材料力学第二章备课学案

材料力学第二章备课学案
材料力学第二章备课学案

2.1轴向拉压的概念和实例

杆件轴向拉压弯剪扭组成了各种工程实际问题。

轴向拉压特点:

外力特征:外力或其合力作用线沿杆件轴线

变形特征:拉伸变形,轴线方向伸长,横向尺寸缩短;

压缩变形,轴线方向缩短,横向尺寸增大。

通过几个题目,例子来表现轴力,必须要沿轴线

2.2拉伸与压缩时杆横截面上的内力和应力

1.轴力:通过横截面形心并沿杆件轴线的内力

符号规定:拉力为正, 压力为负。

注意:同一位置左、右侧截面内力分量必须具有相同的正负号。

截面法求内力(轴力):分二,留一,内力代弃,内外平衡,求内力。

举例,作杆件的内力图,画轴力图。

画轴力图注意事项:

1、两个力的作用点之间轴力为常量;

2、轴力只随外力的变化而变化;与材料变化,截面变化均无关;

3、只有沿轴线方向的外力才产生轴力;

4、x轴永远与轴线平行,且用外力的作用点将x轴分段;

5、每一次求内力时必须严格用截面法;且在整个杆件上分二留一;

轴向拉压时横截面上的应力

问题:已知轴力的大小,是否就可以判定构件是否发生破坏?

1.正应力和切应力

应力p 的法向分量-正应力σ

应力p 的切向分量-切应力τ

2.拉压杆横截面上的应力

试验观察:横线仍为直线;仍垂直于杆轴;横线间距增大。

变形后,横截面仍保持平面,仍与杆轴垂直,仅沿杆轴相对平移——平截面假设

正应力公式:横截面上各点处仅存在正应力,并沿横截面均匀分布。

拉压杆斜截面上的应力:

斜截面上的应力均匀分布:

最大正应力发生在杆件横截面上,其值为σ0

最大切应力发生在杆件45°斜截面上, 其值为σ0/2

正负符号规定:以x 轴为始边,逆时针转向者为正;斜截面外法线On沿顺时针方向旋转90。,与该方向同向之切应力为正。

1、只适用于轴向拉伸与压缩杆件,即外力的合力作用线与杆件的轴线重合。

2、只适用于离杆件受力区域稍远处的横截面

3、横截面沿轴线变化,但变化缓慢,外力作用线与轴线重合

力作用于杆端的方式不同,但只会使与杆端距离不大于杆的横向尺寸的范围内受到影响一些例题

O

20

α

α

σ

σ

α

2

cos

σ

τ

α

2

sin

2

=

2.3材料拉伸时的力学性能

1、低炭钢拉伸时的力学性能

低炭钢:含炭量在0.25%以下的碳素钢。

试件: l=10d 或 l=5d

试验条件: 常温、静载

2、加载时的受力曲线分析

弹性阶段(该段内变形在外力撤销后会完全消失):比例极限(线弹性阶段,遵循胡克定律)。弹性极限。

屈服阶段:屈服极限是衡量材料强度的重要指标。

强化阶段:经过屈服材料又恢复了抵抗变形的能力,这种现象称为材料的强化。

强度极限是衡量材料强度的另一重要指标

冷作硬化:由于预加塑性变形, 使比例极限(强度)提高,降低塑性,使材料脆性上升的现象。

局部变形阶段:横向尺寸突然急剧缩小,形成颈缩现象,直到试件被拉断。 材料的塑性:材料能经受较大塑性变形而不破坏的能力

断面收缩率:

塑性与脆性材料:塑性材料:δ≥ 5 %;脆性材料: δ<5 % 。

其他塑性材料在拉伸时的力学性能

名义屈服极限:对于没有明显屈服极限的塑性材料,产生0.2%的塑性应变时的应力为名义屈服极限。

铸铁拉伸破坏特点:

灰口铸铁拉伸:应力-应变曲线为一段微弯曲线;无明显的直线部分,无屈服、无颈缩现象;在较小的应力下被拉断;

割线弹性模量:通常取曲线的割线代替曲线的开始部分,以割线的斜率作为弹性模量E ,称为割线弹性模量。

强度极限:脆性材料只有唯一的强度指标 试件拉断时所能承受的最大应力;

2.4材料压缩时的力学性能:

低碳钢压缩:愈压愈扁;拉伸与压缩在屈服阶段以前完全相同

灰口铸铁压缩:断口与轴线约成45o ;压缩时的强度极限远大于拉伸时的强度极限

总结:(塑性)

