高中地理 全球定位系统(gps)的原理介绍

高中地理 全球定位系统(gps)的原理介绍
高中地理 全球定位系统(gps)的原理介绍

全球定位系统

全球定位系统(GPS:Global Positioning System)是利用卫星星座(通信卫星)、地面控制部分和信号接收机对对象进行动态定位的系统。GPS能对静态、动态对象进行动态空间信息的获取,快速、精度均匀、不受天气和时间的限制反馈空间信息。

全球定位系统(GlobalPositioningSystem-GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。全球定位系统(GlobalPositioningSystem,缩写GPS)是美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。

1 全球定位系统的基本原理

GPS系统包括三大部分:空间部分?GPS卫星星座;地面控制部分?地面监控系统;用户设备部分?GPS信号接收机。

1)空间部分

GPS的空间部分是由24 颗工作卫星组成,它位于距地表20 200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。此外,还有4 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能保持良好定位解算精度的几何图象。这就提供了在时间上连续的全球导航能力。GPS 卫星产生两组电码, 一组称为C/ A 码( Coarse/ Acquisition Code11023MHz) ;一组称为P 码(Procise Code 10123MHz) ,P 码因频率较高,不易受干扰,定位精度高,因此受美国军方管制,并设有密码,一般民间无法解读,主要为美国军方服务。C/ A 码人为采取措施而刻意降低精度后,主要开放给民间使用。

图2 GPS卫星分布图

2)地面控制部分

地面控制部分由一个主控站,5 个全球监测站和 3 个地面控制站组成。监测站均配装有精密的铯钟和能够连续测量到所有可见卫星的接受机。监测站将取得的卫星观测数据,包括电离层和气象数据,经过初步处理后,传送到主控站。主控站从各监测站收集跟踪数据,计算出卫星的轨道和时钟参数,然后将结果送到3 个地面控制站。地面控制站在每颗卫星运行至上空时,把这些导航数据及主控站指令注入到卫星。这种注入对每颗GPS 卫星每天一次,并在卫星离开注入站作用范围之前进行最后的注入。如果某地面站发生故障,那么在卫星中预存的导航信息还可用一段时间,但导航精度会逐渐降低。

3)用户设备部分

用户设备部分即GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,即可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。

接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。

2 全球定位系统的主要特点及基本功能

GPS主要特点:(1)全天候;(2) 全球覆盖;(3)三维定速定时高精度;(4)快速省时高效率:(5)应用广泛多功能

图3 全球定位系统

GPS的基本功能包括:定位功能、遇劫报警功能、跟踪功能、遥控熄火功能、超速报警功能、授权监听功能、电子围栏功能、行使轨迹记录功能、手机查询车辆位置功能和断油功能等。

3 GPS 的发展

1957 年由苏联发射的史波尼克 (Sputnik) 人造卫星,它是人类历史上的第一颗人造卫星,至第二次大战时,美国麻省理工学院无线电实验室成功的开发了

精密导航系统,以利用陆地上的无线电基地台为架构,计算无线电波长及电波到达的时间并以三角定位法计算出自己所在的位置,以当时的技术来说,虽然误差到达一公里以上,但在当时的运用却是相当广泛。

当苏联成功的发射第一颗人造卫星时,美国约翰霍普金斯大学 (John Hopkims Univer--sity) 展示了可以由人造卫星的无线电讯号的杜卜勒移动现象来定出个别的卫星运行轨道参数,虽然这只是逻辑上的一点小进展,但假如我们能够得到卫星运行轨道参数,那么我们就能计算出在地球上的位置。

1960 ~ 1970 年之间,美国和苏联开始研究利用军事卫星来做导航用途,到了 1974 年,军方对 GPS 做了整合,即是我们现在所熟知的 Navstar 系统。

1980 年代后期开始,所有 Navstar 系统的商业运用均归美国海岸防卫队负责,现在 GPS 已和地面基地台为架构的 LORAN 和OMEGA 无线电导航系统结合,成为美国国家导航信息服务的一环。

GPS 实施计划共分三个阶段:

