半导体与晶体薄膜的XRD测量答辩

半导体与晶体薄膜的XRD测量答辩
半导体与晶体薄膜的XRD测量答辩

《半导体与晶体薄膜的XRD 测量》

实验报告

学院数理与信息工程学院专业物理学课程近代物理实验姓名阮柳晖学号 09180229 组员王健華指导老师斯劍霄

完成时间:2012年5月27日

【摘要】:利用Y —2000型X 射线衍射仪,对不同衬底所镀晶体薄膜进行XRD 测量,利用测量出的衍射峰,可以较好地分析薄膜晶面在不同温度下的生长趋势,从而帮助获得较高纯度的晶体薄膜。此外,利用各衍射峰的半高宽,可以获得相关晶体所对应的密勒指数下的晶粒大小,并对不同温度相同晶面的晶粒大小进行比较分析。

【关键词】:XRD 测量衍射峰晶体薄膜半高宽晶粒大小

【引言】:自从伦琴于1895 年发现X 射线以来,人们对X 射线的应用开展了深入的研究。X 射线衍射技术是利用X 射线在晶体、非晶体中衍射与散射效应,进行物相分析、结构类型和不完整性分析的技术,可广泛应用于物理学、化学、分子物理学、医学、金属学、材料学、高分子科学、工程技术学、地质学、矿物学等学科领域,是目前应用最广泛的一项技术,在材料现代分析方法中占有重要的地位。XRD 主要应用于定性相分析、定量相分析、晶粒大小的测定、材料的宏观和微观应力测定、织构(择优取向分析、取向度和晶体及多晶体的定向测量。

本文主要介绍利用XRD 衍射仪测量晶体衍射峰强度,从而了解所镀膜层随温度变化晶体生长取向的变化趋势,以及根据晶体对应密勒指数下的衍射峰的半高宽计算晶粒大小,进而对薄膜材料的制备条件有更为深入的了解。

【正文】:

一、实验原理

(1)、布拉格方程及其衍射理论

图1 X 射线布拉格衍射示意图

布拉格方程一般表示为:

2d hkl sin θ = n λ

其中,d hkl 是(hkl 晶面间距,θ 是布拉格角,整数n 是衍射级数,λ 是所用X 射线的波长。布拉格方程反映了X 射线在晶体中衍射时所遵循的规律。

(2)、谢乐公式

根据XRD 衍射数据,可以采用谱线宽化法间接测定晶体中平均晶粒大小,其计算式如下

L h , l , k k λ=βh , k , l cos θh , k , l

这就是著名的谢乐( Scherrer 公式。其物理意义为: 垂直于h, k, l 晶面方向上的晶粒大小。式中:

K: 入射X 射线的波长,操作中取0.9;

θh, k, l : h, k, l 晶面的衍射角;

B

h, : h, k, l 晶面衍射峰的宽度( 2θ弧度;

二、实验仪器及使用说明

本实验利用Y —2000型XRD 衍射仪。仪器如下:

其内部结构包括:

1、高稳定度X 射线发生器及防护系统

2、测角仪(卧式或立式)

3、冷却循环水装置(一体或分体

4、数字化记录控制单元及探测器

5、衍射仪操作系统及应用分析软件包

6、高性能计算机及技术资料和配件

打开冷却水及XRD 衍射仪电源,前期预冷半小时,打开计算机,放入样品,打开衍射仪操作软件,设置参数后衍射仪进入工作,数据经探测器显示在衍射仪操作软件上,数据采集结束后,保存数据。

三、实验验数据及处理

(一)、温度对薄膜晶面生长的影响

根据实验数据将不同温度所镀相同材料做出同一坐标下射线衍射强度—2倍衍射角曲线图,从图中可以分析出各个晶面衍射强度随温度的变化趋势,在不同温度下所镀膜层,其某一晶面衍射强度不同,衍射强度越大,说明该温度越有利于该晶面的生长。具体图像及数据如下:

①、Grown BaF2 on Ag substrate(250℃、300℃,Cu 靶)

温度升高的过程中:

