网架结构的种类及其性能特点

网架结构的种类及其性能特点
网架结构的种类及其性能特点

网架结构已成为现代世界应用较普遍的新型结构之一。我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。

网架在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。网架结构的优点是用钢量小、整体性好、制作安装快捷,可用于复杂的平面形式。适用于各种跨度的结构,尤其适用于复杂平面形状。这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机结合起来,因而用料经济。

网架主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。跨度越大,采用此种结构的优越性和经济效果也就越显著。网架结构板型网架结构按组成形式主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。壳型网架结构按壳面形式分主要有柱面壳型网架、球面壳型网架及双曲抛物面壳型网架。网架结构按所用材料分有钢网架、钢筋混凝土网架以及钢与钢筋混凝土组成的组合网架,其中以钢网架用得较多。

网架结构可分为双层的板型网架结构、单层和双层的壳型网架结构。板型网架和双层壳型网架的杆件分为上弦杆、下弦杆和腹杆,主要承受拉力和压力。单层壳型网架的节点一般假定为刚接,应按刚接杆系有限元法进行计算;双层壳型网架可按铰接杆系有限元法进行计算。单层和双层壳型网架也都可采用拟壳法简化计算。

单层壳型网架的杆件,除承受拉力和压力外,还承受弯矩及切力。目前中国的网架结构绝大部分采用板型网架结构。网架结构是空间网格结构的一种。所谓“空间结构”是相对“平面结构”而言,它具有三维作用的特性。空间结构问世以来,以其高效的受力性能、新颖美观的形式和快速方便的施工受到人们的欢迎。空间结构也可以看作平面结构的扩展和深化。网架结构是空间杆系结构,杆件主要承受轴力作用,截面尺寸相对较小。

网架结构根据外形不同,可分为双层的板型网架结构、单层和双层的壳型网架结构。板型网架和双层壳型网架的杆件分为上弦杆、下弦杆和腹杆,主要承受拉力和压力;单层壳型网架的杆件,除承受拉力和压力外,还承受弯矩及切力。目前中国的网架结构绝大部分采用板型网架结构。

按实际用途:钢结构由多根杆件按照一定的网格形式通过节点连结而成的空间结构。具有空间受力、重量轻、刚度大、抗震性能好等优点;可用作体育馆、影剧院、展览厅、候车厅、体育场看台雨篷、飞机库、双向大柱网架结构距车间

等建筑的屋盖。

网架具有重量轻、强度高、整体刚性好、变形能力强等特点,目前对于网架的需求量也越来越大.结构屋顶全部采用冷弯薄壁钢构件体系组成,钢骨采用超级防腐高强冷轧镀锌板制造,有效避免钢板在施工和使用过程中的锈蚀的影响,增加了轻钢构件的使用寿命。结构寿命可达100年。

钢结构的网架采用的保温隔热材料以玻纤棉为主,具有良好的保温隔热效果。用以外墙的保温板,有效的避免墙体的“冷桥”现象,达到了更好的保温效果。100mm左右厚的R15保温棉热阻值可相当于1m厚的砖墙。网架结构的拼装一般在现场进行。在出厂前对于螺栓球节点网架宜进行预拼装,以检查零部件尺寸和偏差情况。网架的拼装应根据施工安装方法不同,采用分条拼装,分快拼装或整体拼装。网架拼装应在平整的刚性平台上进行。对于焊接空心球节点的网架在拼装时,应正确选择拼装次序,以减少焊接变形和焊接应力,根据国内多数工程经验,拼装焊接顺序应从中间向两边或四周发展,最好是由中间向两边发展,因为网架在向前拼装时,两端及前边可自由收缩。钢结构产品在焊完一条节间后,可检查一次尺寸和几何形状,以便由焊工在下一条定位焊时给予调整。网架拼装中应避免形成封闭圈,在封闭圈中施焊,焊接应力将很大。

一、曲面网架(网壳)

单曲、双曲、单层、双层

特点:

1利用一定的起拱度来实现外力的空间传

2多余的上凸增加了建筑容积

3巨大的推力,造成施工困难,材料消耗大

二、平面网架(平板网架)

平行玄桁架交叉而成,双层平面网格

特点:空间受力,无推力

第三节平板网架的结构形式

一、两向正交正放网架

二、两向正交斜放网架

三、三向交叉网架

四、锥体网架

正交:两个方向桁架互相垂直

正放:两个方向桁架都与建筑平面的边线平行

一、两向正交正放网架

特点:

两个方向桁架跨度相等或接近时,两个方向桁架

受力才比较均匀,且能发生整体空间作用

如建筑平面为长方形,空间作用不明显

网格平面为几何可变体型,刚度差,需设斜撑

适用范围:建筑平面为正方形或接近正方形

中等跨度:30~60米

81×81米有柱展厅,屋盖采用双向空间钢桁架结

构。桁架下弦标高为10.55米,桁架高度H=4.0

米,钢桁架沿纵向间距为27米,沿横向间距为9

米,均支承在钢筋砼柱柱顶,由于该区屋面为屋

顶花园,屋面活荷载按8.0KN/m2设计,故屋盖承

重结构选用钢桁架,并且正交桁架高度相等,弦杆为刚接,在纵向垂直支撑、系杆的保证作用下形成空间桁架结构体系。

厦门国际会展中心

正交:两个方向桁架互相垂直

斜放:两个方向桁架都与建筑平面的边线成45度角

二、两向正交斜放网架

1长度不统一,最长的桁架长度=

桁架长度不因平面长边的增加而改变

2短桁架对长桁架起支承作用,可降低长桁架的内力

3网格平面图形可维持几何不变形,空间刚度好

4网架四角的锚拉,使长桁架在角部产生负弯矩对四角支座产生较大的拉力,使四角有可能翘起

特点:

由角部两个柱子共同承担,避免拉力集中

适用范围:

任意尺寸的矩形建筑平面

中等跨度:30~60米

大跨度:60米以上

三个方向的桁架相互交叉60度而成

三、三向交叉网架

特点:

1上下玄网格均为三角形

2空间刚度比两向网架好

3杆件内力更均匀

4结点汇交杆件多,构造复杂

适用范围:

大跨度,建筑平面为三角形、六边形、圆形

由三角锥、四角锥或六角锥单元组成

棱角斜杆作竖向腹杆

四、锥体网架

三角锥体网架

型式:

1上下玄均为三角形网格---空间刚度好

2跳格三角锥体网格:上玄为三角形网格,下玄为三角形和六角形

网格---用料省

适用范围:建筑平面为矩形、三边形、梯形、六边形、

圆形的大跨度结构

上下玄均为方格,上下玄错开半格

适用范围:中小跨度结构

型式:

1正放四角锥体网架

2斜放四角锥体网架

四角锥体网架

1正放四角锥体网架:锥的底边与相应的建筑平面周边平行

A倒四角锥体(锥尖向下):锥的底边相连为上玄杆,锥尖的连杆为上玄杆,上下玄错开半格

四角锥体网架

1正放四角锥体网架

b正四角锥体(锥尖向下)

四角锥体网架

四角锥体网架

正放四角锥体网架特点:

(1)杆件内力均匀,点支承时除支座处杆件内力较大,其他杆件内力均匀(2)屋面板规格比较统一,上下玄杆等长,构造简单

适用范围:

(1)平面接近于正方形的中小跨度周边支承的建筑

(2)大柱距的点支承、有悬挂吊车的工业厂房

四角锥体网架

2斜放四角锥体网架:锥的底边与相应的建筑平面周边夹角45度

四角锥体网架

上玄杆短对受压有利,

下玄杆长为受拉杆,受力

合理

适用范围:中小跨度、

矩形平面

锥尖向下:上玄为正六角形网格,下玄为正三角形网格

六角锥体网架

锥尖向上:下玄为正六角形网格,上玄为正三角形网格

六角锥体网架

杆件多,结点构造复杂,屋面板为六边形或三角形,施工困难,较少采用

第四节平板网架的主要尺寸

短向跨度l<30m时,取(1/8~1/12)l

短向跨度l=30~60m时,取(1/11~1/14)l 短向跨度l>60m时,取(1/13~1/18)l

钢筋混凝土屋面板时,不宜超过 3m*3m

轻型屋面:3~6米

一、网格尺寸

第四节平板网架的主要尺寸

和网格尺寸相匹配

短向跨度l<30m时,取(1/10~1/13)l

短向跨度l=30~60m时,取(1/12~1/15)l 短向跨度l>60m时,取(1/14~1/18)l 二、网格高度

交叉桁架体系:腹杆倾角40~55度

角锥网架:腹杆倾角60度

大跨度网架:再分式腹杆

三、腹杆布置

第五节平板网架的受力特点

第六节平板网架的支承方式每个结点都设置柱

周边不设置边桁架

用钢梁省

一、周边支承于柱

适用范围:大跨度和中等跨度柱子数量少

柱距布置灵活

周边可不设置边桁架

圈梁有利于抗震

二、周边支承于圈梁

适用范围:中小跨度

柱子数量少,建筑物使用灵活

三、点支承

适用范围:大柱距的厂房或仓库自由边必须设边梁或桁架梁四、三边支承

适用范围:飞机库或飞机修理装配车间

网架自重计算

网架自重ok(KN/m2)可按下式估算:

gok=ξ√qw L2/200 (2.0.16)

式中qw——除网架自重外的屋面荷载或楼面荷载的标准值(KN/m2);

L2——网架的短向跨度(m);

ξ——系数,对于钢管网架取ξ=1.0,

对于型钢网架取ξ=1.2。

网架屋面排水坡度的形式

网架屋面排水坡度的形式,可采用下列办法:

一、上弦节点上加小立柱找坡(当小立柱较高时,必须注意小立柱自身的稳定性);

二、网架变高度:

三、整个网架起坡:

四、支承柱变高度。

有起拱要求的网架,其拱度可取不大于短向跨度的1/300。

网架结构的计算

一般计算原则

网架结构应进行在外荷载作用下的内力、位移计算,并应根据具体情况,对地震、温度变化、支座承降及施工安装荷载等作用下的内力、位移进行计算。

对非抗震设计,荷载及荷载效应组合应按国家标准《建筑结构荷载规范》GBJ9-87进行计算,在截面及节点设计中,应按照荷载的基本情况计算

网架的选型

网架的选型应结合工程的平面形状和跨度大小、支承情况、荷载大小、屋面构造、建筑设计等要求综合分析确定。网架构件步子必须保证不出现结构几何可变情况。

大、中、小跨度划分系针对屋盖而言;大跨度为60m以上;中跨度为30m-60m;小跨度为30m以下。

平面形状为矩形的周边支承网架,当其边长比(长边/短边)小于或等于1.5时,宜选用斜放四角锥网架、棋盘型四角锥网架、正放抽空四角锥网架、两向正交斜放网架、两向正交正放网架、正放四角锥网架。对中小跨度,也可选用星型四角锥网架和蜂窝型三角锥网架。当建筑要求长宽两个方向不等时,可选用两向斜交斜放网架。

平面形状为矩形的周边支承网架,当其边长比大于1.5时,宜选用两向正交正放网架,正放四角锥网架或正放抽空四角锥网架。当其边长比小于2时,也可采用斜放四角锥网架。当平面狭长时,可采用单向折线型网架。

平面形状为矩形,三边支承一边开口的网架,其开口边可采取增加网架层数或适当增加整个网架高度等办法,网架开口边必须形成竖直的或倾斜的边桁架。

平面形状为矩形,多点支承网架,可根据具体情况选用:正放四角锥网架、正放抽空四角锥网架、两向正交正放网架。对多点支承和周边支承相结合的多跨网架,还可选用两向正交斜放网架或斜放四角锥网架。

平面型状为圆形、正六边型及接近正六边心切为周边支承的网架,可根据具体情况选用:三向网架、三角锥网架或抽空三角锥网架。对中小跨度,也可选用蜂窝型三角锥网架。

对跨度不大于40m多层建筑的楼层及跨度不大于60m的屋盖,可采用钢筋混凝土板代替上弦的组合网架结构。网架结构宜选用正放四角锥网架、正放抽空四角锥网架、两向正交正放网架、斜放四角锥网架、蜂窝型三角锥网架。

网架的支承形式

网架可采用上弦或下弦支承方式,如当采用下弦支承时,应在支座边形成竖直或倾斜的边桁架。

网架的网格尺寸和高度可根据网架形式、跨度大小、屋面材料以及构造要求和建筑功能等因素确定。

多点支承的网架宜设柱帽。柱帽宜设于下弦平面之下(图 2.0.11a);也可设置于上弦平面之上(图2.0.11b);或上弦节点直接搁置于柱顶,柱帽呈倒伞形(图2.0.11c)。

