第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质
第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质

函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.

1.求函数值和函数表达式

对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.

例1 已知f(x-1)=19x2+55x-44,求f(x).

解法1 令y=x-1,则x=y+1,代入原式有

f(y)=19(y+1)2+55(y+1)-44

=19y2+93y+30,

所以 f(x)=19x2+93x+30.

解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.

可.

例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).

解 由题设

f(-x)=-ax5+bx3-x+5

=-(ax5-bx3+x+5)+10

=-f(x)+10, 所以

f(-5)=-f(5)+10=3.

例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得

f(x)=f(x+0)=f(x ·0)=f(0)=k ,

即对任意实数x ,恒有f(x)=k .所以

f(x)=f(19)=99,

所以f(1999)=99. 2.建立函数关系式

例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像.

解 因为l 2过点C(1,0),所以m +b=0,即b=-m .

设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0.

故S 的函数解析式为

例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

x ,试写出梯形面积S 关于x 的函数关系

式.

解 设矩形ABCD 的长BC 大于宽AB 的2倍.由于周长为12,故长与宽满足4<BC <6,0<AB <2. 由题意,有如下两种情形:

CE 1=x ,BE 1=BC-x ,AB =CD =2(BC-x),所以

(2AB +x)+AB=6,

所以

3.含绝对值的函数

一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.

例7 作函数y=|3-x|+|x-1|的图像.

解 当x<1时,y=(3-x)+(1-x)=-2x+4;

当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以

它的图像如图3-3所示.

例8 作函数y=|x2-5x+6|的图像.

解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以

于是,得图像如图3-4所示.

例9 点(x,y)满足方程

|x-1|+|y+2|=2,

求它的图像所围成区域的面积.

解 当x≥1,y≥-2时,x-1+y+2=2,即

y=-x+1.

当x≥1,x<-2时,x-1-(y+2)=2,即

y=x-5.

当x<1,y≥-2时,-x+1+y+2=2,即

y=x-1.

当x<1,y<-2时,-x+1-(y+2)=2,即

y=-x-3.

于是,所得图像如图3-5所示.

由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为

2

例10 m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?

解法1 将原方程变形为

x2-4|x|+4=m-1.

令y=x2-4|x|+4=m-1,则

它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.

说明 本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.

解法2 原方程变形为

(|x|-2)2=m-1,

练习五

1.填空:

(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.

(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.

(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.

(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.

函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.

(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.

2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.

3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.

试求k的取值范围. 5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.

6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.

7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.

1 第1讲 函数及其表示

知识点 最新考纲 函数及其表示 了解函数、映射的概念. 了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题. 函数的基本性 质 理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数 了解指数幂的含义,掌握有理指数幂的运算. 理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数 理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数 了解幂函数的概念. 掌握幂函数y =x ,y =x 2,y =x 3,y =1 x ,y =x 1 2的图象和性质. 函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其 应用 了解指数函数、对数函数以及幂函数的变化特征. 能将一些简单的实际问题转化为相应的函数问题,并给予解决. 1.函数与映射的概念 函数 映射 两集合 A 、B 设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系 f :A →B 如果按照某种确定的对应关系f , 使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应 如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应

名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射 记法 y =f (x )(x ∈A ) 对应f :A →B 是一个映射 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集. (2)函数的三要素:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法 表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. [疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( ) (3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)若A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) (6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化] 1.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3 x 3+1 C .y =x 2 x +1 D .y =x 2+1 解析:选B.对于A ,函数y =( x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义 域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y

第04讲-函数的概念(讲义版)

第04讲函数的概念 一、考情分析 1.了解构成函数的要素,能求简单函数的定义域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用; 3.通过具体实例,了解简单的分段函数,并能简单应用. 二、知识梳理 1.函数的概念 设A,B是两个非空数集,如果按照确定的法则f,对A中的任意数x,都有唯一确定的数y与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的定义域、值域 (1)函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域;所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域. (2)如果两个函数的定义域相同,并且对应法则完全一致,则这两个函数为相等函数. 3.函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 4.分段函数 (1)在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数. (2)分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. [微点提醒] 1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点. 2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 三、经典例题 考点一求函数的定义域 【例1-2】函数y=1-x2+log2(tan x-1)的定义域为________;