第一阶段为方案论证和初步设计阶段。从 1973 年到 1979 年,共发射了 4 颗试验卫星。研制了地面接收机及建立地面跟踪网。

第二阶段为全面研制和试验阶段。从 1979 年到 1984 年,又陆续发射了 7 颗试验卫星,研制了各种用途接收机。实验表明, GPS 定位精度远远超过设计标准。

第三阶段为实用组网阶段。 1989 年 2 月 4 日第一颗 GPS 工作卫星发射成功,表明 GPS 系统进入工程建设阶段。 1993 年底实用的 GPS 网即( 21+3 )GPS 星座已经建成,今后将根据计划更换失效的卫星。

全球定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。经近 10 年我国测绘等部门的使用表明, GPS 以全天候、高精度、自动化、高效

益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。

4 全球定位系统的应用范围

(1) 陆地应用

主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、市政规划控制等;

(2) 海洋应用

包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;

(3) 航空航天应用

包括飞机导航、航空遥感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。

5 GPS的典型应用

1)GPS在道路工程中的应用

GPS在道路工程中的应用,目前主要是用于建立各种道路工程控制网及测定航测外控点等。随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线路长,以知点少,因此,用常规测量手段不仅布网困难,而且难以满足高精度的要求。目前,国内已逐步采用GPS技术建立线路首级高精度控制网,然后用常规方法布设导线加密。实践证明,在几十公里范围内的点位误差只有2厘米左右,达到了常规方法难以实现的精度,同时也大大提前了工期。GPS技术也同样应用于特大桥梁的控制测量中。由于无需通视,可构成较强的网形,提高点位精度,同时对检测常规测量的支点也非常有效。GPS技术在隧道测量中也具有广泛

的应用前景,GPS测量无需通视,减少了常规方法的中间环节,因此,速度快、精度高,具有明显的经济和社会效益。

2)GPS在汽车导航和交通管理中的应用

三维导航是GPS的首要功能,飞机、轮船、地面车辆以及步行者都可以利用GPS导航器进行导航。汽车导航系统是在全球定位系统GPS基础上发展起来的一门新型技术。汽车导航系统由GPS导航、自律导航、微处理机、车速传感器、陀螺传感器、CD-ROM驱动器、LCD显示器组成。GPS导航系统与电子地图、无线电通信网络、计算机车辆管理信息系统相结合,可以实现车辆跟踪和交通管理等许多功能。

图4 供应GPS汽车导航

(1)车辆跟踪

利用GPS和电子地图可以实时显示出车辆的实际位置,并可任意放大、缩小、还原、换图;可以随目标移动,使目标始终保持在屏幕上;还可实现多窗口、多车辆、多屏幕同时跟踪。利用该功能可对重要车辆和货物进行跟踪运输。

(2)提供出行路线规划和导航

提供出行路线规划是汽车导航系统的一项重要的辅助功能,它包括自动线路规划和人工线路设计。自动线路规划是由驾驶者确定起点和目的地,由计算机软

件按要求自动设计最佳行驶路线,包括最快的路线、最简单的路线、通过高速公路路段次数最少的路线的计算。人工线路设计是由驾驶员根据自己的目的地设计起点、终点和途经点等,自动建立路线库。线路规划完毕后,显示器能够在电子地图上显示设计路线,并同时显示汽车运行路径和运行方法。

(3)信息查询

为用户提供主要物标、如旅游景点、宾馆、医院等数据库,用户能够在电子地图上显示其位置。同时,监测中心可以利用监测控制台对区域内的任意目标所在位置进行查询,车辆信息将以数字形式在控制中心的电子地图上显示出来。

(4)话务指挥

指挥中心可以监测区域内车辆运行状况,对被监控车辆进行合理调度。指挥中心也可随时与被跟踪目标通话,实行管理。

(5)紧急援助

通过GPS定位和监控管理系统可以对遇有险情或发生事故的车辆进行紧急援助。监控台的电子地图显示求助信息和报警目标,规划最优援助方案,并以报警声光提醒值班人员进行应急处理。

3)GPS的其它应用

GPS除了用于导航、定位、测量外,由于GPS系统的空间卫星上载有的精确时钟可以发布时间和频率信息,因此,以空间卫星上的精确时钟为基础,在地面监测站的监控下,传送精确时间和频率是GPS的另一重要应用,应用该功能可进行精确时间或频率的控制,可为许多工程实验服务。此外,还可利用GPS获得气象数据,为某些实验和工程应用。

