橡胶制品的配方设计原理介绍

橡胶制品的配方设计原理介绍
橡胶制品的配方设计原理介绍

橡胶制品的配方设计原理

一、橡胶的并用。

无论是什么橡胶不可能具有十全十美的性能,使用部门往往对产品提出多方面的性能要求,为了满足此目的,而采用橡胶并用的方法。如,为提高二烯烃类橡胶耐热、耐光老化性能,可加入氯磺化聚乙烯。丁睛橡胶的耐粙性很好,但耐寒性不好,若并用10%的天然胶,便可改善它的耐寒性。在橡胶中并用高苯乙烯、改性酚醛树脂、三聚氰胺树脂等都可改善橡胶的补强性能。合成橡胶的工艺性能一般都不够好,特别是饱和较高的合成橡胶,无论是炼胶、压延、贴合、硫化等性能都比较差,所以常加入天然橡胶或树脂。以改善其未硫化胶的加工性能。如,丁苯橡胶加入5-20份低压聚乙烯,可减少丁苯橡胶的收缩率。乙丙橡胶中加入酚醛树脂可提高粘性。加入天然胶对一般合成橡胶的工艺性能都会有所改善。为了改进工艺加工性能,并用天然胶或树脂的比例一般都在20%以下。有些合成橡胶性能优良,但价格昂贵,在不损害原物性的前提下,并用其它橡胶或树脂是完全可行的,如,丁睛胶中并用聚氯乙烯或丁苯胶中掺入天然橡胶,都能起到这一作用。

1. 橡胶并用必须具有一定的相溶性,对橡胶来说天然、顺丁、异戊橡胶等能以任何比例均一地混合,最终达到相溶状态。而天然胶与丁基橡胶就不能均一地混合。若硬性机械地混合,所得硫化胶的实际使用性能会显着地下降,这是因为它们的相溶性很差。并用体系最重要的因素是相溶性,从应用的观点来看,如果混合不均,非但达不到并用的目的,反而影响工艺加工,特别是硫化。因此,并用

问题的焦点是两种橡胶能否相互混合,以及混合后达到什么样的相容程度。固体橡胶并用时,因橡胶本身粘度很大,高分子的布朗运动不像液体那么容易,扩散速度较慢,对大分子的位移造成很大的阻力,严重影响橡胶间的互容作用。为此在工业生产中都采用机械力强化分子运动,用提高温度和加入软化剂的方法来降低粘度,以促进两种橡胶的混合,所以产物从宏观上来看虽没有相分离,但真正达到溶解状态也不是很多的,其原因包括下来有以下几点,橡胶的极性、内聚能密度、橡胶的结晶、橡胶的分子量等。橡胶网为广大从事橡胶行业的朋友提供交流学习交易的平台。

2.分散性,高分子固相体橡胶的粘度高,纵然选择相容性较好的的两种橡胶,用开练机、密练机在高剪切作用下混合,要像低分子液体那样,呈分子状态的均一分散状态,也是很因难的。橡胶分子的布朗运动不象液体那样自由,扩散速度较慢,从外表上看是均一地混合了,由于两种或多种橡胶的分散状态在广泛的范围内变化,并用胶的物理性能将产生很大的差异。两种橡胶在空气中混合时,由于相容性的不一致可产生两种不同的分散状态。,即均相分散状态和非均相分散状态,实际上并用达到均相分散状态的可能性很小,在部分是非均相分散状态组分之间仍然保持一定的界面。以不连续相(岛相)分散于连续相(海相)中的分散状态。非均相分散状态分为以下三级A,宏观非均相级,区域尺寸为10-100微,B,微观非均相为0.1-2微C,半均相级成接枝或嵌段两种共聚体。一种并用体的分散状态不可能单一纯地存在着一个状态,而是以几种状态并存的局面,只不过某一级为主而已。

3.共硫化,除了相容性和分散性外,橡胶并用的另一个重要因素是共硫化性。它是指并用橡胶的硫化体系选择和硫化速度的调整问题。对相同硫化速度而言,通用橡胶以天然胶为最快,其次是异戊橡胶,顺丁橡胶、乳聚顺丁、丁苯胶。硫化速度较慢的橡胶可采用减少硫黄,增加促进剂的方法,以与天然橡胶的硫化速度互相配合。一般对同一硫化速度的橡胶,天然橡胶为高硫黄低促进剂、丁苯橡

胶为低硫黄高促进剂,顺丁胶处于两者之间。橡胶硫化速度的差异与其分子结构的关系很大。不同硫化体系橡胶,如天然胶与氯丁胶或丁基橡胶并用。虽可以提高并用体系的加工性能,但因缺泛共硫化性能所得的硫化胶性能比平均值还低,不能获得满意的性能。把丁基橡胶卤化后或提高不饱和度,可改善与天然胶的共硫化。选用适宜的共硫化剂,如天然胶与氯丁胶的共硫化剂可为醛类物质,并用性能差不多呈直线变化。从实际生产看,并用橡胶的共硫化性与分散性是不可分割的。橡胶之间分散越均匀,硫化的物理性能越好,但并用橡胶多为非均相分散状态,由于两相间硫化程度的差异以及界面之间的不同橡胶能否交联、接枝等因素,对硫化胶的物性有决定性的影响,造成并用橡胶两相间硫化程度不均的原因是1.硫化胶的溶解度,在温室条件下,按通常配方所加入的硫化剂数量为过保和或近似于保和状态,在硫化温度范围内就变成不保和状态,并用两相间的溶解度之差,造成两相间硫化剂分配不均一,也存在浓度差,从而导致并用橡胶两相间的硫化程度非均性2.硫化剂的扩散性,由于橡胶的溶解度不同,在并用体系的两相间,硫化剂会引起扩散引起迁移,在一定温度下,通常向硫化剂溶解度高的橡胶相迁移,当达到分配系数后,为平衡状态。硫化剂等配合剂的扩散速度非常迅速,同一种橡胶中的浓度差异在短时间内就可消除。

总之并用橡胶物性的好坏与其硫化系统有密切的关系,选择两种橡胶并用时,要考滤到两者所采用的硫化体系是否一致,有没共硫化作用,对同一硫化体系而言,还存在着硫化剂的溶解度和扩散的差异,硫化时由于硫化剂偏向于扩散浓度大的橡胶,导致硫化速度快,结果造成过硫或欠硫的两种橡胶并存,从而异相间形成不均一硫化,并用橡胶物性下降,如三元乙丙与丁苯胶并用效果就不够好。为了提高二烯烃类橡胶的抗臭氧性能,并用相容性差的EPDM时,将EPDM的各种硫化促进剂做接枝处理,可大大改善对NR的混合性,用加成硫黄法亦可改进EPDM/NR并用体系的耐疲劳、耐曲绕性。此外,并用体系中加入第三组份,或提高不保和度,如IIR的异戊二烯烃从1.8%提高到18%,可提高二烯烃类橡胶的

并用性能。还有使丙烯酸酯橡胶主链引入不保和基团,使之能用硫黄共硫化。羟甲基化树脂和丁睛橡胶并用可制得高抗张强度、高硬度产物。

4.并用橡胶中的化学反应。天然橡胶与顺丁橡胶并用有交联反应,而天然胶与丁睛胶则无交联反应。聚胺脂橡胶与丁睛胶并用体系也有交联反应。总之并用橡胶必须充分考滤以上四点

二、配方设计与胶料工艺性能的关系。所谓加工性能好的配方是配方与制造方法和加工设备相适应的配方。

1.可塑性,可塑性除了塑练工艺外,还可以通过调整软化剂的用量来得到。软化剂对可塑性影响顺序为;油酸>松焦油>硬脂酸>松香>沥青>植物油>矿物油。

填充剂降低可塑性,影响大小按下列顺序;槽法碳黑>乙炔炭黑>陶土>氧化镁>碳酸镁>炉法炭黑>硫酸钡>立德粉>氧化锌>碳酸钙>热裂法碳黑。同一种胶种因使用设备、工艺方法、工艺条件不同具有的可塑性也有差异,不能一概而论。在密练机中高速混练时,丁苯橡胶与氯丁橡胶在高温中最易生成凝胶,粘度反而上升,使填充剂分散不良导致硫化胶物性不理想,这也是造成复合制品粘着不好的原因。配方中加入防老剂、及亚硝基-2-萘酚有防止丁苯胶凝胶作用,加入五氯硫酚或DM可防止硫黄调节型氯丁胶凝胶。使用两种橡胶并用时粘度高的必须先塑练,因为两种橡胶粘度两差太远,易引起聚合物分散不良。聚氯乙烯或聚乙烯与热塑性塑料并用时,在加入填充前必须比塑料熔点稍高点温度下使两者混合均匀。