【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π 2(k ∈Z ). ∴-1≤x ≤1且π4+k π1),则x =2 t -1 , ∴f (t )=lg 2t -1,即f (x )=lg 2 x -1 (x >1). 【例2-2】已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; 【解析】设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1, 所以???2a =1,a +b =-1, 即?????a =1 2,b =-32. ∴f (x )=12x 2-3 2x +2. 【例2-3】已知函数f (x )的定义域为(0,+∞),且f (x )=2f ? ?? ?? 1x ·x -1,则f (x )=________. 【解析】在f (x )=2f ? ?? ?? 1x ·x -1中, 将x 换成1x ,则1 x 换成x , 得f ? ?? ?? 1x =2f (x )·1x -1,

1函数的定义及表示 - 中等 - 讲义

函数的定义及表示 知识讲解 一、函数 1.函数的概念 概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()y f x =,x A ?其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a =,所有函数值构成的集合{()}y y f x x A =?,叫做这个函数的值域. 2.函数的三要素:定义域,值域,对应法则 3.函数的表示法 1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; 2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系. 4.求函数定义域注意事项 1)分式的分母不应为零; 2)零的零次幂没有意义; 3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2 x x k k Z π π ??,; 6)复合函数求定义域要保证复合过程有意义,最后求它们的交集. 5.分段函数 定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数. 6.复合函数 定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]y f x =称为复合函数,u 称

为中间变量,它的取值范围是()g x 的值域. 注意:函数的定义域必须写成集合或区间的形式. 二、映射 定义:设A B , 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x 在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射,这时称y 是x 在映射f 的作用下的象,记作()f x ,于是 ()y f x = x 称为y 的原象,映射f 也可记为: :f A B ? ()x f x ? 其中A 叫做映射f 的定义域(函数定义域的推广).由所有象()f x 构成的集合叫做映射f 的值域.通常记作()f A . 映射三要素:集合A B 、以及对应法则,三者缺一不可;:f A B ?,集合A 中每一个元素 在集合B 中都有唯一的元素与之对应,从A 到B 的对应关系为一对一或多对一,绝对不可以一对多,但也许B 中有多余元素. 三、函数求解析式 1.换元法 2.方程组法 四、函数求值域 1.直接法(分析观察法) 2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域. 3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中 要注意等价性,特别是不能改变定义域.对于形如2y ax bx c =++(0)a 1或2()[()]()F x a f x bf x c =++(0)a 1类的函数的值域问题,均可使用配方法. 4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

第6章 函数逼近与函数插值

第六章 函数逼近与函数插值 本章介绍函数逼近与插值的有关理论和算法. 函数逼近问题与插值问题两者既有联系又有区别,它们都是用较简单的函数来近似未知的、或表达式较复杂的函数. 一般来说,函数逼近是要在整个区间、或一系列离散点上整体逼近被近似函数,而在进行插值时,则须保证在若干自变量点上的函数值与被近似函数相等. 6.1 函数逼近的基本概念 进行函数逼近一般是在较简单的函数类Φ中找一个函数p(x)来近似给定的函数f(x),以使得在某种度量意义下误差函数p (x )?f(x)最小. 被逼近函数f(x)可能是较复杂的连续函数,也可能是只在一些离散点上定义的表格函数,而函数类Φ可以是多项式、分段多项式、三角函数、有理函数,等等. 函数逼近问题中度量误差的手段主要是函数空间的范数,下面先介绍函数空间的范数、内积等有关概念,然后讨论函数逼近问题的不同类型. 6.1.1 函数空间 线性空间的概念大家都很熟悉,其定义中包括一个元素集合和一个数域,以及满足一定运算规则的“加法”和“数乘”运算. 简单说,若这个元素集合对于“加法”和“数乘”运算封闭,则为一线性空间. 线性空间的元素之间存在线性相关和线性无关两种关系,进而又有空间的基和维数的概念. 在这里我们先考虑连续函数形成的线性空间. 例如C [a,b ]按函数加法、以及函数与实数乘法,构成一个线性空间. 对于[a,b]区间上所有k 阶导数连续的函数全体C k [a,b ],也类似地构成一个线性空间. 我们一般讨论实数函数,因此对应的是实数域?,若讨论复数函数,则相应的是复数域?. 另外,与线性代数中讨论的向量空间?n 不同,连续函数空间是无限维的. 对线性空间可以定义范数的概念(见3.1.2节). 针对实连续函数空间C [a,b ],与向量空间类似,可定义如下三种函数的范数(function norm): 1) ∞-范数 设f (x )∈C [a,b ],则‖f (x )‖∞=max x∈[a,b ]|f (x )| . 其几何意义如图6-1所示,即函数值绝 对值的最大值. 2) 1-范数 ‖f (x )‖1=∫|f (x )|dx b a . 其几何意义如图6-2所示,即函数曲线 与横轴之间的面积总和. 3) 2-范数 ‖f (x )‖2=[∫f 2(x )dx b a ]1/2. 2-范数也常称为平方范数,其几何意义 与1-范数类似. 线性空间还有一个重要概念是内积,它 定义了空间中两个元素的一种运算. 下面给出一般的复数域上线性空间内积的定义.