(1)、有利于BaF2(200)、(400 晶面的生长。猜想,在>300?C 存在一温度最有利于BaF2(200)、(400 晶面的生长。

(2)、抑制BaF2(111)、(311)晶面的生长。猜想在<250?C 存在一温度最利于BaF2(111)、(311)晶面的生长

(3)、温度升高对于BaF2(222)晶面则表现为基本相同。猜想,温度对BaF2(222)晶面生长几乎不影响,或者,250—300?C 之间存在一温度最利于或最不利于BaF2(222)晶面的生长。

②、Grow BaF2 on PbTe substrate (200℃、250℃、300℃、350℃,Cu 靶

温度升高的过程中:

(1)、有利于BaF2(111晶面的生长。猜想在>350?C 存在一温度最利于BaF2(111晶面的生长。

(2)、对于BaF2(222)表现为先增后稳定,在从200—250?C 有一个突增,而300?C 比250?C 明显减小,350?C 与300?C 几乎无异,猜想250?C 左右可能为最利于BaF2(222)生长的温度。

(3)、BaF2(511)晶面与BaF2(222)晶面表现相似,都是先增后减再稳定,猜想250?C 附近为BaF2(511)晶面的最适生长温度。

③、Grown BaF2 on Fe-si substrate(200℃、300℃、350℃,Cu 靶)

温度升高的过程中:(1)、有利于BaF2(200)、(222)晶面,Si (400)晶面和Fe2O3(104)晶面的生长。猜想,在>350?C 存在一温度最利于BaF2(200)、(222)晶面,Si (400)晶面和Fe2O3(104)晶面的生长。(2)、抑制BaF2(122)、(311)晶面的生长。猜想,在<200?C 存在一温度最利于BaF2(122)、(311)晶面的生长。(3)、温度升高对于BaF2(111)晶面则表现为先增大后减小,猜想在200—350?C 存在一温度最利于BaF2(111)晶面的生长。

④、Grow PbTe on BaF2 substrate (280℃、370℃、415℃,Mo 靶

5

温度升高的过程中:(1)、PbTe (400)晶面表现为先稳定后突然增大。猜想,在>415?C 存在一温度最利于PbTe (400)晶面的生长。(2)、PbTe (222)、(444)晶面表现先减小后增大,且温度为415?C 时衍射峰异常高,猜想在>415?C 存在一温度最利于PbTe (222)、(444)晶面的生长。

(二)、温度对晶粒大小的影响

根据图像,通过jade 软件,计算各个材料薄膜对应的衍射峰的半高宽;利用谢乐公式:Dc =0. 90λ/B cos θ(式中λ为x 光靶波长,B 为半高宽,θ为衍射角)计算各个晶面晶粒大小;并将相同材料相同衍射峰对应晶面的晶粒大小以图片形式予以比较,如下所示:

①、BaF2 on Ag substrate(Cu 靶)

6

表一:BaF2 on Ag(Cu 靶)在200℃、250℃下薄膜的衍射峰对应晶面的半高宽

表二:BaF2 on Ag(Cu 靶)在200℃、250

℃下薄膜的衍射峰对应晶面的晶粒大小

根据上图分析:温度升高,有利于BaF2(111)、(200)、(311)、(222)、(400)晶粒的长大。由此猜想,最利于BaF2(111)、(200)、(311)、(222)、(400)晶粒长大的温度为300?C 或更高。

②、BaF2 on Fe—Si substrate(Cu 靶)

7

表四:BaF2 on Fe-si(Cu 靶)在200℃、300℃、350℃下薄膜的衍射峰对应晶面的晶粒大

根据上图分析:(1)、温度升高,不利于BaF2(122)晶粒长大,猜想,最利于BaF2(122)晶粒长大的温度为200?C 或更低。

(2)、温度升高,BaF2(111)、(311)晶粒大小先增大后减小,猜想,250—350?C 之间存在某一温度最利于晶粒长大。

8

③、BaF2 on PbTe(Cu 靶)

晶粒大小

(注:200?C 下BaF2(222)、(511)晶面衍射强度太小,计算半高宽误差较大,因此该温度下数据不予采集。)

根据上图分析:

9

(1)、温度升高,不利于 BaF2(222)(511)晶粒的长大,猜想,最利于、 BaF2(222)(511)晶粒长大的温度为或更低。、(2)、温度升高,BaF2(111)晶粒大小先增大后减小,猜想 250—之间存在某一温度最利于 BaF2(111)晶粒长大。④、PbTe on BaF2 substrate(Mo 靶)温度