2.混练特性,填充剂混入速度快而分散不良的情况很多,一般来说,粒子近于球形、假比重的填充剂混入速度快,炭黑的结构低的有利于混入。压出收缩与结构有关,结构愈高收缩愈小。比表面积大不利于混入。加入填充之前加入油类软化剂可使胶料粘度下降,加快填充剂的混入速度,但会带来分散不良。因此原则上是后加油。高填充配方在混练时,可分批加入填充及油料。从配方设计角度方面考滤,可选用分散良好的填充剂。分散良好的填充剂应具备以下条件,A,补强性

较小B相同配方中粒经较大C,含水份较少D,假比重较大E,具有异向性能F,碳黑结构度较高等。操作油中芳烃含量高亦能促进分散。促进剂一般易分散,但必须注意硫黄的分散。

3.包辊性。强度高、粘性好、具有收缩性的生胶包辊性好,天然胶的粘性,强度高所以包辊性好,合成橡胶中除了氯丁橡胶外一般强度都很低,所以在配合上要多想办法,选择增加混练胶强度的填充剂,补强性高的炭黑、白炭黑、硬质陶土、碳酸镁、白艳华等。而氧化锌、硫酸镁、钛白等填充剂的混练强度降低。此外,易脱辊的还有陶土类、滑石粉、白艳化等。相反硬质陶土、碳酸钙、白艳华等易粘辊,含芳烃高和操作油粘度高的,如,松焦油、树脂、古马隆树脂、烷基酚醛树脂等可以提高粘性着性。

4.焦烧,当前生产中应用的槽法炭黑粒径小,生热大,但PH值低,一般不易焦烧,反之炉法炭黑则有促进硫化作用,容易焦烧,所以在碳黑用量多的配方中软化剂用量要增加,这除了帮助分散作用外,还可以减少胶料的生热对防止早期硫化是有效的。在配方中采用迟效性促进剂或临界活化温度高的促进剂,如DM或DM与D并用等。也可适量地配入防焦剂。

5.喷霜,若喷出的是硫黄再次硫化可以消除,不是硫黄可以用稀盐酸暂时擦去。为了防止喷霜,应选用颗粒小的硫黄,且用量要适当,应严格控制正硫化,并加强对游离硫的控制。其它配合剂如石腊、防老剂等在橡胶中都有一定的溶解度,当外界条件变化形成过保和,就可能喷出表面,防老剂选用分子量低的物质,则易喷出,易挥发,反之选用分子量高的则不易从胶料中迁到表面,因而起不到防止制品易老化的作用。防老剂用量在1.5份,多了也有喷出的可能。橡胶网为广大从事橡胶行业的朋友提供交流学习交易的平台。

6.压延压出性,压延是由压延机辊筒施力作用于热练胶而使之压成一定形状,压延效果的好坏决定于胶料的压延能力或压延后的收缩率。胶料的压延能力是指压延时胶料的塑性变型能力。它受到胶料的可塑性和应力松驰能力的影响。经压延

后,胶料在压延方向上长度缩短,宽度变窄及厚度增加的现象叫收缩,其长度变化的比率叫收缩率。我们希望胶料在压延后保持压延形状的能力,即希望胶料的塑性大,应力松驰能力大。影响压延过程的主要因素有两个方面,一是胶料方面,这是决定胶料流变形为的内在因素,二是工艺条件,如辊温、辊速等。这是决定胶料流变形为的外在因素。胶料配方设计时主要考滤以下几点。

A.生胶的选型,各种生胶分子结构特征不同,蠕变特性亦不一样,丁苯胶分子结构的特征是侧基比较笨重,分子比较僵硬,柔顺性差,因而变形总是比较慢,在压延辊筒上停留的时间内不能很好地达到平衡,而保持较大的弹性复原性,当离开辊筒后就改变了自已的形状,所以丁苯橡胶较之天然橡胶具有较大的收缩率。天然橡胶的分子柔顺性大应力松驰得快,在压延机辊筒上能产生较大的塑性变形,保持压延形状能力最大。一般来说,所有合成橡胶的压延能力比天然胶小,天然橡胶压延后的收缩率最小。

B,胶料的含胶率,胶料配方中同类生胶含胶率不同时对压延的影响亦不同,含胶率高,胶料的弹性大,收缩率就较大。胶料中的填充剂,特别是炭黑,能够使胶料变得较硬,压延后不易变形。软化剂可以增加胶料的塑性,使橡胶分子容易滑动,也能使胶料在压延后获得光滑表面的半制品。对于含胶率高、收缩大的胶料可适当地增加软化剂的用量,有助于压延性能的提高。

C,硫化体系,胶料中硫黄用量、促进剂的品种和用量,与胶料焦烧性能有直接的关系,而胶料的焦烧性能又是压延能力的一项重要指标。用来压延的胶料必须使用具有较长的门尼焦烧时间的迟延性硫化体系,以确保压延工艺的操作安全性。良好的压延工艺首先是包辊性,良好的包辊性又在于必要的收缩性,胶料的收缩性太大则压延胶片表面粗糙,反之,收缩性太小有损于包辊性,如用粘着性补救则包辊的生胶强度降低,容易产生汽泡,为了解决这一矛盾,需要很好地平衡。胶料的压出特性,压出性能的好坏由以下几项指标判断;a,加料口的吃胶量b,压出半成品的外观质量。c,压出收缩的大小d,压出速度。从配方角度来说,吃胶情

况和混练生胶的强度有很大的关系,压出速度很大程度上取决于压出机的类型.制定压出胶料配方时必须考滤,压出过程对胶料性能的要求以及胶料压出创造的有利条件。如容易压出、操作安全、表面光滑、花纹和断面清晰等,这些对胶料的收缩彭胀有很大的影响。首先是含胶率,胶料的含胶率在95%以上时,弹性大,压出的半成品收缩率大,表面粗糙。相反含胶率在25%以下时,如不适当地选择软化剂的品种和用量,也不易压出,表面粗糙而无光泽,含胶率高时彭胀率也大,可以通过加入再生胶可以降低收缩率。,

软化剂是压出胶料配方的重要组分之一,它使压出易于进行,降低胶料的收缩率,并使压出规格精确,压出含有大量填充剂的胶料时,必须适当加入软化剂,如油膏、矿物油、石腊等。但过量地加入粘性软化剂时,都有降低压出速度的倾向。对于需要其它材料粘附的半成品,要避免使用易喷出的软化剂。

填充剂影响较复杂。适当地加入能使胶料易压出,收缩率小,特别是炉法炭黑效果显着,可以降低发热量。大量加入时,则压出的半成品粗糙。硬质炭黑比软质压出困难,压出收缩与粒径无关,但受结构及配合量的支配,结构愈高、配合量愈大,则半成品的收缩量愈小。

压出的机头温度一般在100度左右,所以压出胶料应选用临界温度高的迟效性促进剂,不易引起焦烧,增加效料收缩率,影响半成品规格。

在配合剂中,易挥发的液体和水份含量应降至最低限度,否则会在压出温度下,会因挥发而使胶料产生汽泡,影响产品质量。

低硬度、低强度或发粘胶料,压出时易变形或巻入汽泡可用加补强性填充剂的方法增加生胶的强度。也可采取以下方法改进,1.加入油膏2.加入重质碳酸钙,蜡类、石油软化剂降低粘度防止空汽混入,3.用对硬度影响较小的非补强性填充剂降低橡胶的含量,4.并用高粘度原料橡胶或部分交联橡胶(PA86/丁苯橡胶1000等)防止变形减少收缩。5.可与再生胶并用,含量30-50%混炼胶的压出表面和加工性能较好。

一、高定伸强度即硬度较高的橡胶,常用天然胶、氯丁胶、丁睛胶等制造。用大量的填充剂,尤其是滑石粉能显着增加硬度。但这样会使抗张强度降低,改用槽法炭黑、高耐磨炭黑、白炭黑等,并用多量的促进剂硫化,增加交联密度,可取得较好的结果。促进剂可采用D、M、或D/DM并用,亦可采用肖石灰无机促进剂。为了提高定伸强度,应少用软化剂,可与热固树脂,如酚醛树脂、苯乙烯树脂并用。、添加碱性物质和少量的甘油,都有利于提高硫化胶的硬度。反之低定伸强度的软橡胶可采用天然橡胶、丁基橡胶制造。通过减少填充剂用量,采用低硫配合方法,这样胶料的成本会增加、且强力会下降,因此,低定伸胶料采用陶土、重质碳酸钙、热裂法碳黑的填充较好,另外,可适当应用硫化油膏。以及MBTS及硫脲类促进剂。