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示 基础梳理 1.函数的基本概念 (1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A . (2)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集. (3)函数的三要素:定义域、值域和对应关系. (4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 两个防范 (1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯. (2)用换元法解题时,应注意换元后变量的范围. 考向一 相等函数的判断 【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( ) A y =( x )2 B y=x x 2 C 33x y = D y=2x 【例2】x x y 2 =与???-∞∈-+∞∈=). 0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域 高中阶段所有基本初等函数求定义域应注意: (1)分式函数中分母不为0; (2)开偶次方时,被开方数大于等于0; (3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1); (4)0次幂的底数不为0。

第1讲函数概念及特性2009

第1讲 函数概念及函数特性 讲授内容 一、函数概念 (1)函数定义 定义1 给定两个实数集D 和M ,若有对应法则f ,使对D 内每一个数x ,都有唯一的一个数M y ∈与它相对应,则称f 是定义在数集D 上的函数,记作 M D f →:, .y x (1) 数集D 称为函数f 的定义域,x 所对应的数y ,称为f 在点x 的函数值,常记为)(x f . )}(),(|{)(M D x x f y y D f ?∈==称为函数f 的值域. (1)中第一式“M D →”表示按法则f 建立数集D 到M 的函数关系;第二式“y x ”表示这两个数集中元素之间的对应关系,也可记为“)(x f x ”.习惯上,我们称此函数关系中的x 为自变量,y 为因变量. (2)函数的表示法 函数的表示法主要有三种,即解析法(或称公式法)、列表法和图象法.有些函数在其定义域的不同部分用

不同的公式表达,这类函数通常称为分段函数.例如,函数?? ? ??<-=>=0,10,00,1sgn x x x x 是分段函数,称为符号函数. 又如函数||)(x x f =也可用如下的分段函数形式来表示:x x x f sgn )(= . 有些函数难以用解析法、列表法或图象法来表示,只能用语言来描述.如定义在R 上的狄利克雷 )(Dirichlet 函数: ?? ?=为无理数 当为有理数当x x x D ,0,,1)( 定义在[)1,0上的黎曼)(Riemann 函数:()?? ???=∈= =+内的无理数和当为既约真分数当1,01,0 ,0),,,( ,1 )(x q p N q p q p x q x R (3)函数的四则运算 给定两个函数f ,1D x ∈和2D x ∈,记21D D D =,并设φ≠D .我们定义f 与g 在D 上的和、差、积运算如下:,),()()(D x x g x f x F ∈+=,),()()(D x x g x f x G ∈-=D x x g x f x H ∈=),()()(. 若在D 中剔除使0)(=x g 的x 值,即令,},0)(|{21* φ≠∈≠=D x x g x D D 可在*D 上定义f 与g 的商的运算如下:.,) ()()(* D x x g x f x L ∈= 注:若,21φ==D D D ,则f 与g 不能进行四则运算.例如41)()(2 2 -+-=+x x x g x f (4)复合函数 设有两函E x x g u D u u f y ∈=∈=),(,),(,记E D x g x E })(|{*∈=.若,* φ≠E 则对每一个 * E x ∈,可通过函数g 对应D 内唯一的一个值u ,而u 又通过函数f 对应唯一的一个值y .这就确定了一个 定义在* E 上的函数,它以x 为自变量,y 为因变量,记作 * * ))(()),((E x x g f y E x x g f y ∈=∈=,或 称为函数f 和g 的复合函数.并称f 为外函数,g 为内函数,u 为中间变量.函数f 和g 的复合运算也可简单地写作g f . 例1 函数),0[,)(+∞=∈= =D u u u f y 与函数R E x x x g u =∈-==,1)(2 的复合函数为 ,1))((1))((22 x x g f x x g f y -=-= = 或 其定义域E E ?-=]1,1[* . 复合函数也可由多个函数相继复合而成.例如,由三个函数= =u u y ,sin v 与2 1x v -=(它们的定义