多点支承网架的悬臂长度可取跨度的1/4-1/3。

常见的压铸模具结构及设计

压铸模具材料与结构设计 压铸模具材料与结构设计目录 1 压铸模具的结构 压铸模具一般的结构如图 1.导柱 2.固定外模(母模) 3分流子镶套 4.分流子5固定内模6角销7滑块挡片 8滑块9.可动内模10.可动外模(公模) 11.模脚12.顶出板13.顶出销承板14.回位销 15.导套 2.压铸模具结构设计应注意事项 (1)模具应有足够的刚性,在承受压铸机锁模力的情况下不会变形。 (2)模具不宜过于笨重,以方便装卸修理和搬运,并减轻压铸机负荷。 (3)模穴的压力中心应尽可能接近压铸机合模力的中心,以防压铸机受力不均,造成锁模不密,铸件产生毛边。 (4)模具的外形要考虑到与压铸机的规格的配合: (a)模具的长度不要与系杆干涉。 (b)模具的总厚度不要太厚或太薄,超出压铸机可夹持的范围。 (c)注意与料管(冷室机)或喷嘴(热室机)之配合。 (d)当使用拉回杆拉回顶出出机构时,注意拉回杆之尺寸与位置之配合。 (5)为便于模具的搬运和装配,在固定模和可动模上方及两侧应钻螺孔,以便可旋入环首螺栓。 3 内模(母模模仁) (1)内模壁厚 内模壁厚基本上不必计算其强度,起壁厚大小决定于是否可容纳冷却水管通过,安排溢流井,及是否有足够的深度可攻螺纹,以便将内模固定于外模。由于冷却水管一般直径约10mm,距离模穴约25mm,因此内模壁厚至少要50mm。内模壁厚的参考值如下表。 内模的高度应该比外模高出0.05-0.1mm,以便模面可确实密合,并使空气可顺利排出。其与外模的配合精度可用H8配h7,如下图所示。 (3)内模与分流子的配合 分流子的功用是将熔汤由压铸机导至模穴内,因此其高度视固定模的厚度而定。分流子的底部与内模相接,使流道不会接触外模,如下图,内模与分流子的配合可用H7配h6。 4外模 (1)固定外模

模具种类

模具的分类 [用途上分]: A [塑胶模]Plastic mould :用于制造塑胶产品,如:3C类产品[3C:计算机(Computer),通讯(Communication), 消费类电子:(Consumer Electrics)]汽车摩托车结构件,内饰件,日用品,儿童玩具,建筑用PVC水管接头,各种工具的手柄,精密仪器零件等涉及生活的每一个角落。 B [冲压模]die ( Pressed tooling):用于制造金属钣金,片状材料的剪裁下料等。如:电脑等各类机箱、机柜、不锈钢厨具、连接器端子、接插件铜片、电路板切孔,钣金成型,快餐盒成型等。 C [压铸模]Die casting (alloy mould):主要用于生产铝合金,锌合金,镁铝合金等铸件,如笔记本外壳,汽车摩托车发动机,音箱,阀体配件等。 D [压缩模] Compression mould:主要用于生产橡胶,硅橡胶制品,如各种防水圈,饰件,缓冲件,衬垫,手机按键等。 E [吹塑,吸塑模] blow mold:主要用于生产塑胶类中空容器类产品,如各种饮料瓶,塑料壶,化妆品盒,洗发水瓶,充气玩具,塑料包装等。 F [挤出模具]extrusion mould :主要是各种型材,如建筑用铝合金门窗,电线槽, G [半导体模具]semiconductor mold:主要是生产各种二级管,三级管等电子电气元件。 H 玻璃钢模具(SMC/BMC) Phenolic mould 电木模具属于热固性模具 其中应用最广泛的就是塑胶模具,由于塑胶产品种类繁多,所以塑胶模具也有各种分类: [品质要求]: A. production mould量产模 模具产量主要指的是:在模具使用寿命期间所能生产的最大的产品数 按照美国[SPI-SPE]标准可以分为以下几类 一、101类模。(长期精密生产模具,产量在1,000,000shots或以上) 二、102类模。(不超过1,000,000shots,大量生产模具) 三、103类模。(少于500,000shots,中量产模具) 四、104类模。(少于100,000shots,少量产模具) 五、105类模。(少于500shots,手办模或试验模)

显微镜主要分类

显微镜根据其用途以及应用范围分为 生物显微镜、金相显微镜、体视显微镜等。 1 生物显微镜是最常见的一种显微镜,在很多实验室中都可见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、 沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2 体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有: ①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。 ②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3 金相显微镜

主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。

热流道的种类与应用

热流道的种类与应用 在应用热流道技术时,浇口型式的正确选择至关重要。浇口型式直接决定热流道系统元件的选用及模具的制造与使用。因而根据浇口型式的不同可将热流道系统分成三大类型,既(1)热尖式或称热针式(HOT TIP)热流道系统,(2)浇套式(SPRUE GATING)热流道系统及(3)阀式或称阀针式(VALVE GATING)热流道系统。每种类型的热流道系统都有其重要的τ锰氐阌胧视梅段АT谘∮媒娇谟肴攘鞯老低持掷嗍毙枰 悸呛芏嘁蛩亍?其中最重要的是塑料基体种类与添加剂,零件的重量与尺寸壁厚,零件质量要求,工具寿命及零件产量要求等。一、热尖式热流道系统 这是一种应用最为普遍广泛的热流道系统。各热流道供应商均提供这种系统。虽然来自不同厂家系统上的喷嘴及喷嘴镶件之形状与尺寸有所不同,但工作原理是非常一致的。这就是通过位于喷嘴前端的镶件HOT TIP与冷却系统相结合以对浇口处的塑料成型加工温度进行精确的调整和控制。因而喷嘴镶件HOT TIP的制造材料与形状设计非常重要。各热流道供应商均在HOT TIP的开发研究上投入很大力量。 热尖式(HOT TIP)热流道系统可以用于加工绝大多数结晶型和非结晶型塑料如PP,PE,PS,LCP,PA,PET,PBT,PEEK,POM,PEI,PMMA,ABSPVC,PC,PSU,TPU等。一般说来,热尖式浇口多用于中小尺寸零件的加工,尤其适用于微小零件的加工。浇口截面直径大多在0。5mm —2。0mm之间。浇口截面直径的确定主要由零件重量与壁厚决定,当然也要考虑材料与零件质量要求。若使用截面直径较小的浇口,注射充模阶段结束后浇口封闭的快,零件上浇口痕迹小,零件表面美观质量好。但浇口直径不可过小,否则塑料流经浇口时剪切速率过高,会严重损坏塑料溶体分子链结构或塑料中的添加材料,导致制品质量不合格无法满足使用要求。一个常用的经验做法是根据零件浇口处壁厚来初步确定浇口大小:浇口直径= (0。75 –1。0)零件浇口处壁厚。再结合考虑其他因素。如果是加工容易流动的塑料则可取较小値。如果是加工难流动的塑料或对剪切敏感的塑料则取较大値。还要考虑塑料种类与添加物等。在实际应用中有时需要实际试模来最后确定。热流道供应商应用工程师一个很重要的任务就是帮助用户确定最佳浇口直径。 用户可将热尖式浇口直接开在零件上,亦可将其开在冷浇道上,再将冷浇口开在零件上。这就是热流道与冷流道相结合的一种模具系统。在应用热尖式浇口制作塑料零件时,总会或多或少在零件上留下浇口痕迹。很多时侯浇口痕迹会高出零件表面,影响到零件的美观或影响到与其它零件的装配配合。所以在选择浇口位置时,应尽量将浇口放在零件上的凹进隐蔽处。对于零件美观或配合要求高的应用项目,有时产品设计师必须在零件上人为地设计出一个凹进处以便放置浇口。 一个成功的热尖式热流道系统应用的关键除了正确的浇口大小外,再就是浇口处塑料温度与模具温度的精确控制。在进行模具冷却系统设计时,需要围绕浇口设置独立的冷却回路,以满足对浇口处模具材料有效冷却的需要。对于许多生产项目,甚至需要采用一种专门的水冷浇口镶件以实现对浇口处进行超强冷却。如果浇口处塑料温度与模具温度控制的不好,就会出现两种常见的热尖式浇口的质量与生产障碍现象,既浇口痕迹过大或浇口塑料在开模后流淌(DROOLING)问题。 在应用热尖式浇口系统加工含有高比例玻璃纤维的塑料时,用户一定要选择具有高耐磨性的浇口镶件(HOT TIP)。许多热流道供应商提供用硬质耐磨材料做成的浇口HOT TIP镶件以提高模具使用寿命。 二、浇套式热流道系统 在浇套式热流道系统里,塑料经过畅通的流道(OPEN PIPE)进入模腔。浇口处塑料流动压