1.当应力不超过一定的限度,应力-应变的关系均在不同程度上成正比,这时材料服从胡克定律。

2.塑性材料在破坏前发生相当大的变形,其强度指标是σs;σb

3.由于工程结构都不允许材料屈服而产生残余的塑性变形,所以设计塑性材料的杆件时,总是把 σs 视为极限应力

总结:(脆性)

1.脆性材料在破坏前没有较大的变形;唯一的强度指标σb ,故把σb 视为极限应力

2. 塑性材料的抗拉强度相同,一般作受拉构件。脆性材料抗压不抗拉,宜作受压构件;

3. 尽量避免使脆性材料构件处于受拉状态。

例题

000100l l ?=?δ001

100A A A ?-=ψb σ

2.5失效、安全系数、强度计算

失效:不能保持原有的形状和尺寸,已不能正常工作

1、强度不足

把脆性材料试件的断裂和塑性材料试件出现塑性变形统称为失效。

受压短杆的压溃、压扁同样也是失效。

2、刚度不足

弹性变形过大,虽未出现塑性变形,但也不能满足加工精度。

3、稳定性不足:

受压细长杆件的被压弯,如用针扎孔时,针发生了弯曲;

4、冲击载荷、交变载荷引起的失效

许用应力

极限应力:构件正常工作时,必须保证工作应力低于极限应力 塑性材料: ;脆性材料: 许用应力:保证构件正常工作必须有: ;

称为屈服安全系数。

构件正常工作的强度条件: 为何引入安全系数?

1、强度计算中有些数据与实际有差距:

2、给构件安全储备

拉压杆件的强度计算 1、强度校核 比较 2、确定截面尺寸

3、确定系统许可载荷

j x m a x σσ[]

σ

σ≤m a x A F m a x ,N m a x =σ][σ][F

A m a x

,N σ≥]

[A F m a x ,N σ?≤

2.6 杆件轴向拉压时的变形

1.纵向线应变 拉伸时ε>0 、压缩时ε<0。

2.拉压变形的虎克定律:

拉压变形虎克定律的适用范围:

1. 材料在线弹性范围

2. 在长度L 内,轴力F N 、材料的弹性模量、杆件的横截面面积A 均为常量;

3. 当以上参数沿杆轴线分段变化时,则应分段计算变形,然后求代数和得总变形,即:

4. 当轴力F N 、杆件的横截面面积A 沿杆轴线连续变化时,取积分运算: 横向变形、泊松比 1、横向线应变 拉伸ε'<0、压缩ε’>0 ; 2、泊松比 由于ε、ε‘总是同时发生,永远反号, 表示某一方向伸长,另外两个相互垂直方向上的收缩;收缩比例随材料而变化。 3、刚度条件: 根据刚度条件,可以进行刚度校核、截面设计及确定许可载荷等问题的解决。

2.10 应力集中的概念

由于工程需要,有些构件必须有切口、切槽、油孔、螺纹、轴肩等,使得这些部位的截面尺寸突变。那么在尺寸突变处应力如何分布呢?

1、应力集中

由于截面急剧变化引起应力局部增大现象

2、应力集中系数 -最大局部应力 -削弱处的平均应力

1、构件的形状尺寸对应力集中的影响:尺寸变化越急剧、角越尖、孔越小,应力集中的程度越严重。

2、构件材料对应力集中的影响:

静载荷作用下:塑性材料所制成的构件对应力集中的敏感程度较小。

内部组织均匀的脆性材料制成的构件,必须要考虑应力集中的影响。

内部组织不均匀的脆性材料制成的构件,对零件的承载力不一定造成明显影响。

动载荷作用下:应力集中往往是零件破坏的根源。

2.11剪切与挤压的实用计算

连接件:在构件连接处起连接作用的部件

1、剪切的实用计算

连接件的受力分析“杆件受到:两个大小相等,方向相反、作用线垂直于杆的轴线, 并且相互平行, 且相距很近的平行力系的作用。”

变形特点:构件沿两组平行力系的交界面发生相对错动

剪切面:发生错动的面;有单剪与双剪

剪切强度条件为: [τ]为许用切应力 μεε=-‘

μl l Δε=ε

E σ=A

F σN =l l Δε=EA l F l ΔN

=∑==n 1i i i i N A E l F l Δi ()()?