第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质 函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究. 1.求函数值和函数表达式 对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题. 例1 已知f(x-1)=19x2+55x-44,求f(x). 解法1 令y=x-1,则x=y+1,代入原式有 f(y)=19(y+1)2+55(y+1)-44 =19y2+93y+30, 所以 f(x)=19x2+93x+30. 解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30. 可. 例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5). 解 由题设 f(-x)=-ax5+bx3-x+5 =-(ax5-bx3+x+5)+10

=-f(x)+10, 所以 f(-5)=-f(5)+10=3. 例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得 f(x)=f(x+0)=f(x ·0)=f(0)=k , 即对任意实数x ,恒有f(x)=k .所以 f(x)=f(19)=99, 所以f(1999)=99. 2.建立函数关系式 例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像. 解 因为l 2过点C(1,0),所以m +b=0,即b=-m . 设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0. 故S 的函数解析式为 例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

人教版高中数学必修一《函数的概念第一课时》说课稿

人教版高中数学必修一《函数的概念第一课时》说课稿 各位评委:大家好! 我说课的内容是人教版必修一函数的概念。我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、板书设计以及教学评价设计六个方面来汇报我对这节课的教学设计。 一、背景分析 1.教材分析 函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学大纲与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。 2.学情分析 从生源状态分析:学生的基础较差,我校是县内一所普通中学,录取分数线是全县最低的,因此学生整体的数学素养是较低的。 从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。 从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。 基于教材情况和我校学生的状态,本节课选择“低起点、低坡度、多重复,快反馈”的教学原则。 二、教学目标分析 【教学目标】 知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号 ) (x f 的意义。 过程与方法:在教师设置的问题引导下,学生通过自主学习、小组合作交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思 想,发展学生的抽象思维能力。

情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。 [设计意图]:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。 【教学难重点】 重点:理解函数的概念; 难点:理解函数符号y = f (x)的含义。 [重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。 从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。 三、教法与学法选择 采用我校“20+20”教学模式,即是学生自主的时间不少于20分钟,教师讲评时间不超过20分钟,充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习、小组合作交流等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。 四、教学过程设计 (一)过程设计 为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个阶段:

函数与基本初等函数Ⅰ第1讲函数及其表示

第1讲函数及其表示 【2013年高考会这样考】 1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用. 3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查. 【复习指导】 正确理解函数的概念是学好函数的关键,函数的概念比较抽象,应通过适量练习弥补理解的缺陷,纠正理解上的错误.本讲复习还应掌握:(1)求函数的定义域的方法;(2)求函数解析式的基本方法;(3)分段函数及其应用. 基础梳理 1.函数的基本概念 (1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B 为从集合A到集合B的一个函数,记作:y=f(x),x∈A. (2)函数的定义域、值域 在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集. (3)函数的三要素:定义域、值域和对应关系. (4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等; 这是判断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射. 一个方法

求复合函数y =f (t ),t =q (x )的定义域的方法: ①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域. 两个防范 (1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素 函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f . 双基自测 1.(人教A 版教材习题改编)函数f (x )=log 2(3x +1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞) 解析 ∵3x +1>1, ∴f (x )=log 2(3x +1)>log 21=0. 答案 A 2.(2011·江西)若f (x )= 1 log 1 2(2x +1) ,则f (x )的定义域为( ). A.? ???? -12,0 B.? ????-12,0 C.? ?? ??-12,+∞ D .(0,+∞) 解析 由log 1 2(2x +1)>0,即0<2x +1<1, 解得-1 2<x <0. 答案 A 3.下列各对函数中,表示同一函数的是( ). A .f (x )=lg x 2,g (x )=2lg x B .f (x )=lg x +1 x -1 ,g (x )=lg(x +1)-lg(x -1)