模具种类

模具的分类 [ 用途上分]: A [塑胶模]Plastic mould :用于制造塑胶产品,女口:3C类产品[3C:计算机(Computer) 通讯(Communication) , 消费类电子:(Consumer Electrics) ]汽车摩托车结构件,内饰件,日用品,儿童玩具,建筑用PVC水管接头,各种工具的手柄,精密仪器零件等涉及生活的每一 个角落。 B [ 冲压模] die ( Pressed tooling) :用于制造金属钣金,片状材料的剪裁下料等。如: 电脑等各类机箱、机柜、不锈钢厨具、连接器端子、接插件铜片、电路板切孔,钣金成型,快餐盒成型等。 C [ 压铸模] Die casting (alloy mould) :主要用于生产铝合金,锌合金,镁铝合金等铸 件,如笔记本外壳,汽车摩托车发动机,音箱,阀体配件等。 D [ 压缩模] Compression mould :主要用于生产橡胶,硅橡胶制品,如各种防水圈,饰 件,缓冲件,衬垫,手机按键等。 E [吹塑, 吸塑模] blow mold :主要用于生产塑胶类中空容器类产品,如各种饮料瓶,塑 料壶,化妆品盒,洗发水瓶,充气玩具,塑料包装等。 F [ 挤出模具]extrusion mould :主要是各种型材,如建筑用铝合金门窗,电线槽, G [ 半导体模具] semiconductor mold :主要是生产各种二级管,三级管等电子电气元件。 H 玻璃钢模具(SMC/BMC) Phenolic mould 电木模具属于热固性模具其中应用最广泛的就是塑胶模 具,由于塑胶产品种类繁多,所以塑胶模具也有各种分类: [ 品质要求]: A. production mould 量产模模具产量主要指的是:在模具使用寿命期间所能生产的最大的产品数 按照美国[SPI-SPE] 标准可以分为以下几类 一、101 类模。(长期精密生产模具,产量在1,000,000shots 或以上) 二、102 类模。(不超过1,000,000shots, 大量生产模具) 三、103 类模。(少于500,000shots, 中量产模具) 四、104 类模。(少于100,000shots, 少量产模具) 五、105 类模。(少于500shots, 手办模或试验模)

热流道系统的分类

热流道系统的分类 在应用热流道技术时,浇口型式的正确选择至关重要。浇口型式直接决定热流道系统元件的选用及模具的制造与使用。 1热尖式热流道系统 2浇套式热流道系统 3阀式热流道系统 每种类型的热流道系统都有其重要的应用特点与适用范围。在选用浇口与热流道系统种类时需要考虑很多因素,其中最重要的是塑料基体种类与添加剂、零件的重量与尺寸壁厚、零件的质量要求、工具寿命及零件产量要求等。

1、热尖式热流道系统(HOT TIP) 其工作原理就是通过位于喷嘴前端的镶件HOT TIP与冷却系统相结合,以对浇口处的塑料成型加工温度进行精确的调整和控制。因而喷嘴镶件HOT TIP的制造材料与形状设计非常重要。 热尖式(HOT TIP)热流道系统可以用于加工绝大多数结晶型和非结晶型塑料如PP、PE、PS、LCP、PA、PET、PBT、PEEK、POM、PEI、PMMA、ABSPVC、PC、PSU、TPU等。一般来说,热尖式浇口多用于中小尺寸零件的加工,尤其适用于微小零件的加工。浇口截面直径大多在0.5mm- 2.0mm之间。浇口截面直径的确定主要由零件重量与壁厚决定,当然也要考虑材料与零件质量要求。若使用截面直径较小的浇口,注射充模阶段结束后浇口封闭快、零件上浇口痕迹小、零件表面美观质量好。如果浇口直径过小,将导致塑料流经浇口时剪切速率过高,会严重损坏塑料熔体分子链结构或塑料中的添加材料,致使制品质量不合格无法满足使用要求。在对浇口尺寸的选择上一惯做法是根据零件浇口处壁厚来初步确定浇口大小:浇口直径=(0.75-1.0)零件浇口处壁厚。加工易流塑料取较小值,加工难流动的塑料或对剪切敏感的塑料则取较大值。 通常热尖式浇口直接开在零件上,亦可将其开在冷浇道上再将冷浇口开在零件上。这就是热流道与冷流道相结合的一种模具系统。在应用热尖式浇口制作塑料零件时,总会或多或少在零件上留下浇口痕迹。很多时侯浇口痕迹会高出

显微镜种类及使用方法

显微镜的种类及其使用方法 一、光学显微镜 光学显微镜是一种精密的光学仪器。当前使用的显微镜由一套透镜配合,因而可选择不同的放大倍数对物体的细微结构进行放大观察。普通光学显微镜通常能将物体放大1500~2000 倍(最大的分辨力为0.2μm)。 (一)光学显微镜的基本结构(附图1) 1.光学部分包括目镜、物镜、聚光器和光源等。 (1)目镜通常由两组透镜组成,上端的一组又称为“接目镜”,下端的则称为“场镜”。两者之间或在场镜的下方装有视场光阑(金属环状装置),经物镜放大后的中间像就落在视场光阑平面上,所以其上可加置目镜测微尺。在目镜上方刻有放大倍数,如10×、20×等。按照视场的大小,目镜可分为普通目镜和广角目镜。有些显微镜的目镜上还附有视度调节机构,操作者可以对左右眼分别进行视度调整。另有照相目镜(NFK)可用于拍摄。 (2)物镜由数组透镜组成,安装于转换器上,又称接物镜。通常每台显微镜配备一套不同倍数的物镜,包括:①低倍物镜:指1×~6×; ②中倍物镜:指6×~25×;