半高宽(度)(nm)(nm)晶面

0.171 0.456 0.178 22.790 0.147 0.206 0.137 26.365 0.296 0.661 0.271 46.635 表七:PbTe on BaF2(Mo 靶)在 280℃、370℃、415℃下薄膜的衍射峰对应晶面的半高宽温度晶粒大小晶面(hkl(h)(hkl) PbTe(222 PbTe(400 PbTe(444 280 370 415 218.209 81.828 209.628 255.564 182.369 274.219 100.578 60.255 146.969 表八:PbTe on BaF2(Mo 靶)在 280℃、370℃、415℃下薄膜的衍射峰对应晶面的晶粒大小 10

根据上图分析:温度升高,PbTe(222)(400)(444)晶粒大小先减小后增大,猜想最利、、于 PbTe(222)(400)(444)晶粒的长大的温度为

或;在 280 、、—之间存在一温度最不利于 PbTe(222)(400)(444)等晶粒的长大。、、(注:测晶粒大小时,B 会受仪器宽度 b 影响,使测出数据与真实值不符, h, k, l 但是实验主要观察晶粒大小变化规律,在此不作涉及 b 的复杂处理)四、实验总结①、该开放性实验历时近一个学期,实验中,主要以使用专业仪器测量样本为主,因为此项工作耗时最多,在此过程中,深入了解 XRD 衍射理论,并对样本制备的原则及理论要求有了较为深入的了解。

②、实验有不足之处,客观的讲,受到仪器、时间的限制,特别在对薄膜厚度、杂质等因素上没有深入的涉及,会影响到数据的准确性、严谨性以及科学性。③、在数据处理的过程中,学习了 origin 软件的图像处理及 jade 软件的测半高宽方法要领。并对数据的整理分析、趋势预测等有一定的涉及,从而对该方面的认识进一步加深。④、当然,该实验耗时较多,通过本实验的研究学习,培养了我和组员的耐心、细心、恒心,对以后的学习工作很有帮助;另外,实验的研究实践,使我们体会了科学探究的艰辛,发现真知的不易。⑤、在实验过程中,思想上会与组员发生必要的碰撞,也会引发一些争执,但是这些所谓的争执会让我们更好地解决一些问题,在此,我对我的组员表示感谢。另外,在实验过程的各个部分中,或多或少遇到一些问题,斯老师总会给予启发性、有实质性帮助的建议,在此,对斯老师的耐心指导表示感谢。【参考文献】 1、戚绍祺,胡萍春.晶粒大小的测定【J】.广州化学.2000(9):33—38 2、黄清明,俞建长,吴万国.薄膜镀层的 XRD 分析【J】.福建大学学报.2004 (6:773-775 3、谢清连?,黄国华,潘吟松,黄自谦.XRD 在薄膜结构分析中常见问题的研究【J】.广西物理.2010(4).15-18 11

晶体学基础与晶体结构习题与答案

晶体学基础与晶体结构习题与答案 1. 由标准的(001)极射赤面投影图指出在立方晶体中属于[110]晶带轴的晶带,除了已在图2-1中标出晶面外,在下列晶面中哪些属于[110]晶带?(1-12),(0-12),(-113),(1-32),(-221)。 图2-1 2. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。 3. 为什么密排六方结构不能称作为一种空间点阵? 4. 标出面心立方晶胞中(111)面上各点的坐标。 5. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],[311];b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。 6. 在体心立方晶系中画出{111}晶面族的所有晶面。 7. 在立方晶系中画出以[001]为晶带轴的所有晶面。 8. 已知纯钛有两种同素异构体,密排六方结构的低温稳定的α-Ti和体心立方结构的高温稳定的β-Ti,其同素异构转变温度为882.5℃,使计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.29506nm,cα20℃=0.46788nm,aα900℃=0.33065nm)。 9. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并指出面间距最大的面。 10.平面A在极射赤平面投影图中为通过NS及核电0°N,20°E的大圆,平面B的极点在30°N,50°W处,a)求极射投影图上两极点A、B间的夹角;b)求出A绕B顺时针转过40°的位置。 11. a)说明在fcc的(001)标准极射赤面投影图的外圆上,赤道线上和0°经线上的极点的指数各有何特点,b)在上述极图上标出(-110),(011),(112)极点。 12. 图2-2为α-Fe的x射线衍射谱,所用x光波长λ=0.1542nm,试计算每个峰线所对应晶面间距,并确定其晶格常数。 图2-2 13. 采用Cu kα(λ=0.15418nm)测得Cr的x射线衍射谱为首的三条2θ=44.4°,64.6°和81.8°,若(bcc)Cr的晶格常数a=0.28845nm,试求对应这些谱线的密勒指数。