二、弹性,制造高弹性胶料参考如下要上点;1,用弹性最好的天然、顺丁橡胶2,补强剂用量要少3.硫化剂和超促进剂用量适当增多4.少用软化剂及增塑剂,但硫化交联密度也不宜过大。

三、抗张强度和伸长率,高抗张强度的配方采用天然橡胶、氯丁橡胶、氯黄化聚乙烯橡胶等结晶性橡胶。含胶率可达60%以左右。此外选用优秀的补强性填充剂如炭黑、白炭黑并使之分散均匀。用白炭黑时用量不宜超过25份,当使用非结晶性橡胶时要增大补强剂的用量,注意分散均匀并采用硫化速度较快的硫化体系。

1.降低硫黄的用量,多用软化剂或增塑剂可获得伸长率较大的橡胶制品。促进剂选用噻唑类,用量要适当增加、以保持硫硫化曲线的平坦性能,填充剂少加。以用陶土较好,亦可使用炭黑,尤其是软质炭黑。影响橡胶强度的因素是多方面的,除了交联密度外主要因素如下,1.形变速度,强度时间依赖是所有材料的共同规律,在快速施力下,橡胶的强度要比慢速要高,这时因为快速施力时分子链还来不及伸展,链尚末受到张力的作用因而断裂的机会减小,强度就增加。

2.

伸长结晶性,非结晶性橡胶的配方强力较低,对伸长结晶的天然胶,选择适当的

硫化体系,强力可达到250公斤/厘M左右。这是因为天然橡胶随着伸长的增加,在拉伸方向上产生结晶的缘故,天然橡胶的结晶约需2秒以上短于些时间,在高速实验条件下不显示补强作用。 3.温度,不同温度下测得的抗张强度有差别的。合成橡胶、尤其是极性较大的橡胶在低温下有较高的抗张强度,在高温时抗张强度较低,使用补强剂虽可提高强度,但仍不如天然橡胶硫化胶。为了改善这一缺点。可以采用在合成橡胶中引入能产生化学交联的官能团,借以形成主价键的方法,或使结构中具有活泼的氢原子的化学结构,利用富有反应性的卤素增加交联等来提高橡胶的强度。4.分子量,强度随着分子量增大而增加,这是因为分子链长时,分子间的作用力大,分子链的柔顺性相对增大些,如分子链上有极性取代基时,使次价提高,其强度也会提高。 5.支化和凝胶,在聚合过程中或在高温强列机械作用下能使橡胶橡胶分子产生支链,由于支链的存在使大分子排列不规则,硫化后使橡胶的网状结构不完整,可能产生裂缝,使强度降低。在聚合过程中产生的凝胶也破坏了橡胶分子的规整性,使橡胶强度降低。

四、撕裂强度影响撕裂强度的主要因素如下,

1.在纯胶配方中,与其它合成橡胶相比,常温下天然橡胶的撕裂强度大,且温度升高时变化也不大。

2.与非结晶性橡胶相比,常温时结晶橡胶撕裂强度大,但除了天然橡胶外,随着温度的升高都有明显的下降。

3.用炭黑补强的合成橡胶的撕裂强度有明显的改善,但仍不如天然橡胶,在配方中加入适量的再生胶,能降低生热性对撕裂性能会有帮助。

4.使用各种同向性补强剂,如炭黑、白艳华、立德粉、氧化锌等,效果较好、而各种异向性补强剂,如碳酸镁、陶土、不会获得高撕裂强度。粉状纤维及短纤维则能提高抗撕裂强性、增加硬度,减少伸长率。硫化剂应选用CZ/DM和醛胺类,硫化程度不得过深。

五、耐曲绕性,橡胶的耐曲绕性与臭氧龟裂,往复变型时的生热、疲劳有密切的关系。因此使用天然、顺丁这类生热性小的橡胶为主要原料,补强剂使用软质和粒径大的炭黑,硫化体系设计为多硫健型的交联结构。硫化时间选用正硫化前期,防老剂用量多一点。

六、耐磨性

1.生胶的微观结构对磨耗的影响较大,当分子链有共轭双键存在时,可使橡胶的耐磨性提高,如丁苯胶中的苯环上含有共轭双键基团,它能吸收及分布外界能量,使大分子链不易受到破坏。因此丁苯胶的弹性、强力、耐曲绕性、低温性都差,但耐磨性较好。聚胺脂橡胶含有共轭苯环,所以在各种橡胶中的耐磨性名列前矛,比天然、丁苯高4倍以上。

丁苯胶与天然胶相比时,15度以下天然胶耐磨性好,15度以上丁苯胶的耐磨性好。如果耐磨性提高,则抗滑性下降。因此,在弹性起支配作用的温度范围内,耐磨性与抗滑性存在着相反的关系。再生胶及油胶类物质的增多,耐磨性下降。

2.炭黑,不同的碳黑品种对配方性能影响不同,如,HAF磨耗量较低,但若与生热无关,则MPC、ISAF较为优越,为了研究胶料的耐磨性还须研究生胶与炭黑的关系。

3.防老剂与环境条件。防老剂AW的耐磨性最好,防老剂D+4010次之。反应性防老剂4-亚硝基二苯胺(NPDA)可提供天然胶较低的生热,明显地提高耐磨性能。对于胶料具有较高的抗张强度和耐热性,同时还需要综合平衡耐磨和抗滑性,用氯化丁基橡胶加入55-65份超耐磨炉黑的耐磨性最好。但氯化丁基橡胶的硬度稍有降低,这是热分解和硫化返原的结果。

4.改进橡胶磨耗的方法

a.表面处理法。用液态或气态的五氟化锑,对丁睛胶进行化学处理,可提高耐磨性7-9倍。为了防止处理时强力和伸长率降低,宜采用气相处理法,保证氟

化合物不浸入胶料内层。橡胶网为广大从事橡胶行业的朋友提供交流学习交易的平台。

b.应用硅烷偶联剂主要是白色填充剂与橡胶之间的结合。

c.使用新型橡胶。如1.5-反式聚戊烯橡胶。这种橡胶耐磨性能优越,还具有较高的生胶强力和较低的生热性,用做胎面胶与天然橡胶相似。

d.用丙烯酰胺硫化,采用这种硫化剂硫化的优点是无焦烧的危险,硫化平坦期变宽,适当选用硫化体系还能缩短硫化时间。硫化胶的耐疲劳、耐热性能有所提高,撕裂性能得到改善,耐磨性较好,这是因为结合的丙烯酰胺分子间可生成亚酰胺环的缘故。

七、耐疲劳性能,当橡胶受反复交变应力作用时,材料结构或性质发生破坏的现象叫疲劳。随着疲劳的过程的进行,导至材料的破坏现象。必须加区别疲劳与疲劳破坏,其原因是因为疲劳本来和破坏是无关现象,因而不能两者相等同。耐疲劳配方要求如下,

1.采用难于生成多硫键的硫化体系,在而且过硫程度愈高愈好,

2.最好采用纯胶配方,若要加入填充剂时,尽量选用弱补强剂,而且用量愈少愈好。

3.加入油的目的在于尽量减少橡胶分子间的相互作用,最好加入软化点低的油料。

4.尽量地延长胶料的停放时间和炼胶时间。耐疲劳破坏与耐疲劳完全相反,而疲劳愈好,则耐疲劳破坏愈差。这意味着当考滤到耐疲劳破坏时,允许材料困疲劳而发生某此变化,确保初期破坏在某个水平以上。耐疲劳破坏的结构应尽量采用能够大量吸收变形能的的结构。

如果要求既要耐破坏又要耐疲劳,这须将两者当中作某种牺牲而确保另一个,以求彼此平衡。

水性丙烯酸涂料配方设计

1.丙烯酸酯涂料简介 1.1 定义 以丙烯酸酯或甲基丙烯酸酯为主要原料合成的树脂称丙烯酸酯树脂,由丙烯酸酯树脂为主要基料的涂料属丙烯酸酯涂料。 1.2 结构 丙烯酸树脂的化学结构如图1,其中R为-H、-CN、烷基、芳基和卤素等;R为-H、烷基、芳基、羟烷基;其中-COOR也被-CN、-CONH2、-CHO等基团取代。作为涂料用丙烯酸树脂则主要是丙烯酸、甲基丙烯酸及其脂与苯乙烯经共聚而得到的热塑性或热固性丙烯酸系树脂,以及其他树脂(如醇酸树脂、环氧树脂、聚氨酯树脂、聚酯树脂等)改性的丙烯酸树脂。 图1 1.3丙烯酸酯涂料的分类 1.3.1按成膜特性分类 (1)热塑性丙烯酸酯涂料 热塑性丙烯酸酯涂料由丙烯酸树脂溶于有机溶剂制得,如丙烯酸清漆、丙烯酸磁漆,带溶剂挥发后,形成美观而坚固的涂膜。 (2)热固性丙烯酸酯涂料 热固性丙烯酸酯涂料则是通过自交联或与环氧树脂、氨基树脂、