③高倍物镜:指25×~63×;④油浸物镜:指90×~100×。 其中油浸物镜使用时需在物镜的下表面和盖玻片的上表面之间填充折射率为 1.5 左右的液体(如香柏油等),它能显著地提高显微观察的分辨率。其他物镜则直接使用。观察过程中物镜的选择一般遵循由低到高的顺序,因为低倍镜的视野大,便于查找待检的具体部位。显微镜的放大倍数,可粗略视为目镜放大倍数与物镜放大倍数的乘积。 (3)聚光器由聚光透镜和虹彩光圈组成,位于在载物台下方。聚光透镜的功能是将光线聚焦于视场范围内;透镜组下方的虹彩光圈可开大缩小,以控制聚光器的通光范围,调节光的强度,影响成像的分辨力和反差。使用时应根据观察目的,配合光源强度加以调节,得到最佳成像效果。 (4)光源较早的普通光学显微镜借助镜座上的反光镜,将自然光或灯光反射到聚光器透镜的中央作为镜检光源。反光镜是由一平面和另一凹面的镜子组成。不用聚光器或光线较强时用凹面镜,凹面镜能起会聚光线的作用;用聚光器或光较弱时,一般都用平面镜。新近出产的显微镜一般直接在镜座上安装光源,并有电流调节螺旋,用于调节光照强度。光源类型有卤素灯、钨丝灯、汞灯、荧光灯、金属卤化物灯等。 显微镜的光源照明方法分为两种:透射型与反射(落射)型。前者是指光源由下而上通过透明的镜检对象;反射型显微镜则是以物镜上方打光到(落射照明)不透明的物体上。 2. 机械部分包括镜座、镜柱、镜壁、镜筒、物镜转换器、载物台和准焦螺旋等。 (1)镜座基座部分,用于支持整台显微镜的平稳。 (2)镜柱镜座与镜臂之间的直立短柱,起连接和支持的作用。 (3)镜臂显微镜后方的弓形部分,是移动显微镜时握持的部位。有的显微镜在镜臂与镜柱之间有一活动的倾斜关节,可调节镜筒向后倾斜的角度,便于观察。 (4)镜筒安装在镜臂先端的圆筒状结构,上连目镜,下连接物镜转换器。显微镜的国际标准筒长为160 mm,此数字标在物镜的外壳上。 (5)物镜转换器镜筒下端的可自由旋转的圆盘,用于安装物镜。观察时通过转动转换器来调换不同倍数的物镜。 (6)载物台镜筒下方的平台,中央有一圆形的通光孔。用于放置载玻片。载物台上装有固定标本的弹簧夹,一侧有推进器,可移动标本的位置。有些推动器上还附有刻度,可直接计算标本移动的距离以及确定标本的位置。 (7)准焦螺旋装在镜臂或镜柱上的大小两种螺旋,转动时可使镜筒或载物台上下移动,从而调节成像系统的焦距。大的称为粗准焦螺旋,每转动一圈,镜筒升降10mm;小的为细准焦螺旋,转动一圈可使镜筒仅升降0.1mm。一般在低倍镜下观察物体时,以粗准焦螺旋迅速调节物像,使之位于视野中。在此基础上,或在使用高倍镜时,用细准焦螺旋微调。必须注

光学显微镜的分类及应用领域

显微镜的主要分类、功能及应用领域 一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,解剖镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属表面组织结构,是金属学研究金相的重要仪器,是工

业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的

初中生物 第一节显微镜的结构和使用教学设计

第一节显微镜的结构和使用教学设计 第一节显微镜的结构和使用教学设计 ●一、教学目标 知识目标 1.通过学习显微镜各部件的名称、作用和方法,认识显微镜的结构。 2.学习显微镜的使用方法,掌握使用显微镜的基本步骤。 能力目标 学会正确规范使用显微镜的步骤、方法,发展实验能力。 情感目标 通过对本节内容的学习,在科学态度、科学方法的熏陶中,树立初步的科学意识。 ●二、教学重难点 教学重点 1.显微镜的使用方法。 2.学习独立操作能力的培养。 教学难点 规范使用显微镜,并观察到物像(要求学生用左眼注视目镜内图像的同时,右眼睁开)。 教学方法 谈话法、实验法。 ●三、教学过程 [导入新课] 教师活动:用谈话式教学方式让学生认识细胞,及其与生物的关系。具体活动如下: 科学研究证明,地球上的生物虽然种类繁多,但是从基本结构上说则大体上是一样的——除病毒以外,生物体都是由细胞构成的。生物体的一切活动,比如:生物的长大、繁殖等都是靠细胞来实现的。细胞是构成生物体结构和功能的基本单位。要想探索生物的奥秘,就必须要了解细胞。我们这一单元的内容就是专门来研究一下生物的各种生命活动与细胞的关系的。可是,细胞的体积很小,我们怎样才能观察到它呢?聪明的人类为了解决这个问题,而发明创造了显微镜这种专门用来观察细胞结构和功能的仪器。我们这节课就来认识一下显微镜及其使用方法。

[讲授新课] 显微镜是生物科学研究中常用的观察工具。最早的显微镜是由一位荷兰眼镜商在16xx年前后制造的,它的结构简单,放大倍数不高,只有10~30倍,可以观察一些小昆虫,如跳蚤等,因而有人称它为“跳蚤镜”。这种显微镜是用光线照明的,属于光学显微镜。后来随着科学技术的不断发展,人们把显微镜的制造技术进行了不断的改进。到20世纪30年代诞生了电子显微镜。它是利用高速运动的电子来代替光线进行观察,放大倍数可以达到几十万倍。电子显微镜大大开阔了人们的视野,使人们看到了细胞更细微的结构。它的应用领域已经不止局限于生物学,在医学、物理学、化学等其他领域的应用也很广泛,已经成为了人们了解微观世界不可缺少的工具。下面,我们先来认识一下现在最常用、最普通的一种显微镜。 在学习以前,我们先来看一下如何进行取镜和安放。取镜和安放可概括为几步:右手握,左手托,略偏左,安目镜。右手握镜臂,左手托镜座,放在实验台略偏左的地方距边缘7厘米左右,安装好目镜和物镜。下面,大家就按照这一步骤先来练习一下。安放好以后请大家对照教材上的图,认识一下各结构名称。 学生活动:对照彩图认识各结构名称。教师作适当指导。 教师活动:认识了各结构以后,更重要的是会使用它来进行观察物像。现在每一小组都有四种观察玻片:写上“上”字的玻片,印有数字的透明纸,动植物玻片标本,写有数字的不透明纸。首先以号片为例观察。观察前要先对光,对好以后才能观察。(演示、对光、观察的步骤说明多媒体) 学生活动:观看多媒体、对照练习。 七年级生物教案 学生活动:观察其他玻片,讨论问题。 教师活动:这四种玻片都说明了什么问题呢? 学生甲:物像是倒像,而且上下颠倒左右相反。 学生乙:光学显微镜只能观察能被光穿透的物体。 学生丙:放大倍数为目镜与物镜的放大倍数的乘积。 好,看来,大家对这些问题考虑比较全面,回答完全正确。下面我们针对③号片再做一次观察,但不同的是我们换一下目镜,看又会出现什么情况。 学生活动:换目镜、观察、讨论。 教师活动:发现有什么区别吗? 学生:放大倍数越大,细胞越大,个体数越少,放大倍数越小,细胞越小,个体数越多。很好,看来大家都认真观察比较过了。这个道理其实很简单,不明白的同学再观察比较一次。

