are as follows:

1. Force the speed.

2. Disable the encoding/decoding.

3. Select the PRBS polynomial: 7th, 15th, 23rd, 31st order.

4. Enable the PRBS generator and monitor.

5. Let the test run for the duration based on the desired BER.

6. Check the status.

4.2 测试命令

------ 40G-CR4 BER test ------

SDK version: SDK-5.10.1

BCM.0> a

BCM.0>

BCM.0> ps xe24-xe29

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

Allegro差分线走线规则

SOFER TECHNICAL FILE Allegro 15.x 差分线布线规则设置 Doc Scope : Cadence Allegro 15.x Doc Number : SFTCA06001 Author :SOFER Create Date :2005-5-30 Rev : 1.00

Allegro 15.x差分线布线规则设置 文档内容介绍: 1.文档背景 (3) 2.Differential Pair信号介绍 (3) 3.如何在Allegro中定义Differential Pair属性 (4) 4.怎样设定Differential Pair在不同层面控制不同线宽与间距 (8) 5.怎样设定Differential Pair对与对之间的间距 (11)

1.文档背景 a)差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,差分线 大多为电路中最关键的信号,差分线布线的好坏直接影响到PCB板子信号质量。 b)差分线一般都需要做阻抗控制,特别是要在多层板中做的各层的差分走线阻抗都 一样,这个一点要在设计时计算控制,否则仅让PCB板厂进行调整是非常麻烦的 事情,很多情况板厂都没有办法调整到所需的阻抗。 c)Allegro版本升级为15.x后,差分线的规则设定与之前版本有很大的改变。虽然 Allegro15.0版本已经发布很长时间了,但是还是有很多人对新版本的差分线规 则设置不是很清楚。 2.Differential Pair信号介绍 差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关 键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值 来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎 是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可 以被完全抵消。 b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场 可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端 信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差, 同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。 …… 由于篇幅问题,这里对差分信号不做深入介绍了。

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/4c10435943.html, for more information,please refer to https://www.360docs.net/doc/4c10435943.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

PCBLayout中的直角走线、差分走线和蛇形线

布线(Layout)是PCB设计工程师最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout 得以实现并验证,由此可见,布线在高速PCB 设计中是至关重要的。下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。 主要从直角走线,差分走线,蛇形线等三个方面来阐述。 1.直角走线 直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。 直角走线的对信号的影响就是主要体现在三个方面: 一是拐角可以等效为传输线上的容性负载,减缓上升时间; 二是阻抗不连续会造成信号的反射; 三是直角尖端产生的EMI。 传输线的直角带来的寄生电容可以由下面这个经验公式来计算: C=61W(Er)[size=1]1/2[/size]/Z0 在上式中,C 就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr 指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量: T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps 通过计算可以看出,直角走线带来的电容效应是极其微小的。 由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数: ρ=(Zs-Z0)/(Zs+Z0) 一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到

DSP知识要点

DSP技术知识要点(通信工程 ) CHAP1 冯、诺依曼结构和哈佛结构的特点 冯、诺依曼结构:采用单存储空间,即程序指令和数据共用一个存储空间,使用单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行。当进行高速运算时,不但不能同时进行取指令和取操作数,而且还会造成数据传输通道的瓶颈现象,其工作速度较慢。 哈佛结构:采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。 DSP芯片的特点(为何适合数据密集型应用:前5点)1.采用哈佛结构2.采用多总线结构3.采用流水线技术4. 配有专用的硬件乘法-累加器5. 具有特殊的DSP指令6.快速的指令周期7.硬件配置强8.支持多处理器结构9.省电管理和低功耗。 定点DSP芯片和浮点DSP芯片的区别及应用特点 定点DSP芯片(数据以定点格式工作):精度和范围是不能同时兼顾的。 定点DSP是主流产品,成本低,对存储器要求低、耗电少,开发相对容易,但设计中必须考虑溢出问题。用在精度要求不太高的场合。 浮点DSP芯片(数据以浮点格式工作):精度高、动态范围大,产品相对较少,复杂成本高。但不必考虑溢出的问题。用在精度要求较高的场合。 定点DSP的表示(Qm.n,精度和范围与m、n的关系)及其格式转换 ○1整数表示法:最高位是符号位,0代表正数,1代表负数,其余位以二进制的补码形式表示数值,小数点在D0位。用于控制操作、地址计算、及其它非信号处理应用。 ○2小数表示法:最高位是符号位,0代表正数,1代表负数,其余位以二进制的补码形式表示数值,小数点在Dn-1位。用于数字和各种信号处理算法的计算中。 ○3数的定标;n越大,数值范围越小,但精度越高; 相反,n越小,数值范围越大,但精度就越低。不同Qm.n形式的数进行加减