=l 0

N x EA dx x F l Δd d Δε='μεε='μεε-='][l Δl Δ

≤n max

σσK =s s A F τ=[]

τA F τs s ≤=

2、挤压的实用计算

挤压面-连接件间的相互挤压接触面(挤压面与外载荷垂直) 挤压应力-挤压面上的应力

挤压破坏-在接触区的局部范围内,产生显著塑性变形 接触面为平面:挤压面的面积取接触面的面积

接触面为曲面:挤压面的面积取圆柱侧面在直径平面上的投影。 挤压强度条件: [σbs]为容许挤压应力

[]bs bs bs bs σA P σ≤=

材料力学答案第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

材料力学答案解析第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

工程材料力学性能-第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、金属的弹性模量主要取决于什么因素为什么说它是一个对组织不敏感的力学性能指标 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别为什么 4、决定金属屈服强度的因素有哪些【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 7、何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 第二章金属在其他静载荷下的力学性能

材料力学第二章

材料力学-第二章

————————————————————————————————作者:————————————————————————————————日期:

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为

正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。 3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为:

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014 年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A. p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5图 题6图

思考题2015年材料力学性能(重点标黄)

和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加 单向静拉伸时实验方法的特征是、、必须确定的。 .韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用

22. 应力状态软性系数:用试样在变形过程中的测得 和的比值表示。 23.微孔聚集型断裂是包括微孔、直至断裂的过程。 24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。 25.机件在冲击载荷下的断口形式仍为、和。 26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。 27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。 28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。 28.低温脆性是随的下降,材料由转变为的现象。 29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。 34. 金属材料的疲劳过程也是裂纹的和过程。 35.金属材料抵抗疲劳过载损伤的能力,用或表示。 36.金属在和特定的共同作用下,经过一段时间后所发生的 现象,成为应力腐蚀断裂。 37.应力腐蚀断裂的最基本的机理是和。 38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫 钢的氢致延滞断裂过程可分为、、三个阶 按磨损模型分为:、、、五大类。 44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

材料力学第二章习题

材料力学第二章习题

习 题 2.1试画出图示各杆的轴力图 题2.1图 2.2 图示中段开槽的杆件,两端受轴向载荷P 作用,试计算截面1 - 1和截面2 – 2上的正应力。已 知: ,mm b 20=,mm b 100=,mm t 4=。 题2.2图 2.3 图示等直杆的横截面直径mm d 50=,轴向载荷 。 ( 1 ) 计算互相垂直的截面AB 和BC 上正应力和切应力; ( 2 ) 计算杆内的最大正应力和最大切应力。 2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。问α为何值时,胶缝处的切应力和

正应力同时达到各自的许用应力。 2.5图示用绳索起吊重物,已知重物, 绳索直径。许用应力,试校核绳索的强度。绳索的直径应多大更经济。 , 2.6冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,镦压力P=1100KN。连杆矩形截面的高度h与宽度b之比为:h/b=1.4。材料为45钢,许用应力【 】=58MPa,试确定截面尺寸h及b。 2.7图示结构杆1与杆2由同一种材料制成,其

许用应力[σ]=100MPa。杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m, ED=1.5m。试按杆1,杆2的强度确定许可载荷[F]。 2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。欲组装成图示等边三角架。已知 杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力 =30MPa,许用压应力=90MPa。试问如何安装较为合理?求这时的最大许可载荷[F]。 2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。杆 1,杆2的直径分别为d1=30mm和 d2=20mm,两杆的材料相同,屈服极 限σs=320MPa,安全系数n s=2.0。试校核桁架的强度。 2.9图

材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

金属材料力学性能练习题

第二章第一节金属材料的力学性能 一、选择题 1.表示金属材料屈服强度的符号是()。 A.σ e B.σ s C.σ b D.σ -1 2.表示金属材料弹性极限的符号是()。 A.σ e B.σ s C.σ b D.σ -1 3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是()。 A.HB B.HR C.HV D.HS 4.金属材料在载荷作用下抵抗变形和破坏的能力叫()。 A.强度 B.硬度 C.塑性 D.弹性 二、填空 1.金属材料的机械性能是指在载荷作用下其抵抗()或()的能力。 2.金属塑性的指标主要有()和()两种。 3.低碳钢拉伸试验的过程可以分为弹性变形、()和()三个阶段。 4.常用测定硬度的方法有()、()和维氏硬度测试法。 5.疲劳强度是表示材料经()作用而()的最大应力值。 三、是非题 1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。() 2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。() 四、改正题 1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。 2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。 3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。 4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。

5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。 五、简答题 1.说明下列机械性能指标符合所表示的意思:σ S 、σ 0.2 、HRC、σ -1 。 2.说明下列机械性能指标符合所表示的意思:σ b 、δ 5 、HBS、a kv 。 2.2金属材料的物理性能、化学性能和工艺性能 一、判断题 1.金属材料的密度越大其质量也越大。() 2.金属材料的热导率越大,导热性越好。() 3.金属的电阻率越小,其导电性越好。() 二、简答题: 1.什么是金属材料的工艺性能?它包括哪些? 2.什么是金属材料的物理性能?它包括哪些? 3.什么是金属材料的化学性能?它包括哪些?