异氰酸酯等交联(常温或烘干)完成成膜过程,交联使漆膜变成巨大的网状结构,提高了涂膜多方面的物理性能及防腐蚀、耐化学品性能。 1.3.2按丙烯酸酯涂料形态分类 按丙烯酸酯聚合物的形态分类和性质分为三种:溶剂型、水性、无溶剂型,如表1-1。 表1-1 丙烯酸酯涂料按形态分类 1.3.3按丙烯酸酯涂料用途分类 ①木器用丙烯酸酯涂料;

②建筑用丙烯酸酯涂料; ③汽车用丙烯酸酯涂料; ④工业防腐蚀用丙烯酸酯涂料; ⑤塑料表面用丙烯酸酯涂料; ⑥家电用丙烯酸酯涂料; ⑦预涂装用丙烯酸酯涂料; 1.4热塑性丙烯酸树脂涂料的优点 ①与硝基清漆、醇酸树脂涂料相比,他的耐候性优良; ②保光性优良,具有深邃的光泽和透明性; ③耐水性优良,耐酸、耐碱性优良,对洗涤剂有较强的抗性; ④只要底漆选择适当,附着力就良好; ⑤抛光性良好; 1.5热塑性丙烯酸树脂涂料的缺点 ①施工性能不好,流动展平性不良,透干性不好,涂料易流挂; ②耐溶剂性差,当遇到溶剂时会发生再溶解容易溶胀; ③相溶性差,难以与其他树脂并用; ④热敏感性差,研磨性不好,糊砂纸。 2.水性丙烯酸酯树脂的合成 2.1合成原理

2020年(塑料橡胶材料)橡胶配方设计与性能的关系

(塑料橡胶材料)橡胶配方设计与性能的关系

橡胶配方设计和性能的关系 一、橡胶配方设计和硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命和拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构和拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,和分子链平行方向的拉伸强度增加。 2.硫化体系和拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型和硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系和拉伸强度的关系 补强剂的最佳用量和补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径

越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系和拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于俩者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利壹些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶和填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料和橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且能够改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,俩者均表征硫化胶产生壹定形变所需要的力。定伸应力和较大的拉伸形变有关,而硬度和较小的压缩形变有关。 1.橡胶分子结构和定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。

涂料配方设计

1,介绍: 粉末涂料由于其具有的无溶剂、施工简单、利用率高等特点而在全球市场高速增长,有机硅耐高温粉末涂料在美国八十年代在烤炉方面首先得到应用,而在九十年代中期快速在欧美市场快速增长。随着中国逐渐成为全球的灶具、烤炉等主要的生产基地。市场对耐高温粉末涂料的需要也日益增长。本文对耐高温粉末涂料的配方设计、问题处理、生产工艺等进行了介绍。 2,原理及性能介绍 2.1 原理 有机硅树脂的反应机理都是非常类似,其自身可以交联。在高温下的固化反应式如下: ~Si - OH + HO - Si ~ - - - > ~Si - O - Si ~ + H2O ~Si - OR + HO - Si ~ - - - > ~Si - O - Si ~ +ROH 此外,有机硅树脂中侧基不同的有机基团的热稳定性也有所不同:苯基〉甲基〉乙基〉丙基〉丁基〉己基 通常,有机硅树脂的固化温度不能低于200度。而270 和 350 °C之间的温度范围对于有机硅耐高温粉末涂料来说是个比较敏感的范围点。因为在此时有机硅组分还没有完全烧结完成,而有机组分已经开始燃烧分解。 此外,由于低Tg的有机硅树脂在储存和生产运输过程中遇到的结块问题使开发高Tg(玻璃化温度)的有机硅树脂也成为必然。现在,德国瓦克化学公司已经推出了Tg 〉65 的应用于耐高温粉末涂料的有机硅树脂,成功解决了高温天气下的运输、储存问题。 2.2 有机硅粉末涂料应该具有的性能? 与有机树脂不同的是,与适当的颜、填料配合使用的有机硅树脂应具有优秀的长期耐热性(200 - 650 °C)。 此外,对于食品接触的场合,有机硅树脂还应符合FDA 175.300 and BGVV – XV。良好的冷热交变性。通过把热板直接浸入冷水中,而涂膜不会损坏。 3.配方设计 3.1 基料的选择: 有机硅树脂是耐高温粉末涂料的必不可少的基料,有机硅树脂可以单独作为基料或与聚酯、环氧树脂拼用提高涂膜的耐高温性。同时配方中也应选用耐高温的无机颜料与填料以及适当的助剂。目前用于耐高温粉末涂料的有机硅树脂主要分为以下两种:

2020年(塑料橡胶材料)橡胶配方设计综合实验

(塑料橡胶材料)橡胶配方设计综合实验

高分子材料和工程专业实验 橡胶配方设计综合实验 实验报告 班级:08030342班 组别:第六组 橡胶配方设计综合实验 一、实验目的 1、加深对丁腈橡胶的配方、各组分的作用原理及加工方法的认识。 2、进壹步领会橡胶的塑炼、混炼的意义和原理。 3、进壹步了解橡胶的硫化模压成型的基本方法,掌握塑炼混炼、压制硫化设备的操作方法及安全措施。 4、掌握炭黑的含量对橡胶力学性能的影响规律。 5、掌握数据处理和分析的方法。 二、实验原理 丁腈橡胶制品的生产,首先有壹个配料的问题,即在丁腈橡胶(生胶)中加入壹定量的硫化剂、补强剂、增塑剂、防老剂等其他助剂,使之形成多组分体系。本实验固定其他组分的含量,改变炭黑的用量,研究炭黑的含量对橡胶力学性能的影响。在壹定的温度下,首先塑炼

丁腈橡胶,再将配好的实验原理进行混炼使各种助剂实现良好的分散,通过辊压成片,剪成壹定形状的胶料,放入试样模具中,经过硫化成型成为所需的试样。通过不同规格的裁刀,冲裁成性能测试的样品。然后测试橡胶的拉伸强度、撕裂强度和硬度。找出炭黑含量对橡胶力学性能的影响规律。 三、实验所用原料及仪器、设备 1、实验用的原材料及参考配方 2、实验用仪器及设备 (1)开放式炼塑机(SK-160B) 辊筒工作直径=160mm,辊筒工作长度=320mm,前辊转速=24.0r.p.m,后辊转速 =17.8r.p.m,最大辊间距=4.5mm,最小压片厚度=0.2mm。壹次加料量=100~200g,辊筒最高加热温度≤200℃ (2)平板硫化机(XKLB-25D) 额定表压=145kg/cm2,油缸活塞直径D=160mm,电热板面积=360*360mm,模板最大