常见泵的分类及工作原理

常见泵的分类及工作原理 泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵容积式泵是指靠工作部件的运动造成工作容积周 期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵叶轮式泵是靠叶轮带动液体高速回转而把机械能 传递给所输送的液体。根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为:离心泵(centrifugal pump)轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为:(1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为:(1)单吸泵(single suction pump) (2)双吸泵(double suction pump) 3、按驱动泵的原动机来分:(1)电动泵(motor pump ) (2)汽轮机泵(steain turbine pump) (3)柴油机泵(diesel pump)(4)

气动隔膜泵(diaphi'^m pump如图16—1为泵的分类图16-1泵的分类 二、各种类型泵在电厂中的典型应用离心泵凝结水泵、给水泵、闭式水泵、凝补水泵、定子冷却水泵、定排水泵、炉水循环泵轴流泵循环水泵往复泵EII油泵齿轮泵送风机液压油泵、磨煤机液压油泵、引风机电机润滑油泵螺杆泵空预器导向轴承油泵、空预器支撑轴承油泵、空侧交流密封油泵喷射泵主机润滑油系统射油器、射水抽气器水环式真空泵水环式真空泵第二节离心泵的理论基础知识离心泵主要包括两个部分: 1、旋转的叶轮和泵轴(旋转部件)。 2、由泵壳、填料函和轴承组成的静止部件。正常运行时,叶 轮高速旋转,在惯性力的作用下,位于叶轮中心的流体被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳内,在蜗壳内液体的部分动能会转换成静压能。于是较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。同时,叶轮中心由于液体的离开而形成真空,如果管路系统合适,则外界的液体会源源不断地吸入叶轮中心,以满足水泵连续运行的要求。如图16-2所示。图16-2 离心泵的工作原理 一、离心泵的性能参数 (一)流量指泵在单位时间内能抽出多少体积或质量的水。体积流量一般用m3/min. m3/h等来表示。 (二)扬程又称水头,是指被抽送的单位质量液体从水泵进

几种显微镜种类的介绍

几种显微镜种类的介绍 00 暗视野显微镜在普通光学显微镜台下配一个暗视野聚光器(图4),来自下面光源的光线被抛物面聚光器反射,形成了横过显微镜视野而不进入物镜的强烈光束。因此视野是暗的,视野中直径大于0.3m的微粒将光线散射,其大小和形态可清楚看到。甚至可看到普通明视野显微镜中看不见的几个毫微米的微粒。因此在某些细菌、细胞等活体检查中常常使用。 实体显微镜由双筒目镜和物镜构成。放大率7~80倍。利用侧上方或下方显微镜灯照明。在目镜内形成一个直立的放大实像,可以观察未经加工的物体的立体形状、颜色及表面微细结构,并能进行显微解剖操作,也可以观察生物机体的组织切片。 荧光显微镜在短波长光波(紫外光或紫蓝色光,波长250~400nm)照射下,某些物质吸收光能,受到激发并释放出一种能量降级的较长的光波(蓝、绿、黄或红光,波长400~800 nm),这种光称荧光。某种物质在短光波照射下即可发生荧光,如组织内大部分脂质和蛋白质经照射均可发出淡蓝色荧光,称为自发性荧光。但大部分物质需要用荧光染料(如吖啶橙、异硫氰酸荧光素等)染色后,在短光波照射下才能发出荧光。荧光显微镜的光源为高压汞灯,发出的紫外光源经过激发滤光片(此滤光片可通过对标本中荧光物质合宜的激发光)过滤后射向普勒姆 氏分色镜分色镜将激发光向下反射,通过物镜投射向经荧光染料染色的标本。染料被激发并释放出荧光,通过物镜,穿过分色镜和目镜即可进行观察。目镜下方安置有屏障滤片(只允许特定波长的荧光通过)以保护眼眼及降低视野暗度。荧光显微镜的特点是灵敏度高,在暗视野中低浓度荧光染色即可显示出标本内样品的存在,其对比约为可见光显微镜的100倍。30年代荧光染色即已用于细菌、霉菌等微生物及细胞、纤维等的形态观察和研究。如用抗酸菌荧光染色法可帮助在痰中找到结核杆菌。40年代创造了荧光染料标记蛋白质的技术,这种技术现已广泛应用于免疫荧光抗体染色的常规技术中,可检查和定位病毒、细菌、霉菌、原虫、寄生虫及动物和人的组织抗原与抗体,可用以探讨病因及发病机理,如肾小球疾病的分类及诊断,乳头瘤病毒与子宫颈癌的关系等。在医学实验研究及疾病诊断方面的用途日益广泛。 偏光显微镜从光源发出的光线通过空气和普通玻璃时,在与光线垂直的平面内的各个方向以同一振幅进行振动并迅速向前方传递,这是光的波动性原理。空气与普通玻璃为各向同性体,又称单折射体。如果该光源的光通过一种各向异性体(又称双折射体)时,会将一束光线分为各只有一个振动平面的,而且振动方向互相垂直的两束光线。这两束光线的振动方向、速度、折光率和波长都不相同。这样只有一个振动平面的光线称偏振光。偏光显微镜即利用这一现象而设计。偏光显微镜内,在物镜与目镜间插入一个检偏镜片,光源与聚光器间镶有起偏镜片,圆形载物台可以作360°旋转。起偏与检偏镜片处于正交检偏位时,视野完全变黑。将被检物体放在显微镜台上。若被检物为单折射体,则旋转镜台,视野始终黑暗。若旋转镜台一周,视野内被检物四明四暗,则说明被检物是双折射体。许多结晶物质(如痛风结节中的尿酸盐结晶、尿结石、胆结石等),人体组织内的弹力纤维、胶原纤维、染色体和淀粉样原纤维等都是双折射体,可借偏振光显微镜术检验,进行定性和定量分析。