材料力学-第二章

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。

3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为: 图4-1

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

截面对轴的惯性矩 截面对y 轴的惯性矩 截面对0点的极惯性矩 截面对轴的惯性积 (二)特征 1.惯性矩是对某一坐标轴而言的.惯性积是对某一对坐标轴而言的,同一截面对不同的坐标轴,其数值不同。极惯性矩是对点(称为极点)而言的,同一截面对不同的点,其值也不相同。惯性矩。极惯性矩恒为正值,而惯性积可能为正,可能为负,也可能为零。2.惯性矩、惯性积、极惯性矩的量纲均为长度的四次方,即。,单位为m4或mm4 3.对某一点的极惯性矩恒等于以该点为原点的任一对直角坐标轴的惯性矩之和。即 4.惯性积是对某一对直角坐标的.若该对坐标中有一轴为截面的对称轴,则截面对这一对坐标轴的惯性积必为零;但截面对某一对坐标轴的惯性积为零,则这对坐标中不一定有截面的对称轴。 5.组合截面对某一轴的惯性矩等于其组成部分对同一轴的惯性矩之和。即 组合截面对某一对坐标轴的惯性积,等于其组成部分对同一对坐标轴的惯性积之和,即组合截面对某一点的极惯性矩,等于其组成部分对同一点极惯性矩之和,即

材料力学性能第二章.

第二章材料在其他静载荷下的力学性能研究材料在常温静载荷下的力学性能时,除采用单向静拉伸试验方法外,有时还选用压缩、弯曲、扭转等试验方法,目的是: ①很多机件在服役过程中常承受弯矩、扭矩或轴向压力的作用,有必要测定试样在相应承载条件下的力学性能指标,做为设计和选材的依据;(实际中存在) ②不同的加载方式产生不同的应力状态,材料在不同应力状态中表现的力学性能不完全相同,因此,应选用不同应力状态的试验方法。(和单向拉伸应力状态不同) 本章介绍压缩、弯曲、扭转和剪切等试验方法及测定的力学性能指标 §2.1 应力状态柔度因数(软性系数) 一、柔度因数 塑性变形和断裂是金属材料在静载荷下失效的两种主要形式,它们是金属所能承受的应力达到其相应的强度极限而产生的。当金属所受的最大切应力τmax达到屈服强度τs时,产生屈服;当τmax达到切断强度τk时,产生剪切型断裂;当最大正应力σmax达到正断强度Sk时,产生正断型断裂。但同一种金属材料,在一定承载条件下产生何种失效方式,除与自身的强度大小有关以外,还与承载条件下的应力状态有关。不同的应力状态,其最大正应力与最大切应力的相对大小是不一样的。 考虑到三向应力状态下另外两向应力的贡献,因此材料的最大正应力的计算采用第二强度理论给出: 即:不再采用σmax=σ1 而采用(第二强度理论): Smax 1 2 3 称为最大当量正应力 最大切应力由第三强度理论给出: max 13 2

观塑性变形,属正断型脆性断裂; ②单向拉伸(α=0.5)时,先与τs线相交,发生塑性变形(屈服),然后与Sk 线相交,发生正断,属正断型的韧性断裂; ③扭转(α=0.8)时,先与τs线相交,发生塑性变形(屈服),然后与τk线相交,发生切断,属于切断型的韧性断裂。 即:相同的材料在不同应力状态下表现出不同的断裂模式,也可称为在不同应力状态条件下的韧脆转变。(材料在其他外界因素下也会发生韧脆转变,因涉及到具体的试验测试手段,因此后面讲。) §2.2 材料在轴向压缩载荷下的力学行为(单向压缩试验) 一、试样型式 常用的压缩试样为圆柱体(也可采用立方体或棱柱体),为防止压缩时试件失稳,试件的高度与直径之比h0/d0=1.5~2.0,同时h0/d0越大,抗压强度越低,因此对于几何形状的试件,需要保证h0/d0为定值。(GB7314-87) 二、试验过程 ①为保证两端面的自由变形,试件的两端面必须光滑平整(涂润滑油、石墨);或者将试样的端面加工成圆锥凹面,使锥面的倾角等于摩擦角,即tanα=f,f为摩擦因数,也要将压头改成相应的锥体; ②压缩可以看作是反向拉伸,因此,拉伸试验中所定义的各个力学性能指标和相应的计算公式,在压缩试验中基本可以应用; 1-高塑性材料;2-低塑性材料