涂料配方

知识点 1. 涂料:是指用特定的施工方法涂覆到物体表面后,经固化在物体表面后形成美观而有一定强度的连续性保护膜,或者形成具有某种特殊功能的涂膜的一类精细化工产品。 2. 颜料的组成:1)成膜物质:组成涂料的基础,又称为基料,是使涂料牢固附着于被涂物件表面上形成连续薄膜并黏结涂料中企图组分的主要物质,对涂料和涂膜的性质起决定性作用。2)颜料:是一种微细的粉末状的有色物质,在使用过程中一般不溶于它所分散的介质,而始终以原来的晶体状态存在,因此它不能离开主要成膜物质(基料)而单独构成涂膜,称次要成膜物质。3)助剂:也称为涂料的辅助材料组分,不能单独成膜,而是在涂料成膜后作为涂膜中的一个组分存在。4)溶剂:是不包括无极溶剂涂料在内的各种液态涂料中所含有的,为使这些类型液态涂料完成施工过程所必需的一类组分。 3. 涂料配方设计:是指根据基材,涂装目的,涂膜性能,使用环境,施工环境等进行涂料各组分的选择并确定相对比例,并在此基础上提出合理的生产工艺,施工工艺和固化方式。涂料配方设计的关键:根据涂层性能和环境的要求合理地选择树脂,填料,颜料,溶剂及助剂。 4. 涂料配方设计的几种形式: 1)原材料更换 2)成本降低 3)产品改进 4)新产品开发 5)新原材料的使用 6)新技术 5. 聚酯树脂的性质: 6. 涂料体系选择的一般性原则: 1)涂料性能——耐磨性,柔软性,保光保色性,温度范围,干燥时间,防霉性,外观,耐水耐油性,润湿性。 2)被涂物件的材质(水,混凝土,钢,塑料,存在旧涂层等)。 3)涂料赋予的基本功能——防变质,防火,温度控制,标记,外观。 4)可使用性(表面处理及涂料使用设备工具)。 5)环境因素——温度,湿度,与化学药品接触,辐射,生物问题。 6)成本 7. 涂料体系选择的主要因素: 1)基材 2)环境因素 3)表面处理 4)涂料的性能因素 8. 涂料中常用的助剂:脂肪烃,脂环烃,芳香烃,萜烯烃和萜类化合物,氯化烃,醇类,酮类,酯类,醇醚类,其他助剂 9. 涂料中溶剂的选择: 1)涂料中溶剂的组成 2)涂料中溶剂的作用 3)涂料中溶剂选择的原则:①极性相似原则——即极性相近的物质可以互溶,可根据物质的极性,初步确定选择什么溶剂。②溶剂化原则——指高分子链段和溶剂分子间的作用力,它使溶剂将高分子链段分离开。③溶解度参数相近原则——溶解参数可作为选择溶剂的参考指标。④确定适当的溶剂挥发速率——溶剂是挥发性液体,在施工过程中首先接触到的是涂层干燥快慢问题,这和溶剂的挥发速率有关。⑤溶剂平衡——溶剂的挥发应均衡,真溶剂,助剂及稀释剂的比例平衡。 10. 体质颜料(亦称填料)的种类:主要是碱土金属盐类,硅酸盐类和铝镁等轻金属盐类。有:碳酸钙,镁颜料,硫酸钡,硅藻石,云母,高岭土,硅藻土,石英,石膏。 11. 选择颜料的几个因素:1)颜料的色彩 2)颜料的粒径 3)颜料的分散性 4)颜料的遮盖力 12.润湿分散剂的原理:润湿剂主要是降低物质的表面张力,其分子量较小。分散剂是吸附在颜料的表面上产生电荷斥力或空间位阻,防止颜料产生有害絮凝,使分散体系处于稳定状态,一般分子量较大。 作用机理:可以与无机颜料通过极性基间的相互作用,牢固的吸附在颜料粒子的表面上,还能电离带电产生静电吸附。该类分散剂的极性基吸附在颜料粒子的表面上,另一端朝向分散介质中伸展,产生位阻作用。 13.粉末涂料的组成:成膜物质,颜料和填料,助剂,载体。 14. 溶剂的作用:溶解作用——主要是溶解或稀释高粘度的成膜物质;调节作用——调节由成膜物质和颜料组成的复合体系的粘度和流变性能;其他作用。 15. 反应性溶剂(活性稀释剂):一种既能溶解或分散成膜物质,又能在涂料成膜过程中和成膜物质发生化学反应,形成不挥发组分而留在涂膜中的化合物。 16. 溶剂挥发的描述(汉森“两阶段挥发”理论):“湿”阶段——决定于溶剂本身的挥发度,可依据溶剂相对挥发速率来判断溶剂挥发快慢;“干”阶段——决定于溶剂在涂层中的扩散速度。

经典橡胶配方大全

橡胶配方设计的原则橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循 如下设计原则: ①在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。 橡胶配方的表示形式 天然橡胶(NR)基础配方

注:硫化时间为140°CX 10min, 20min, 40min, 80min。NBS为美国国家标准局编写丁苯橡胶(SBR)基础配方 Phr指每百质量份橡胶的分量数 注:硫化时间为145Cx 25min, 35min, 50min 氯丁橡胶(CR)基础配方 注:硫化时间为150Cx 15min, 30min, 60min 丁基橡胶(IIR)基础配方

注:硫化时间为150°CX 20min, 40min, 80min; 150°CX 25min, 50min, 100min 丁腈橡胶(NBR基础配方 注:硫化时间为145CX 25min, 35min, 50min 异戊橡胶(IR)基础配方 注:硫化时间为15CX 20min, 30min, 40min, 60min。纯胶配方采用天然橡胶基础配方。三元乙丙橡胶(EPDM基础配方

橡胶技术网 - 橡胶配方大全

橡胶配方大全 橡胶配方设计的原则 橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下设计原则: ①在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。 橡胶配方的表示形式 原材料名称基本配方 /质量份PHR 质量分数配方/% 体积分数配方/% 生产配方 /KG NR 硫磺 促进剂M 氧化锌 硬脂酸 炭黑100 3 1 5 2 50 62.20 1.86 0.60 3.10 1.24 31.00 76.70 1.03 0.50 0.63 1.54 19.60 50 1.5 0.5 2.5 1.0 25.0 合计161 100.00 100.00 80.5 天然橡胶(NR)基础配方

原材料名称NBC标准 试样编号 质量份原材料名称 NBC标准 试样编号 质量份 NR 氧化锌硬脂酸— 370 372 100 5 2 防老剂PBN 促进剂DM 硫磺 377 373 371 1 1 2.5 注:硫化时间为140℃×10min,20min,40min,80min。NBS为美国国家标准局编写 丁苯橡胶(SBR)基础配方 原材料名称NBC标准试 样编号 非充油SBR 配方 充油SBR配方 充油量 25phr 充油量 37.5phr 充油量 50phr 充油量 62.5phr 充油量 75phr 非充油SBR 充油SBR 氧化锌 硬脂酸 硫磺 炉法炭黑 促进剂NS — — 370 372 371 378 384 100 — 3 1 1.75 50 1 — 125 3.75 1.25 2.19 62.50 1.25 — 137.5 4.12 1.38 2.42 68.75 1.38 — 150 4.5 1.5 2.63 75 1.5 — 162.5 4.88 1.63 2.85 81.25 1.63 — 175 5.25 1.75 3.06 87.5 1.75 Phr指每百质量份橡胶的分量数 注:硫化时间为145℃×25min,35min,50min 氯丁橡胶(CR)基础配方 原材料名称NBC标准 试样编号 纯胶配方 半补强炉黑 (SRF)配方 CR(W型) 氧化镁 硬脂酸 SRF 氧化锌 促进剂NA-22 防老剂D — 376 372 382 370 — 377 100 4 0.5 — 5 0.35 2 100 4 1 29 5 0.5 2 注:硫化时间为150℃×15min,30min,60min 丁基橡胶(IIR)基础配方 原材料名称NBC标准 试样编号 纯胶配方槽黑配方 高耐磨炭黑 (HAF)配方

橡胶配方与各种物性之间的关系

“炼胶工人”胶友对《橡胶配方与各种物性之间的关系》进行了针对性的分享,非常感谢他的指点! 不同的橡胶产品对胶料的物性都有不同的要求,同时对生产这些产品时胶料的工艺性能(加工性能)也需要不同的要求。所谓的工艺性也就是生产这些橡胶产品的过程不能达到理想的状态,做出来的橡胶产品也就很难做到性能理想化、经济效益最大化。一句话,无论你要求橡胶产品有什么样的物性要求,也不管你的要求是高还是低,如果工艺性能无法满足要求(实现要求的过程无法满足),那么你就很难顺利的去生产。 不多赘述,该贴将和大家一起谈论各橡胶工艺性能受配方的影响及关系。 一、混炼性能 1.各种成分对混炼效果的影响 主要分析配方中各种填料、化学药品、操作油等配合成分混入橡胶中的难易性、分散性。它主要由这些配合成分与橡胶之间的互溶性的高低、浸润性的大小来决定。 胶料混炼工艺设计的好坏评价方法之一就是各种成分是否可以在橡胶中能够迅速的分散;混炼效果的好坏,则可以通过各种成分在橡胶中能否均匀分散其中来衡量。这两个指标都主要取决于配合成分与橡胶之间的互溶性、浸润性。 “互溶性”这个词大家可能会认为橡胶那么大的分子怎么可能溶解在各种配合成分里很多配方里,应该是配合成分溶解在橡胶里才对。其实,所谓的溶质、溶剂也是相对的,量少的惯称为溶质,量多的则为溶剂,习惯性的认为溶质溶解在溶剂中,如果“溶质”的量比“溶剂”的量大很多的话,那就是“溶剂”溶解在“溶质”中。所以,也就可以理解为互溶性了。为了能让胶料达到多种综合性能都很优异的效果,很多配方用到的橡胶都不止一种,可能2、3、4、5种橡胶并用,这就涉及到这些橡胶之间的互溶性(也许橡胶之间的互溶性大家更好理解一些)。混炼后的胶料如果电镜图片里显示各相之间没有明显的分离、橡胶之间、橡胶与各配合成分之间分散的非常均匀那就表明互溶性好,否则互溶性就差。互溶性差的配方体系所对应的胶料的各种物性也就不能得到好的体现。 其实,橡胶配合体系是不能像盐溶于水那样做到分子级的互溶性,一是因为橡胶是由不同分子量的高分子复杂体系组成,二是各种配合成分也不是简单的小分子化合物,三它们是固相之间的溶解性。橡胶对配合剂的浸润性也许更能清楚的解释混炼工艺及效果的好坏。 橡胶对配合成分的浸润性高低主要决定于配合成分自身的特性,当然与橡胶的性质也有关系。有机的、非极性的大多数化学样品(塑解剂、分散剂、操作油等软化剂、防老剂、硫化体系等)都易溶解在橡胶里,被橡胶浸润。无机的氧化物、盐类、各种土等则不易被橡胶浸润。相似相容原理也解释了这些现象。 各种有机化学药品,塑解剂、分散剂、塑分、防老剂、促进剂、SA包括各种硫化都易混入橡胶中,而且加入的量比较少,这里就不对它们多加分析。 填料一般可以分为亲水性的和疏水性的两种。氧化锌、氧化镁等无机氧化物及硫酸钡、硫酸镁、轻钙、重钙等盐类由于是极性的、亲水性的,在混炼时容易产生负电荷,而橡胶也存在同样的情况,所以二者便会相互排斥,所以难以分散橡胶之中。陶土、云母、滑石粉、高岭土等虽然也是无机的、极性的,与橡胶之间的形成的界面亲和力小,虽不易被橡胶浸润,但是由于这些材料的粒径比较大且结构性比较低,混入橡胶的速度还是比较快的,分散的效果也可以接收,但补强性都比较差。白炭黑虽然是亲水性的,但它的粒径非常小、结构性高、视密度小、易飞扬,且容易产生静电,使得它很难混入橡胶中。炭黑是最典型的