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

差分信号线的原理和优缺点分析

差分信号线的原理和优缺点分析 随着近几年对速率的要求快速提高,新的总线协议不断的提出更高的速率。传统的总线协议已经不能够满足要求了。串行总线由于更好的抗干扰性,和更少的信号线,更高的速率获得了众多设计者的青睐。而串行总线又尤以差分信号的方式为最多。所以在这篇中整理了些有关差分信号线的设计和大家探讨下。 1.差分信号线的原理和优缺点 差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b. 能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,如图在A-A‘的电流是从右到左,那B-B‘的是从左到右,那么按右手螺旋定则,那他们的磁力线是互相抵消的。耦合的越紧密,互相抵消的磁力线就越多。泄放到外界的电磁能量越少。 c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。 2.差分信号的一个实例:LVDS

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

数字信号处理知识点归纳整理

数字信号处理知识点归纳整理 第一章时域离散随机信号的分析 1.1. 引言 实际信号的四种形式: 连续随机信号、时域离散随机信号、幅度离散随机信号和离散随 机序列。本书讨论的是离散随机序列 ()X n ,即幅度和时域都是离散的情况。随机信号相比随机变量多 了时 间因素,时间固定即为随机变量。随机序列就是随时间n 变化的随 机变量序列。 1.2. 时域离散随机信号的统计描述 1.2.1 概率描述 1. 概率分布函数(离散情况) 随机变量 n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤ (1) 2. 概率密度函数(连续情况) 若 n X 连续,概率密度函数: ()()n n X X n n F x,n p x ,n x ?=

? (2) 注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。 当讨论随机序列时,应当用二维及多维统计特性。 ()()()()1 21 21 2,,,1 21122,, ,1 2 ,,,1 2 12,1,,2, ,,,,,,1,,2, ,,,1,,2, ,,N N N x X

X N N N N x X X N x X X N N F x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤?= ??? 1.2.2 数字特征 1. 数学期望 ()()()()n x x n n m n E x n x n p x ,n dx ∞ -∞ ==????? (3) 2. 均方值与方差 均方值: ()()22 n n x n n E X x n p x ,n dx ∞ -∞ ??=??? (4) 方差: ()()()222 2x n x n x n E X m n E X m n σ????=-=-???? (5)

差分信号走线原则

设计规则1 我们处理差分信号的第一个规则是:走线必须等长。有人激烈地反对这条规则。通常他们的争论的基础包括了信号时序。他们详尽地指出许多差分电路可以容忍差分信号两个部分相当的时序偏差而仍然能够可靠地进行翻转。根据使用的不同的逻辑门系列,可以容忍500 mil 的走线长度偏差。并且这些人们能够将这些情况用器件规范和信号时序图非常详尽地描绘出来。问题是,他们没有抓住要点!差分走线必须等长的原因与信号时序几乎没有任何关系。与之相关的仅仅是假定差分信号是大小相等且极性相反的以及如果这个假设不成立将会发生什么。将会发生的是:不受控的地电流开始流动,最好情况是良性的,最坏情况将导致严重的共模EMI问题。 因此,如果你依赖这样的假定,即:差分信号是大小相等且极性相反,并且因此没有通过地的电流,那么这个假定的一个必要推论就是差分信号对的长度必须相等。差分信号与环路面积:如果我们的差分电路处理的信号有着较慢的上升时间,高速设计规则不是问题。但是,假设我们正在处理的信号有着有较快的上升时间,什么样的额外的问题开始在差分线上发生呢?考虑一个设计,一对差分线从驱动器到接收器,跨越一个平面。同时假设走线长度完全相等,信号严格大小相等且极性相反。因此,没有通过地的返回电流。但是,尽管如此,平面层上存在一个感应电流! 任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。 但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。因此电流完全在差分走线下方的一个环路中流动(图3)。它们看上去就像是涡流。耦合电流在其中流动的环路由(a)差分线自身和(b)走线在每个端点之间的间隔来定义。 设计规则2 现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,

差分信号PCB规则

什么是差分信号? 一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统'地'被用作电压基准点。当'地'当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。 另一方面,一个差分信号作用在两个导体上。信号值是两个导体间的电压差。尽管不是非常必要,这两个电压的平均值还是会经常保持一致。我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了- 但是他们的平均位置是不变的。继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。0 表示两个人都是同一水平。 图1 用跷跷板表示的差分信号 应用到电学上,这两个跷跷板用一对标识为V+和V-的导线来表示。当V+>V-时,信号定义成正极信号,当V+

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

相关文档
最新文档