热流道系统的组成结构

热流道系统的组成结构 热流道浇注系统可理解为注射成型机械的延伸。热流道系统的功能是绝热地将热塑性熔体送到成型模具附近或直接送入模具。热流道能够独立地加热,而在注塑模具中热绝缘,这样能够单独补偿因为与“冷”模具接触而造成的热量损耗。热流道模具已被成功地用于加工各种塑料材料,可以用冷流道模具加工的塑料材料几乎都可以用热流道模具加工。其零件最小的在0.1克以下,最大的在30公斤以上。热流道模具在电子、汽车、医疗、日用品、玩具、包装、建筑、办公设备等领域都有着到广泛的应用。 一个成功的热流道模具应用项目需要多个环节予以保障。其中最重要的有两个技术因素:一是塑料温度的控制;二是塑料流动的控制。一个典型的热流道系统由如下几部分组成: ?热流道板(Manifolds) ?热喷嘴(Hot nozzles ) 内加热式Internal Heating 外加热式Exteral Heating 针阀式Needle Valve ?加热元件(Heating elements) ?热传感器(Sensors and thermal couples ) ?温度控制器(Temperature controllers) 一、热流道板 热流道板是整个热 流道的系统的核心元件, 其主要任务是恒温地将 熔体从主流道送入各个 单独喷嘴,在熔体传送过 程中,熔体的压力降尽可 能减小,并不允许材料降 解。常用热流道板的形式 有:一字型,H型,Y型, X字型;结构上有外加热 图1:热流道板 热流道板和内加热热流 道板两大类。

热流道系统一般按照热流导板的加热方式分为两大类。 1、隔热式 隔热流道模有由模板组成的过大的流道。对流道不加热,但流道的尺寸要足够大,采用在工作条件下由凝结在流道壁的塑料提供的隔热效果,与每一射出的热力相结合,来维持熔体在流道内的畅通。 这 种系统在两类之中早一些、简单一些,优点是设计不那么复杂,制造成本低。缺点是有时在浇口会形成凝结;为了维持熔融状态,需要很快的工作周期;为了达到稳 定的熔融温度,需要很长的准备时间。另一个主要问题是很难取得注塑的一致性,或者说无法保证。还有是因为系统内无加热,因此需要较高的注塑压力,这样经常 会造成腔板的变形或弯曲。 2、加热式 加热流道系统也有 两种设计:内加热流道和 外加热流道: ? 内加热流道:内 加热流道的特 点是采用内部 加热的环形流 道。加热由流道 内的探针和加 热梭 ( 也叫作 分配器管 ) 提供。这一系统利用熔融塑料的隔热效果来减少热的传递和在模内其他地方的损失。 尽管有分配器管内的环形加热器,在加热梭与流道壁之间还是会有材料的凝结出现。材料必须在隔热壁与加热梭之间不停的流动,这与年流量效果加在一起,会造成系统内的压力下降,因此平衡的重要性非常关键。 考虑到这一问题,内加热系统最适宜加工范围大的材料和到各浇口等距的平衡流道。这一系统不适宜于热敏感塑料的使用。 内加热相对于隔热系统提供改进的热分配,但系统的成本更高、设计更复杂。这种系统需要很仔细的平衡和复杂的热控制。 ? 外加热系统:热流道的另一种设计是外加热系统。这种设计由具有内部流道的环形加热集流管组成。集流管的设计具有与模具其他部位隔离的多种隔热构造。这一系统的优点是更好的温度控制,但成本也比较高、设备复杂。 图2:热流道板结构图(Ewikon HPS Ⅲ T 热流道板)

显微镜的结构和使用教学设计

第一节显微镜的结构和使用教学设计 连云港海头初级中学朱文娟 一、教学目标 1.通过学习显微镜各部件的名称、作用和方法,认识显微镜的结构。 2.学会正确规范使用显微镜的步骤、方法,发展实验能力。 3.通过对本节内容的学习,在科学态度、科学方法的熏陶中,树立初步的科学意识。 二、教学重难点 1. 重点:认识显微镜的结构,掌握显微镜的使用步骤。 2. 难点:规范使用显微镜,并能观察到清晰的物象。 三.学情分析 本次授课对象是刚接触生物实验的七年级学生,本节课内容学习显微镜的结构和使用。由于本节课内容涉及较深的动手能力,故在教学中,通过启发式教学,设置大量的问题情境,来激发学生的学习兴趣和进一步培养他们的实验能力和科学意识。 四、教学过程 1、导入新课 教师活动:地球上的生物虽然种类繁多,但是除病毒以外,生物体都是由细胞构成的。可是,细胞的体积很小,我们怎样才能观察到它呢?聪明的人类为了解决这个问题,而发明创造了显微镜这种专门用来观察细胞结构和功能的仪器。我们这节课就来认识一下显微镜及其使用方法。 2、讲授新课 活动一:显微镜的结构 通过挂图和实物相结合的方法对显微镜的结构进行细致的讲授。具体从机械部分、照明部分和光学部分三方面讲述各部分结构和功能。 活动二:显微镜的使用 通过具体实验来讲授显微镜的实验步骤,在讲述各步骤时以启发学生思考为主,强调个步骤中需要注意的事项。

a.取镜和放置:取出时,右手紧握镜臂,左手托住镜座,将显微镜放在左肩前方的位置。(学生思考原因) b.对光:用拇指和中指移动旋转器(切忌手持物镜移动),使用低倍镜对准镜台的通光孔(听到碰扣声时以对准)。打开光圈,上升集光器,并将反光镜转向光源,以左眼观察(右眼打开),同时调节反光镜方向,直到视野中光线均匀明亮为止。(学生思考为什么是先用低倍镜观察) c.放置装片:取装片于载物台上(切记是有盖玻片的一面朝上),用推片器弹簧夹住,然后旋转退片器螺旋,将索要观察的部分调到通光孔中央。 d.低倍镜观察:以左手按逆时针方向转动粗调节器,使镜台缓慢地上升至物镜距标本片约5毫米处,应注意在上升镜台时,切勿在目镜上观察。一定要从右侧看着载物台上升,以免上升过多,造成镜头或标本片的损坏。然后,两眼同时睁开,用左眼在目镜上观察,左手顺时针方向缓慢转动粗调节器,使载物台缓慢下降,直到视野中出现清晰的物象为止。如果物象不在视野中心,可调节推片器将其调到中心(注意移动装片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过升降集光器的位置或开闭光圈的大小来调节,如果在调节焦距时,载物台下降已超过工作距离(>5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升载物台。 e.高倍镜观察:一定要先在低倍镜下把需进一步观察的部位调到中心,同时把物象调节到最清晰的程度,才能进行高倍镜的观察。 转动转换器,调换上高倍镜头,转换高倍镜时转动速度要慢,并从侧面进行观察(防止高倍镜头碰撞装片),如高倍镜头碰到装片,说明低倍镜的焦距没有调好,应重新操作。 调节焦距,转换好高倍镜后,用左眼在目镜上观察,此时一般能见到一个不太清楚的物象,可将细调节器的螺旋逆时针移动约0.5-1圈,即可获得清晰的物象(切勿用粗调节器!) 如果视野的亮度不合适,可用集光器和光圈加以调节,如果需要更换装片标本时,必须顺时针(切勿转错方向)转动粗调节器使载物台下降,方可取下装片标本。想让像变大就要使物镜靠近物体,目镜远离物镜一些,像变小则反之…… f.收镜:下降载物台至最低,去下装片;转动螺旋器使物镜呈“八”字朝向学生;最后竖起反光镜以免停灰(学生思考原因)。