晶体学基础

竞赛要求: 初赛要求:晶体结构。晶胞。原子坐标。晶格能。晶胞中原子数或分子数的计算及与化学式的关系。分子晶体、原子晶体、离子晶体和金属晶体。配位数。晶体的堆积与填隙模型。常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。 决赛要求:晶体结构。点阵的基本概念。晶系。宏观对称元素。十四种空间点阵类型。 第七章晶体学基础 Chapter 7. The basic knowledge of crystallography §7.1 晶体结构的周期性和点阵 (Periodicity and lattices of crystal structures) 一、.晶体 远古时期,人类从宝石开始认识晶体。红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。 世界上的固态物质可分为二类,一类是晶态,一类是非晶态。自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。 晶体结构最基本的特征是周期性。晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。由于这样的内部结构,晶体具有以下性质: 1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、

X射线衍射晶体结构分析 实验报告

连续光谱 特征光谱 2 4 6 8 10 α β W Mo Cr 0.5 0.9 0.7 波长(?) 强度 37.2 15.2 图4—1 X 射线管产生的X 射线的波长谱 X 射线衍射晶体结构分析 【摘要】本次实验主要通过采用与X 射线波长数量级接近的物质即晶体这个天然的光栅来作狭缝来研究X 射线衍射,由布拉格公式以及实验中采用的NaCl 晶体的结构特点即可在知道晶格常数条件下测量计算出X 射线的波长,反过来也可用它来测定各种晶体的晶格结构。通过本次实验我们将更进一步地了解X 射线的产生、特点和应用。 【关键词】X 射线;晶体结构;布拉格公式; 1 引言 X 射线是波长介于紫外线和γ射线 间的电磁辐射。由德国物理学家W.K.伦琴于1895 年发现,故又称伦琴射线。波长小于0.1埃的称超硬X 射线,在0.1~1埃范围内的称硬X 射线,1~10埃范围内的称软X 射线。 伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X 射线能量越大,叫做硬X 射线,波长长的X 射线能量较低,称为软X 射线。 实验室中X 射线由X 射线管产生,X 射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X 射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X 射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却,有时还将靶极设计成转动式的。 目前,X 射线学已渗透到物理学、化学、地学、生物学、天文学、材料科学以及工程科学等许多学科中,并得到了广泛的应用。本实验通过对X 射线衍射实验的研究来进一步认识其性质。 2 实验原理 2.1 X 射线的产生和X 射线的光谱 实验中通常使用X 光管来产生X 射线。在抽成真空的X 光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X 射线。发射出的X 射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限时,

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ) Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小 做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团? X射线照射到物质上将产生散射。晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。 绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其X射线衍射图。 XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大 小等)最有力的方法。 XRD 特别适用于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析; XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。 目前XRD主要适用于无机物,对于有机物应用较少。 关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。 如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分? 三者并无严格明晰的分界。 在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在 该衍射方向上的厚度。 非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

晶体学基础(晶向指数与晶面指数)word版本

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。 (3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

XRD实验物相定性分析解析

XRD实验物相定性分析 一、实验目的 1、学习了解X射线衍射仪的结构和工作原理。 2、掌握X射线衍射物相定性分析的原理和实验方法。 3、掌握X射线分析软件Jade5.0和图形分析软件OriginPro的基本操作。