材料力学性能 课后答案 (时海芳 任鑫)知识讲解

第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消

材料力学性能-课后答案教学复习

第一章 1.解释下列名词 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 ②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 ③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 ④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 ⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 ⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时 ,由于晶粒发生滑移 , 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量); 3.(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度); (3)ζ b(抗拉强度); (4)n(加工硬化指数); (5)δ(断后伸长率)、ψ(断面收缩率) 4.常用的标准试样有 5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的

材料力学第二章计算题

1. 杆系结构如图所示,已知杆AB 、AC 材料相同,[]160=σMPa ,横截面积分别为 9.706=1A mm 2,314=2A mm 2,试确定此结构许可载荷[P ]。(15分) 2. 在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。 3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200。钢的许用应力[б]=120Mpa 。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。试件受轴向拉力P =6kN 作用,

在基长l=70mm上测得伸长量?l=0.15mm,板的横向缩短?b=0.014mm。试求板材料的弹性模量E及泊松比。 6.钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为A 1 =A 3 =300mm2,A 2 =200mm2。材料弹性模量E=200GPa 。材料许用应力[σ]=210MPa。试作杆的轴力图并校核杆的强度。 7.图示钢杆的横截面面积为2 200mm A=,钢的弹性模量GPa E200 =,求各端杆的应变、伸长及全杆的总伸长。 8.等截面实心圆截面杆件的直径d=40mm,材料的弹性模量E=200GPa。AB=BC=CD=1m,在B、C、D截面分别作用有P 、2P、2P大小的力,方向和作用线如图所示,P=10KN。①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C截面的铅垂位移。 9.图示为一轴心受力杆,横截面面积A AB=A CD=400mm2,A BC=200mm2。材料的弹性模量E=2×105MPa,求(1)杆各段横截面上的轴力;(2)杆端D点的水平位移。 1m 1m 1m 3kN 7kN 6kN C B A D 2m 4m B A C q=5kN/m 10.角架受力如图所示。已知夹角为60度. F=20kN,拉杆BC采用Q235圆钢,[钢]=140MPa,压杆AB采用横截面为正方形的松木,[木]=10MPa,试用强度条件选择拉杆BC的直径d 和压杆AB的横截面边长a。

材料力学第二章习题【含答案】

实用文档浙江科技学院 2015-2016学年第一学期考试试卷 A 卷 考试科目 材料力学 考试方式 闭 完成时限 2 小时 拟题人 陈梦涛 审核人 批准人 2015 年 9 月17 日 建工 学院 2014 年级 土木工程 专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law )使用的范围是 。 A .p σσ<; B. p σσ>; C. s σσ<; D. s σσ> 2.实心圆截面杆直径为D ,受拉伸时的绝对变形为mm l 1=?。仅当直径变为2D 时,绝对变形l ?为 。 A .1mm B .1/2 mm C .1/4 mm D .2mm 3. 下列有关受压柱截面核心的说法中,正确的是 。 A .当压力P 作用在截面核心内时,柱中只有拉应力。 B .当压力P 作用在截面核心内时,柱中只有压应力。 C .当压力P 作用在截面核心外时,柱中只有压应力。 D .当压力P 作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性 。

A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都 无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元 体的剪应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图 示外力作用下其应变能U的下列表达 式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5 题6 实用文档

材料力学性能课后作业

材料力学性能课后作业 主编时海芳任鑫副主编胡全文高志玉北京大学出版社 第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 ②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζp(规定非比例伸长应力)、ζe(弹性极限)、ζs(屈服强度)、ζ0.2(屈服强度);(3)ζb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率) 4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE制造工艺:U阶段是将原始板材冲压弯曲成U形,O阶段是将U形板材径向压缩成O形,再进行周边焊接,最后将管子内径进行扩展,达到给定大小,即E阶段。按UOE工艺制造的管子,希望材料具有非常小的或者几乎没有包申格效应,以免管子成型后强度的损失。其次,包申格效应大的材料,内应力大。例如,铁素体+马氏体的双相钢对氢脆就比较敏感,而普通低碳钢或低合金高强度钢对氢脆不敏感,这是因为双相钢中铁素体周围有高密度位错和内应力,氢原子与长程内

相关文档
最新文档