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域 【知识梳理】 一.函数的基本概念 (1)函数的定义 设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集. (3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 二.映射的概念 设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 三.函数解析式的求法 求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 四.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =tan x 的定义域为?????? x |x ∈R 且x ≠k π+π2,k ∈Z . (6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}. 【题型归纳全解】 题型一 函数的概念

函数逼近与曲线拟合

函数逼近与曲线拟合 3.1函数逼近的基本概念 3.1.1 函数逼近与函数空间 在数值计算中常要计算函数值,如计算机中计算基本初等函数及其他特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的 简单表达式,这些都涉及到在区间上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题.上章讨论的插值法就是函数逼近问题的一种.本章讨论的函数逼近,是指“对函数类A中给定的函数,记作,要求在另一类简单的便于计算的函数类B中求函数,使与的误差在某种度量意义下最小”.函数类A通常是区间上的连续函数,记作,称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等.函 数逼近是数值分析的基础,为了在数学上描述更精确,先要介绍代数和分析中一些基本概念及预备知识. 数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将为样的集合称为空间.例如将所有实n维向量组成集合,按向量加法及向量与数的乘法构成实数域上的线性空间,记作,称为n维向量空间.类似地,对次数不超过n(n为正整数)的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域上的一个线性空间,用表示,称为多项式空间.所有定义在上的连续函数集合,按函数加法和数与函数乘法构 成数域上的线性空间,记作.类似地,记为具有p阶的连续导数的函数空间. 定义1设集合S是数域P上的线性空间,元素,如果存在不全为零的数,使得

, (3.1.1)则称线性相关.否则,若等式(3.1.1)只对成立,则称线性无关. 若线性空间S是由n个线性无关元素生成的,即对都有 则称为空间S的一组基,记为,并称空间S为n维空间,系数称为x在基下的坐标,记作,如果S中有无限个线性无关元素,…,则称S为无限维线性空间. 下面考察次数不超过n次的多项式集合,其元素表示为 , (3.1.2)它由个系数唯一确定.线性无关,它是的一组基,故,且是的坐标向量,是维的.对连续函数,它不能用有限个线性无关的函数表示,故是无限维的,但它的任一元素均可用有限维的逼近,使误差 (为任给的小正数),这就是著名的Weierstrass定理.定理1(Weierstrass)设,则对任何,总存在一个代数多项式,使

(浙江专用)高考数学第二章函数概念与基本初等函数1第1讲函数及其表示教学案

第二章 函数概念与基本初等函数 知识点 最新考纲 函数及其表示 了解函数、映射的概念. 了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题. 函数的基本性 质 理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数 了解指数幂的含义,掌握有理指数幂的运算. 理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数 理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数 了解幂函数的概念. 掌握幂函数y =x ,y =x 2 ,y =x 3 ,y =1 x ,y =x 1 2的图象和性质. 函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其 应用 了解指数函数、对数函数以及幂函数的变化特征. 能将一些简单的实际问题转化为相应的函数问题,并给予解决. 1.函数与映射的概念 函数 映射 两集合 A 、B 设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系 f :A →B 如果按照某种确定的对应关系f , 使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应 如果按某一个确定的对应关系 f ,使对于集合A 中的任意一个 元素x ,在集合B 中都有唯一确定的元素y 与之对应 名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射 记法 y =f (x )(x ∈A ) 对应f :A →B 是一个映射

第1讲函数的概念、基本初等函数

第1讲:函数的概念、基本初等函数 例1、(2009年江西高考)设函 数()0)f x a =<的定义域为D ,若所有点(,()),(,)s f t s t D ∈构成一个正方形区域,则a 的值为( ) A 、2- B 、4- C 、8- D 、不能确定 例2、(2008年全国联赛)设函数(),f x ax b =+ 其中,a b 为实数,1()(),f x f x =1()(()),n n f x f f x +=1,2,3,...,n =若7()128381,f x x =+则a b += . 例3、(2011年广东省预赛)已知定义在正整数集上的函数()f n 满足一下条件: (1)()()(),f m n f m f n mn +=++ 其中,m n 为正整数; (2)(3)6f =; 则(2011)f = . 例4、(2012年福建省高考)对于实数a 和b ,定义运算“*”:{ 22,*,a ab a b a b b ab a b -≤=->. 设()(21)*(1),f x x x =--且关于x 的方程(),()f x m m R =∈恰有三个互不相等的实数根123,,,x x x 则123x x x 的取值范围是 . 例5、(2010年全国高考Ⅰ卷)已知函数()|lg |,f x x =若0a b <<,且()()f a f b =,则2a b +的取值范围是( ) A 、)+∞ B 、)+∞ C 、(3,)+∞ D 、[3,)+∞ 例6、(2012年河南省预赛)已知函数22|log |,04270(),8,43 3x x f x x x x <≤??=?-+>??若,,,a b c d 互不相等,且()()()()f a f b f c f d ===,则abcd 的取值范围是 .