流道分类:绝热浇道、冷流道、热流道

你把这些文件按顺序下载后重新按顺序更改文件名,例如:part1.rar;part2.rar;......;part8.rar 然后解压part1.rar 流道分类:绝热浇道、冷流道、热流道。绝热浇道的设计复杂,但效果和维护成本非常低,不会耽误工时。冷流道和热流道斑竹基本上谈到了特点。我再具体补充一些自己的看法。 热流道分类:开放式、针阀式。 开放式结构简单、对材料的局限性较高,易出现拉丝和泄露,表面质量差,在国外的高精密模具中应用较少,同一副模具可和不同厂家的针阀式混用。很多公司能自己制造。 针阀式热流道节省材料,塑件表面美观,同时内部质量紧密、强度高。现在世界上有两大类针阀式热流道(根据注射原理):气缸式和弹簧式。气缸式依*控制器和时序控制器控制气缸推动针阀的关闭,结构较复杂,但本身设计简单。主要有DME(美国)、INCOE(美国)、MOLD-MASTER(加拿大---热流道的老大)、HUSKY(加拿大)、世纪(日本)、信好(新加坡)、YUDO(韩国)、克朗宁(中德合资--实际中国)、贝佳(中国)等。其中日本世纪没有进入中国市场。气缸式因为其结构的特点决定模具精度要高,同时调试和维护都比较复杂,其中MOLD-MASTER堪称热流道中的劳斯莱斯----加热部分在喷嘴上。他们中的很大成本在调试和维护上,客户基本不能自己维护。弹簧式就一家--FISA(日本),最大特点,依*弹簧和注射压力的平衡控制针阀开关,装配调试和维护简单,模具精度不高,日本国内客户基本自己有维护能力,广泛应用在家电、汽车饰件、精密多腔模具中。弹簧式与气缸的差别在于不能时序控制,不能很好解决熔接痕的问题。本人就是FISA公司的上海代表,因为看到斑竹对热流道的热情才有感而发。 价位上基本上这样(中国市场价),MOLD-MASTER、INCOE、DME、HUSKY、FISA、 信好、可朗宁、YUDO、贝佳,还有一些意大利扑精,深圳科技等的热流道也可以,我这里不是太了解。现在国外流行的叠模非热流道莫属,其实热流道模具减少了设计上的很多要求,对设计人员开发更多的模具结构提供了很大的方便。 我有一个模具群!群号是1406177 Q号是2204498 熱澆道的使用时机(zt) 熱澆道之原理:熱澆道模具是將傳統式模具或三板式模具的澆道與流道經常加熱,於每一成形時即不需要取出流道和澆道的一種嶄新構造。 由模具的結構來探討其差異性: 1. 為成形超大件製品: 須以熱澆道才能使塑膠流動~例如:汽車內襯板、平衡桿、…等,需要較多處同時進澆。 2.偏離射出成型機之中心的側向進澆: 以熱澆道方式進澆將可使模具的構造簡單,成形容易、加快成形速度、減少成形時的料頭……一舉數得。 三板模之缺點:

模具结构形式

模具结构形式 3.1型腔的设计 3.1.1型腔数目的拟定 为了使模具与注射机的生产能力相匹配,提高生产效率和经济性,并保证塑 件精度,模具设计时应确定型腔数目,常用的方法有四种: (1)根据经济性确定型腔数目; (2)根据注射机的额定锁模力确定型腔数目; (3)根据注射机的最大注射量确定型腔数目; (4)根据制品精度确定型腔数目。 型腔数目的确定一般可以根据经济性、注射机的额定锁模力、注射机的最大 注射量、制品的精度等。一般来说,大中型塑件和精度要求高的小型塑件优先采 用一模一腔的结构,但对于精度要求不高的小型塑件(没有配合精度要求),形 状简单,又是大批量生产时,若采用多型腔模具可提供独特的优越条件,使生产 效率大为提高。该塑件精度要求不高,生产批量适中,且具有两边抽芯,从模具 加工成本,制品生产时的成本考虑,故拟定为一模两腔。一般来说,精度要求高 的小型塑件和中大型塑件优先采用一模一腔的结构,对于精度要求不太高的小型 塑件,是大批量生产时,若采用多型腔模具可提供独特的优越条件,使生产效率 大为提高。 对于充电器外壳,虽然精度要求也较高,但是该通讯设备由于市场需求量比 较大,而且更要考虑其经济性,所以采用一模多型腔。本人先设想为一模二型腔,其具体将通过注塑机的最大注塑量校核。 注塑模内的塑件及浇注系统的总熔量应在注塑机额定注塑量的80%以内, 即: 0.8g j s V V n V -≤ 计算得:n≤3 式中: n ——型腔数量 g V ——注塑机最大注塑量 j V ——浇注系统凝料量 s V ——单个塑件的的容积

由此可见,该注塑机正好匹配所对应的型腔数目,所以可确定其型腔数量为2。同时也说明了该注塑机的最大注塑量符合。 3.1.2 型腔的布置 型腔的布置具体见装配图和零件图。 图3.1 装配图 3.2 分型面的设计 3.2.1 分型面的设计原则 分型面即打开模具取出塑件或取出浇注系统凝料的面,分型面的位置影响着成型零部件的结构形状,型腔的排气情况也与分型面的开设密切相关。分型面的设计原则为: (1)便于塑件脱模; a 在开模时尽量使塑件留在动模内 b 应有利于侧面分型和抽芯 c 应合理安排塑件在型腔中的方位 (2)考虑和保证塑件的外观不遭损坏; (3)尽力保证塑件尺寸的精度要求; (4)有利于排气; (5)尽量使模具加工方便; (6)有利于嵌件的安装; (7)有利于预防飞边和溢料的的产生; (8)有利于模具结构的简化。 3.2.2 分型面类型的选择

相关文档
最新文档