橡胶基本配方大全

橡胶配方大全(一) 橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下设计原则: ①在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。 橡胶配方的表示形式

注:硫化时间为140℃×10min,20min,40min,80min。NBS为美国国家标准局编写丁苯橡胶(SBR)基础配方 Phr指每百质量份橡胶的分量数 注:硫化时间为145℃×25min,35min,50min 氯丁橡胶(CR)基础配方 注:硫化时间为150℃×15min,30min,60min

注:硫化时间为150℃×20min,40min,80min;150℃×25min,50min,100min 丁腈橡胶(NBR)基础配方 注:硫化时间为150℃×10min,20min,80min 顺丁橡胶(BR)基础配方 注:硫化时间为145℃×25min,35min,50min

注:硫化时间为15℃×20min ,30min ,40min ,60min 。纯胶配方采用天然橡胶基础配方。 三元乙丙橡胶(EPDM )基础配方 注:硫化条件在第三单体为DCDP 时为160℃×30min ,40min ,第三单体为ENB 时为 160℃×10min ,20min 氯磺化聚乙烯(CSM )基础配方 注:硫化时间为153℃×30min ,40min ,50min

纯聚酯粉末涂料配方设计的选材

纯聚酯粉末涂料配方设计的选材 章傅杰 聚酯粉末涂料是由聚酯树脂、固化剂、颜料、填料和助剂等组成的热固性粉末涂料。在热固性粉末涂料中,聚酯粉末涂料是耐候性粉末涂料的主要品种之一,为了区别于聚酯环氧粉末涂料,习惯上叫做纯聚酯粉末涂料。 聚酯粉末涂料的品种也较多,主要品种包括羧基聚酯树脂用异氰脲酸三缩水甘油酯(TGIC)固化体系;羧基聚酯树脂用羟烷基酰胺(HAA,商品名PrimidXL522或T105)固化体系;羧基聚酯树脂用环氧化合物(PT910)固化体系;羟基聚酯树脂用四甲氧甲基甘脲(Powderlink1174)固化体系等。羟基聚酯树脂用封闭型多异氰酸酯固化的体系,在我国分类为聚氨酯粉末涂料。 在聚酯粉末涂料配方中,对于聚酯树脂的选择方面,根据用户对涂膜外观及性能要求,对于高光泽、高性能的粉末涂料,一般选择聚酯树脂酸值在28~35mgKOH/g,玻璃化温度在60℃以上的羧基聚酯树脂;对于干混合法制造消光聚酯粉末涂料时,一种聚酯树脂选择酸值在20mgKOH/g左右的,另一种选酸值在50mgKOH/g左右的羧基聚酯树脂;对于皱纹(网纹)型聚酯粉末涂料,选择羟值在35~45mgKOH/g的羟基聚酯;消光固化剂消光的聚酯粉末涂料,可以选择常用的羧基聚酯树脂。 在选择了聚酯树脂的基础上,选择相应的固化剂品种和确定用量。在耐候性聚酯粉末涂料中,目前主要使用的固化剂为TGIC和HAA。一般来说,TGIC固化聚酯粉末涂料的涂膜外观,涂膜各种性能都比较好,缺点是烘烤温度高一点,比HAA毒性大一点,HAA固化聚酯粉末涂料的缺点是涂膜过厚时容易出现猪毛孔现象,在烘烤固化时涂膜耐泛黄性不如TGIC体系。根据用户要求选择更合适的固化体系,对于固化剂的用量可以参考生产厂的推荐用量,也可以进行理论计算: 100g聚酯树脂需要的TGIC量WTGIC=APE/(ETGIC×561) 100g聚酯树脂需要的HAA(羟烷基酰胺)WHAA=APE×HHAA/56 在HAA体系中,安息香应适当少加,流平剂应选择以耐候性好的聚酯或化合物为载体的,光亮剂对涂膜外观的影响不大,但对提高颜填料分散性和降低涂膜弊病有一定好处。 理论计算的结果与实际试验结果之间的差异是难免的,必须以理论为基础,再与实践相结合确定最终配方。 聚酯粉末涂料是由聚酯树脂、固化剂、颜料、填料和助剂等组成的热固性粉末涂料。在热固性粉末涂料中,聚酯粉末涂料是耐候性粉末涂料的主要品种之一,为了区别于聚酯环氧粉末涂料,习惯上叫做纯聚酯粉末涂料。 聚酯粉末涂料的品种也较多,主要品种包括羧基聚酯树脂用异氰脲酸三缩水甘油酯(TGIC)固化体系;羧基聚酯树脂用羟烷基酰胺(HAA,商品名PrimidXL522或T105)固化体系;羧基聚酯树脂用环氧化合物(PT910)固化体系;羟基聚酯树脂用四甲氧甲基甘脲(Powderlink1174)固化体系等。羟基聚酯树脂用封闭型多异氰酸酯固化的体系,在我国分类为聚氨酯粉末涂料。 在聚酯粉末涂料配方中,对于聚酯树脂的选择方面,根据用户对涂膜外观及性能要求,对于高光泽、高性能的粉末涂料,一般选择聚酯树脂酸值在28~35mgKOH/g,玻璃化温度在60℃以上的羧基聚酯树脂;对于干混合法制造消光聚酯粉末涂料时,一种聚酯树脂选择酸值在20mgKOH/g左右的,另一种选酸值在50mgKOH/g左右的羧基聚酯树脂;对于皱纹(网纹)型聚酯粉末涂料,选择羟值在35~45mgKOH/g的羟基聚酯;消光固化剂消光的聚酯粉末涂料,可以选择常用的羧基聚酯树脂。

橡胶制品实用配方大全

橡胶制品实用配方大全 A:汽车轮胎 1.胎面胶、胎冠胶 NR 100 ZnO 5 SA 4 石蜡 1 防D 1 防A 1槽黑20 N330 30 松焦油 2 液体古马龙 2 DM 0.35 CZ 0.3 S 2.6 2#烟100 ZnO 5 SA 3.5 防D 1.5 防A 1 槽黑30 N330 15 松焦油 3.5 M 0.8 S 2.6 (4010NA、BLE、H /CZ 0.6 /NOBS 0.42 DTDM 0.5/NOBS 0.6/) S 2.6 2.抗撕裂: NR 100 ZnO 5 SA 2 RD 1 4020 2 微晶蜡 1 N220 30 SiO2 35 聚乙二醇(4000) 1.3 妥尔油 1 氢化松香 6 古马龙 5 促MDB 2 NOBS 2 TBTD 0.3 S 0.3 3.抗割口增长载重车胎胎面胶: NR 100 ZnO 4 SA 2 RD 1 HPPD 2 混合蜡 1 N299 28 SiO2 28 聚乙二醇(4000) 1 A-189 1 古马龙 5 芳烃油 5 NOBS 2 S 3 NR 100 ZnO 4 SA 2 RD 2 混合蜡 1 4020 2 N285 35 SiO2 20 聚乙二醇(4000)0.5 妥尔油 3 古马龙 3 促NS 2 促D 0.4 S 2.5