第一讲实数与实函数

第一讲实数与实函数 1 . 1 实数与实函数的基本概念 一.实数 p形式的数,实数包括有理数和无理数.有理数,就是能够表示成 q 其中 p 是整数, q是不为零的整数.如果用小数表示,有理数都可 p形以表示成有限小数,或无限循环小数.无理数,就是不能表示成 q 式的数,也就是无限不循环的小数.如果将有限小数也表示成无限小数,例如:数 1 可表示为 1=…;也可以表示为 l=…(注:这是实无限的观点),为唯一性起见,数学上作了一个约定,就是不以零为循环节.数 1 约定的表示为l=…,因此,实数就是一个可以用无限小数表示的数. 二、实数的性质 1 .实数集合 R 是一个阿基米德有序域 ( 1 )在实数集合 R 上定义加法“ + ”和乘法“×”两种运算,对两种运算分别满足交换律、结合律,以及乘法关于加法的分配律;对加法,有“零元”和“负元”;对乘法有“单位元”和“逆元” ; R 成为一个“域”.

( 2 )在集合 R 上定义了一种序关系“ < " ,且满足传递性:即对 R c b a ∈?,, ,若 a < b , b < c ,则 a <c ;三歧性:即对 ,,R b a ∈?, 关系 a < b , a =b , a > b 三者必居其一,也只居其一 R 是一个全序集. ( 3 ) R 中的元素满足阿基米德性:对 R 中的任意两个正数 a , b ,必存在自然数 n ,使得 na >b. 2 .实数集合 R 是一个完备集 定义(距离空间)设 X 是一个集合,定义映射+→?R X X :ρ,满足 ( 1 )非负性:对();0,,,y x y x X y x =?=∈?ρ ( 2 )对称性:()()x y y x ,,ρρ= ; ( 3 )三角不等式:()()()y z z x y x ,,,ρρρ+≤; 则称ρ是点集 X 上的一个距离.如果 X 是一个线性空间,称()ρ,X 是一个距离空间 。 在实数集 R 上定义距离()y x y x -=,ρ(可以验证满足定义中的三条),则()ρ,R 是一个距离空间. 定义 1 . 2 设{}n x 是距离空间()ρ,X 中的点列,若对0,0>?>?N ε,当 m , n > N 时,恒有()ερ

第1讲函数概念,单调性与最值

第1讲函数及其表示 【2014年高考会这样考】 1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用. 3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查. 【复习指导】 正确理解函数的概念是学好函数的关键,函数的概念比较抽象,应通过适量练习弥补理解的缺陷,纠正理解上的错误.本讲复习还应掌握:(1)求函数的定义域的方法;(2)求函数解析式的基本方法;(3)分段函数及其应用. 基础梳理 1.函数的基本概念 (1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A. (2)函数的定义域、值域 在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集. (3)函数的三要素:定义域、值域和对应关系. (4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射. 一个方法

求复合函数y =f (t ),t =q (x )的定义域的方法: ①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域. 两个防范 (1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素 函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f . 双基自测 1.(人教A 版教材习题改编)函数f (x )=log 2(3x +1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞) 解析 ∵3x +1>1, ∴f (x )=log 2(3x +1)>log 21=0. 答案 A 2.(2011·江西)若f (x )= 1 log 1 2(2x +1) ,则f (x )的定义域为( ). A.? ???? -12,0 B.? ????-12,0 C.? ?? ??-12,+∞ D .(0,+∞) 解析 由log 1 2(2x +1)>0,即0<2x +1<1, 解得-1 2<x <0. 答案 A

相关文档
最新文档