二、实验仪器 D8 Advance 型X 射线衍射仪 组成:主要由X 射线发生器、测角 仪、辐射探测器、记录单元及附件(高 温、低温、织构测定、应力测量、试样 旋转等)等部分组成。 核心部件:测角仪 (1)测角仪 图2. 测角仪的光路图 X 射线源S 是由X 射线管靶面上的线状焦斑产生的线状光源。线状光源首 C-计数管;S1、S2-梭拉缝;D-样品;E-支架;K 、 L-狭缝光栏;F-接受光栏;G-测角仪圆;H-样品台; O-测角仪中心轴;S-X 射线源;M-刻度盘; 图1. 测角仪结构原理图

先通过梭拉缝S1,在高度方向上的发散受到限制。随后通过狭缝光栅K,使入射X射线在宽度方向上的发散也受限制。经过S1和K后,X射线将以一定的高度和宽度照射在样品表面,样品中满足布拉格衍射条件的某组晶面将发生衍射。衍射线通过狭缝光栏L、S2和接受光栏F后,以线性进入计数管C,记录X射线的光子数,获得晶面衍射的相对强度,计数管与样品同时转动,且计数管的转动角速度为样品的两倍,这样可以保证入射线与衍射线始终保持2θ夹角,从而使计数管收集到的衍射线是那些与样品表面平行的晶面所产生的。θ角从低到高,计数管从低到高逐一记录各衍射线的光子数,转化为电信号,记录下X射线的相对强度,从而形成 2 — I的关系曲线,即X射线衍射花样。 相对 (2)X射线发生器 图3. X射线产生装置 X 射线管实际上就是一只在高压下工作的真空二极管,它有两个电极:一个是用于发射电子的灯丝,作为阴极,另一个是用于接受电子轰击的靶材,作为阳极,它们被密封在高真空的玻璃或陶瓷外壳内。X射线管提供电部分至少包含有一个使灯丝加热的低压电源和一个给两极施加高电压的高压发生器。当钨丝通过足够的电流使其发生电子云,且有足够的电压(千伏等级)加在阳极和阴极间、使得电子云被拉往阳极。此时电子以高能高速的状态撞击钨靶,高速电子到达靶面,运动突然收到阻止,其动能的一小部分便转化为辐射能,以X射线的形式放出。产生的X射线通过铍窗口射出。 改变灯丝电流的大小可以改变灯丝的温度和电子的发射量,从而改变管电流和X射线强度的大小。改变X光管激发电位或选用不同的靶材可以改变入射X 射线的能量或在不同能量处的强度。 (3)计数器

第3讲 晶体学基础知识

第3讲 教学要求:1. 复习明确晶体和非晶体的概念 2. 明确格子构造的概念以及与实际晶体构造之间的关系 3. 大致了解晶体的分类知识 4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子 的构造特点及晶格参数的特点 5.熟练掌握晶面指数的标定步骤 教学重点:晶体的概念、布拉维格子构造、晶面指数的标定 教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标 定过程 教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看 讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的 时间讨论,以便掌握讲课难度和速度。 作业:1. 晶体和非晶体的概念? 2. 熟练写出布7种拉维格子的名称和相应的晶格参数? 晶体学基础知识 一.晶体的定义与特征 晶体的概念:人类对晶体的认识,是从石英开始的。古代人们把外形上具有规则的几何 多面体形态的石英(水晶)称为晶体。后来,人们把凡是天然的具有几何多面体的固体,例 如:石盐、方解石、磁石等都成为晶体。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。或者:晶体是具有格子构造的固体。 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。例如:玻璃、塑料、沥青等。从内部结构来看,非晶质体中质点的分布无任何规律可循,其内部结构只具有统计均一性,非晶质体的性质在不同方向上是同一的。在外形上非晶质体不能自发地长成规则的几何多面体形态,而是一种无规则形态的无定形体。 晶体与非晶体 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 晶体和非非晶质体在一定条件下是可以转换的。列如:使用年久的玻璃,常会出现一些所谓的“霉点”,是因为玻璃向结晶态转变的雏晶,此过程成为:晶化或脱玻化,相反的转化,晶体因内部质点的规律排列受到破坏而向非晶体转变,称为非晶化或玻璃化。例如,某些含放射性元素的矿物晶体,由于放射性元素在蜕变过程中放出核能,破坏了晶体内部的结构,而产生了非晶质化的现象。