并用SBR: NR 70 SBR 30 ZnO 4 SA 3 石蜡 1.5 防D 0.7 4010 1.5 H 0.5 槽黑27 N330 20 古马龙 4.5 DM 1.2 M 0.8 S 2.2 NR烟70 SBR 30 ZnO 5 SA 3 防D 1.5 防A 1槽黑30 混气炭黑15 松焦油 4.5 DM 1 CZ 0.4 S 2.3 NR烟70 SBR 30 ZnO 5 SA 2.5 防 D 1.5 防 A 1 石蜡 1 槽黑28 N330 18 松焦油 4.5 DM 0.63 CZ 0.33 S 2.15 胎冠上层胶: 2#烟70 SBR 30 ZnO 4 SA 3 4010 1 防D 1防H 0.4 石蜡 2 槽黑25 N330 20 三线油 4.5 DM 0.35 NOBS 0.6 S 2.2 1#烟60 SBR 40 ZnO 4 SA 3 4010 0.5 防 A 1 石蜡 1.5 中超耐磨炭黑52 芳烃油10 NOBS 0.8 S 1.8 白胎面: NR 70 SBR 30 ZnO 3 SA 2 防ODA 1 混合蜡 2 Si 50 A-189 0.8 聚乙二醇(4000)1.5 古马龙10 TiO2 5 NOBS 2 S 2.8 NR 50 SBR(溶聚) 50 ZnO 4 SA 3 防4010NA 1.5 石蜡 1 RD 1.5 中超耐磨53 操作油8

乳液聚合丁苯橡胶配方设计

设计任务书 1.课程设计的目的 通过课程设计,旨在使学生了解聚合物配方设计的方法、过程及意义,初步掌握聚合物配方设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力、收集和查阅文献资料的能力、分析和解决工程实际问题的能力、独立工作和创新能力。 课程设计的任务是学生能综合运用所学理论知识和所掌握的各种技能,通过独立思考和锐意创新,在规定的时间内完成指定的聚合物配方的设计任务,并通过设计说明书正确表述。 2.设计任务及要求 2.1设计题目 低温乳液聚合丁苯橡胶 2.2设计任务 通过对低温乳液聚合丁苯橡胶进行合成工艺设计,编制文献综述和设计说明书。 3.设计要求 3.1设计说明书的内容与顺序: 1、封面(包括题目、学生班级、学生姓名、指导教师姓名等) 2、设计任务书 3、目录 4、正文 4.1 绪论:所选课题的简要概述及进展、设计任务的目的及意义、设计结果简述 4.2 设计内容 4.3 实施方案 4.4 预期达到的主要技术指标 4.5 预期工作进度 4.5 工艺流程图(带控制点的工艺流程图)及其说明 4.6 设计结果概要 4.7 设计体会及今后的改进意见 5、参考文献 6、主要符号说明(必须注明意义和单位) 说明书必须书写工整、图文清晰。说明书中所有公式必须写明编号。

3.2工艺流程图设计图纸的要求: 要求画“生产装置工艺流程图”一张,图纸大小为A2。 本图应表示出装置、单元设备、辅助设备和机器、管道、物料流向。 以线条和箭头表示物料流向,并以指引线表示物料的流量、温度和组成等。辅助物料的管线以较细的线条表示。 工艺物料管道用粗实线,辅助物料管道用中粗线,其他用细实线。横向管道标注在管道上方,竖向管道标注在管道右侧。辅助物料(如冷却水、加热蒸汽等)的管线以较细的线条表示。 图表和表格中的所有文字写成长仿宋体。 设备以细实线绘制,画出能够显示形状特征的主要轮廓。设备的高低和楼面高低的相对位置一般也按比例绘制。设备的位号、名称标注在相应设备图形的上方或下方,或以指引线引出设备编号,在专栏中注明每个设备的位号、名称等。 要求工艺流程图有相应的标题栏,主要包括说明设备名称、图号、比例、设计单位、设计人、审校人等。 本设计标题栏规定如下所示: 图纸要求:投影正确、布置合理、线型规范、字迹工整。 3.3参考文献的格式: 期刊类:(序号)作者1,作者2,……作者n,文章名,期刊名(版本),出版年,卷次(期次)。 图书类:(序号)作者1,作者2,……作者n,书名,版本,出版地:出版社,出版年。

涂料混合溶剂配方设计

近年来涂料技术发展迅速,出现了许多树脂,并常复合使用。涂装技术也日新月异,出 现了多种多样的施工工艺,这都要求有不同的溶解性和挥发特性的溶剂来配合。以往使用的 单一溶剂已再不能胜任,必须应用混合溶剂,以照顾全面。而混合溶剂又不像单一溶剂那样 简单,它除了满足溶解性和挥发特性外,还有溶剂平衡问题,所以混合溶剂的配方设计也成 为近代涂料配方设计整体中的一个组成了。 一、混合溶剂的溶解性溶剂对成膜物的溶解性可用溶解度参数来衡量。 溶解度参数的概念是由Hidebrand提出,认为溶质与溶剂有相近似的内聚能密度时,则 溶质可为溶剂所溶解。为了处理方便起见,溶解度参数(δ)采用内聚能密度的平方根为单位 称为Hildebrand(h)。Hildebrand体系的溶解度参数涉及的是非电解质在非极性溶剂中的溶解性。 在Hansen体系的溶解度参数中,把内聚能(E)分为非极性的相互作用力,即色散力(Ed)、 偶极力(Ep)和氢键力(Eb),即ΔE=ΔEa+ΔEp+ΔEh 或(1) 式中:V为摩尔体积,δd、δp和δh分别为溶解度参数的色散力、偶极力和氢键力组成。 要定量地将δ分解成δd、δp和δh是不太容易的。在Hansen体系中,用同形(homomorph) 的概念来估计δd,用同形物间的气化热差作为偶极力与氢键力之和,其中的偶极力,则以摩尔介电常数、折光率和偶极距以Boetther经验式求得。并为了简化式(1)在三维座标中溶解 区“体”的图形,使之为球体起见,将δd的座标值加倍,这样球体内的溶剂将都能溶解某一特定树脂。 在Crowhy体系的溶解度参数中,用Hildebrand体系的溶解度参数(δ)用Gordy方法测定光谱中波长位移数的十分之一作为氢键合值(γ),以及偶极距(μ)在三维座标中来描绘的。 溶解度参数的体系还有几种。就目前而论,Hansen体系比较最富理论。由于ASTM D3132采用了Crowley体系,为了有标准测定方法可资遵循,故宜采用来衡量混合溶剂对成膜物的溶解性。 ASTM D3132“测定树脂和聚合物溶解区”的方法的大要如下: 按该标准的附表一所列的溶剂或混合溶剂以一定的成膜物/溶剂比例来溶解某一成膜物。有的能完全溶解;有的在溶解的边缘上,即混浊但无明显的分离;有的不溶解,即有胶粒或固相、或分层。由于溶剂对成膜物的溶解性以溶解度参数为最重要,氢键合值次之。因而对大多数的成膜物,以溶解度参数和氢键合值作溶解区图,已足够定其溶解性,故可将测定的结果分别以附表一上所对应的δ和γ值在座标中标出,绘成溶解区图。 偶极距在一般情况下对溶解区的影响不大。在某些情况下,溶解区的界线不清。这是偶 极距对之有较大的影响了。就需在几个氢键合值的水平上,以相对应的μ和δ值在座标中标 出而绘成溶解区图。 溶解区中任何一点,就是对成膜物有溶解性的混合溶剂,它的δm和γm值(或某一氢键 合值水平上的μm和δm),可用下面的关系式分解为它的组成以及比例。 δm=∑δiχi/∑χiVi γm=∑γiχi/∑χiVi (2) μm=∑μiχi/∑χiVi 式中的χi和Vi分别为混合溶剂中组成溶剂i的摩尔分数和摩尔容积。 这样就可设计有合适溶解性的混合溶剂的组成和比例了。 二、混合溶剂的挥发特性理想液体混合物在气/液平衡态下,它的蒸气压为各组成的分蒸气压Pi之和,即P=∑Pi,而Pi可用RaooH定律给出,即Pi=P0iχi 式中的P0i为组成i在纯态时的蒸气压。然而大多数液体包括大多数的溶剂在内是非理想 的,所以混合溶剂的蒸气压不能简单地用Raoult定律求得。为了矫正Raoult定律对非理想液体混合物的偏离导入了“活性系数”(γ),即Pi=γiP0iχi 这活性系数可用UNIFAC(Universal Functional Group Activity Coefficient)方法求得。这方法由Fredenslund等将溶剂的基团概念与UNIQUAC(Universal Quasi-Chemistry)模式相结合。这方法认为活

经典橡胶配方大全

橡胶配方设计的原则 https://www.360docs.net/doc/4c15568577.html, 橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下设计原则: ①在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。 橡胶配方的表示形式 天然橡胶(NR)基础配方

注:硫化时间为140℃×10min,20min,40min,80min。NBS为美国国家标准局编写丁苯橡胶(SBR)基础配方 https://www.360docs.net/doc/4c15568577.html, Phr指每百质量份橡胶的分量数 注:硫化时间为145℃×25min,35min,50min 氯丁橡胶(CR)基础配方 注:硫化时间为150℃×15min,30min,60min 丁基橡胶(IIR)基础配方

注:硫化时间为150℃×20min,40min , 80min ;150℃×25min,50min ,100min 丁腈橡胶(NBR )基础配方 注:硫化时间为150℃×10min,20min ,80min 顺丁橡胶(BR) 基础配方 注:硫化时间为145℃×25min,35min ,50min 异戊橡胶(IR )基础配方

橡胶配方设计基本原理

橡胶配方设计基本原理(2006/10/10 13:53) 从事橡胶技术工作时,首先会面对下述各问题: ─—什么叫做橡胶配方? ─—如何设计橡胶配方? ─—成功的橡胶配方是什么? 事实上,橡胶配方技术乃是一种选择和运用材料之科学和艺术。一般之橡胶配方目的有三:首先是使橡胶制品具有实用之物性;其次是能配合现有加工设备进行良好之加工作业;最后是以可能之最低成本之配料达到符合客户所要求之物性水平。 换言之,设计橡胶配方最需考虑之三要素为配料之物性者、加工性和成本,并使三者获得一个适当之平衡点,此即配方设计都最主要之工作。 配方中常用之添加剂可摘要分类成十个主要成份: ?橡胶或弹性体(elastomers ): 橡胶配方设计第一个步骤也是最重要的步骤即为选择橡胶基材或原料胶。橡胶为工程材料之一种,不论其组成为何,都 带有一些共通之基本特性。所有橡胶都带有弹性,可弯曲性、韧性、不易透水和透空气等性质。除了这些共通特性外,每种橡胶因组成之不同,各自具有其本身之性质。 ?加硫剂(Vulcanizing agents ): 添加加硫剂之目的是使配料产生化学反应而在橡胶分子之间产生架桥(cross linking )之现象而改变橡胶之物性。化学架桥作用使橡胶配料由柔软、带粘性之热可塑体变成强韧之热固物,此时受温度之影响较少。到目前为止,硫磺仍是最广泛使用之加硫剂。其它载硫剂( sulfur donor )如二硫化秋兰姆类之TMTD(TUEX) 有时亦用作全部或局部取代元素硫磺于低硫或无硫加硫系统之配方,使制品得以改善其耐热性。配方设计者其第二个最重要之工作为对于配料加硫系统,加硫剂和促进剂之选择。 ?加硫促进剂(Accelerators ): 加硫促进剂可使配料硫化速率加快而缩短加硫时间。 ?活化剂(Activators )和迟延剂(Retarders): 活化剂是用来帮助促进剂增强其活性和效能,最常用之活化剂有锌氧粉、硬脂酸、氧化铅、氧化镁和胺类(H )。 ?防老剂(Antidegradants ): 防老剂可延缓橡胶制品因受氧气、臭氧、热、金属催化作用和屈曲运动之影响而劣化。因此添加防老剂于配料后可以增强制品之耐老化性并延长其使用寿命。 ?加工助剂(Processing aids ): 加工助剂顾名思义即是帮助配料便于加工作业,如混炼压延、押出和成型等。 ?填充剂(Fillers ): 填充剂可以增强配料之物性,帮助加工性或降低其成本。补强性填充剂可以增加制品之硬度、抗张强度、定伸强度(modulus )、抗撕裂强度和耐磨性。一般常用碳烟或细颗粒之矿质材料。 ?可塑性(Plasticizer ),软化剂和增粘剂(Tackfier): 可塑性、软化剂和增粘剂是用于帮助胶料混练,改变其粘度,增强配料粘性,改善制品在低温之柔曲性,或代替部份胶料而不致对物性有太多之影响。大体而言,这些类之添加剂可当作加工助剂或扩展剂。

橡胶制品的配方设计原理介绍

橡胶制品的配方设计原理 一、橡胶的并用。 无论是什么橡胶不可能具有十全十美的性能,使用部门往往对产品提出多方面的性能要求,为了满足此目的,而采用橡胶并用的方法。如,为提高二烯烃类橡胶耐热、耐光老化性能,可加入氯磺化聚乙烯。丁睛橡胶的耐粙性很好,但耐寒性不好,若并用10%的天然胶,便可改善它的耐寒性。在橡胶中并用高苯乙烯、改性酚醛树脂、三聚氰胺树脂等都可改善橡胶的补强性能。合成橡胶的工艺性能一般都不够好,特别是饱和较高的合成橡胶,无论是炼胶、压延、贴合、硫化等性能都比较差,所以常加入天然橡胶或树脂。以改善其未硫化胶的加工性能。如,丁苯橡胶加入5-20份低压聚乙烯,可减少丁苯橡胶的收缩率。乙丙橡胶中加入酚醛树脂可提高粘性。加入天然胶对一般合成橡胶的工艺性能都会有所改善。为了改进工艺加工性能,并用天然胶或树脂的比例一般都在20%以下。有些合成橡胶性能优良,但价格昂贵,在不损害原物性的前提下,并用其它橡胶或树脂是完全可行的,如,丁睛胶中并用聚氯乙烯或丁苯胶中掺入天然橡胶,都能起到这一作用。 1. 橡胶并用必须具有一定的相溶性,对橡胶来说天然、顺丁、异戊橡胶等能以任何比例均一地混合,最终达到相溶状态。而天然胶与丁基橡胶就不能均一地混合。若硬性机械地混合,所得硫化胶的实际使用性能会显着地下降,这是因为它们的相溶性很差。并用体系最重要的因素是相溶性,从应用的观点来看,如果混合不均,非但达不到并用的目的,反而影响工艺加工,特别是硫化。因此,并用

问题的焦点是两种橡胶能否相互混合,以及混合后达到什么样的相容程度。固体橡胶并用时,因橡胶本身粘度很大,高分子的布朗运动不像液体那么容易,扩散速度较慢,对大分子的位移造成很大的阻力,严重影响橡胶间的互容作用。为此在工业生产中都采用机械力强化分子运动,用提高温度和加入软化剂的方法来降低粘度,以促进两种橡胶的混合,所以产物从宏观上来看虽没有相分离,但真正达到溶解状态也不是很多的,其原因包括下来有以下几点,橡胶的极性、内聚能密度、橡胶的结晶、橡胶的分子量等。橡胶网为广大从事橡胶行业的朋友提供交流学习交易的平台。 2.分散性,高分子固相体橡胶的粘度高,纵然选择相容性较好的的两种橡胶,用开练机、密练机在高剪切作用下混合,要像低分子液体那样,呈分子状态的均一分散状态,也是很因难的。橡胶分子的布朗运动不象液体那样自由,扩散速度较慢,从外表上看是均一地混合了,由于两种或多种橡胶的分散状态在广泛的范围内变化,并用胶的物理性能将产生很大的差异。两种橡胶在空气中混合时,由于相容性的不一致可产生两种不同的分散状态。,即均相分散状态和非均相分散状态,实际上并用达到均相分散状态的可能性很小,在部分是非均相分散状态组分之间仍然保持一定的界面。以不连续相(岛相)分散于连续相(海相)中的分散状态。非均相分散状态分为以下三级A,宏观非均相级,区域尺寸为10-100微,B,微观非均相为0.1-2微C,半均相级成接枝或嵌段两种共聚体。一种并用体的分散状态不可能单一纯地存在着一个状态,而是以几种状态并存的局面,只不过某一级为主而已。 3.共硫化,除了相容性和分散性外,橡胶并用的另一个重要因素是共硫化性。它是指并用橡胶的硫化体系选择和硫化速度的调整问题。对相同硫化速度而言,通用橡胶以天然胶为最快,其次是异戊橡胶,顺丁橡胶、乳聚顺丁、丁苯胶。硫化速度较慢的橡胶可采用减少硫黄,增加促进剂的方法,以与天然橡胶的硫化速度互相配合。一般对同一硫化速度的橡胶,天然橡胶为高硫黄低促进剂、丁苯橡

相关文档
最新文档