南开大学材料学院结构分析课后题复习资料XRD、中子衍射、电子衍射

结构分析唐老师部分作业汇总 第一次作业 1、请写出晶体的定义。试说明什么是单晶体?什么是多晶体? 定义:质点(原子、离子或分子)在空间按一定规律周期性重复排列构成的固体物质。基本为一个空间点阵所贯穿的整块固体称单晶体,简称单晶;由许多小单晶按不同取向聚集形成的固体称多晶。 2、晶格与点阵是何关系?晶体结构与点阵、结构基元是何关系?原子参数与阵点坐标是何关系? 晶体是由原子、离子或分子在空间按一定规律周期性重复地排列所构成的固体物质,将其中周期性排列的重复单元抽象成在空间以同样周期性排列的相同几何点,这些点所构成的阵列称为点阵(lattice),或空间点阵、空间格子。沿三个不同的方向,通过点阵中的点阵点可以作许多平行的直线族和平行的晶面族,使点阵形成三维网格。这些将点阵点全部包括在其中的网格称为晶格。带有原子、离子、分子或其集团的点阵就是晶格。 晶体结构= 点阵+ 结构基元 对于点阵点坐标和原子参数,它们对于3个坐标轴的方向是相同的,但是点阵点坐标的度量单位是点阵周期,而原子参数的度量单位是晶胞参数。 3、晶体的晶胞类型共分为哪几种?空间格子(点阵)可分为几类?每一类晶系各有多少种空间点阵格子形式?请分别写出。 晶胞是描述晶体微观结构的基本单元,有素晶胞和复晶胞之分。 如果点阵点都处于平行六面体的顶点,每个平行六面体只有一个点阵点,此空间格子称为素格子,以P表示;如果体心还有点阵点,则此空间格子称为体心格子,以I表示;如果所有平面格子中心有点阵点,则称为面心格子,以F表示;如果仅一对相对的平面格子中心有点阵点,则此空间格子称为底心格子,视相对面位置分别以A, B或C表示。 晶体分为7个晶系(立方、六方、四方、三方、正交、单斜和三斜),依据特征对称元素和正当点阵单位的划分规则,晶体的点阵分为14种空间点阵型式:简立

2020年晶体学基础(晶向指数与晶面指数)

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法

图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P (x 1,y 1,z 1)和Q (x 2,y 2,z 2),然后将(x 1-x 2),(y 1-y 2),(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数

晶体学基础&扫描电镜

第一章晶体学基础 注:本教案中相关图片均可点击放大显示。 第一节晶体和点阵的定义 1.1 晶体及其基本性质 晶体的定义 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 下图为晶体的电子衍射花样,其中图a为一般晶体的电子衍射花样,而图b则是一种具有沿[111]p方向具有六倍周期的有序钙钛矿的电子衍射花样,由这些衍射花样可以看出来,无论是无序还是有序晶体,其倒空间都具有平移周期对称的特点(相应的正空间也应该具有平移对称的特点)。事实上在准晶发现以前,平移周期对称被当作晶体在正空间中的一个本质的特点,晶体学中的点群和空间群就是以晶体的平移对称为基础推导出来的。 晶体的分类 从成健角度来看,晶体可以分成: ?离子晶体; ?原子晶体; ?分子晶体; ?金属晶体。

面角守衡定律:(由丹麦的斯丹诺于1669年提出) 在相同的热力学条件下,同一物质的各晶体之间比较,相应晶面的大小、形状和个数可以不同,但相应晶面间的夹角不变,一组特定的夹角构成这种物质所有晶体的共同特征。 下图是自然界存在的具有规则外形的几种常见的晶体,分别是方解石、萤石、食盐和石英,它们的面角关系完全符合面角守衡定律。事实上,自然界中的晶体,当其形成条件比较接近平衡条件时,它们往往倾向于长成与其晶体对称性相应的外形。 非晶体的定义 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 准晶的定义 准晶是准周期晶体的简称,它是一种无平移周期性但有位置序的晶体;也有人将其定义为具有非公度周期平移对称的晶体。准晶可以具有一般晶体禁止出现的五次、八次、十次和十二次旋转对称,但非公度周期平移对称才是其本质特点。下图中为准晶的电子衍

相关文档
最新文档