全球卫星定位系统GPS是今年以来开发的最具有开创意义的高新技术之一,其全球性、全能性、全天侯性的导航定位、定时、测速优势必然会在诸多领域中得到越来越广泛的应用。在发达国家,GPS技术已经开始应用于交通运输和交通

工程。目前,GPS技术在中国道路工程和交通管理中的应用还刚刚起步,随着中国经济的发展,高等级公路的快速修建和GPS技术的应用研究的逐步深入,其在道路工程中的应用也会更加广泛和深入,并发挥更大的作用。

北斗gps卫星定位系统定位原理

网址:https://www.360docs.net/doc/4c7208661.html, 北斗gps卫星定位系统定位原理 北斗卫星定位系统哪家好?北斗卫星定位系统的原理是什么?八杰科技为您解答。 定位原理 35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成

网址:https://www.360docs.net/doc/4c7208661.html, 若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。 卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。 每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。 卫星导航原理 踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。 卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。 卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。

卫星导航仪导航定位方法与原理

先说一下GPS卫星导航定位的原理,如果用学术上的语言来说,是一个相当复杂的过程。但通俗的来说,也相当简单。 一个是地面发射器,一个是卫星接收器。比方说发射器叫"A",GPS卫星接收器叫"B",这样不间断的发射与接收(A-B,B-A),就形成了一个环路,类似主动雷达(也叫一次雷达),这样就可以将发射信号琐定。 至于导航方法,其实就更简单了,在发射与接收的环路过程中增加了软件系统,比方说发射与接收信号的地面与卫星的高度,路线,距离等等,这样通过软件系统来达到计算后就产生了数据,这些数据就是GPS使用者所需要的!例如地图导航,通过计算后的数据再转换成地图比例就可以准确的定位了! 另外不得不提的是GPS卫星定位车载终端设备。 车载终端设备是GPS车辆监控管理系统的前端设备,安装在被监控的车辆上。车载终端还可以隐秘地安装在各种车辆内,同时与车辆本身的油路、电路、门磁及车上的防盗器相连,可对车辆进行全方位的掌控。 车载终端设备主要由GPS接收机,GSM/GPRS收发模块,主控制模块及汽车防盗器、外接探头等各种外接设备组成。 GPS模块接收卫星的定位信号运算出自身的位置(经度、纬度、高度)、时间和运动状态(速度、航向),每秒1次送给单片机并存储,以便随时提供定位信息。MCU单片机控制整个车载台的协调工作。GSM/GPRS模块负责无线的收发传输。FSK部分负责对数据的调制解调,接收中心的指令数据和发射车载台的报警等信息。 话音控制部分用于控制免提话筒耳机,监听MIC,FSK调制解调信号的缓冲,放大,匹配,转换等功能。数字逻辑控制部分用于各种输入,输出的电平,脉冲信号的缓冲与驱动。电源及省电控制部分用于对汽车电平与后备电平的自动切换,稳压滤波并通过车匙及报警器的触发控制睡眠与苏醒。汽车防盗器部分负责对各探头的采集分析完成盗车报警的所有功能。双控熄火/断油路控制器受控于监控中心及汽车报警器。

北斗卫星定位系统工作原理

北斗卫星定位系统工作原理 北斗卫星定位系统是全球卫星定位系统的一种,他工作的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当北斗卫星行为系统的卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。北斗卫星定位系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于30 0m;P码频率10.23MHz,重复周期266.4天,码间距0. 1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,

其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见北斗卫星定位系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。 工作原理1 北斗卫星定位系统接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及北斗卫星定位系统信息,如卫星状况等。 北斗卫星定位系统接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

全球卫星导航系统原理与应用

第六章全球卫星导航系统原理及应用 第一节卫星定位技术简介 一、概述 具有全球导航定位能力的卫星定位导航系统称为全球卫星导航系统,英文全称为Global Navigation Satellite System,简称为GNSS。目前已有的卫星导航系统包括美国的全球卫星定位系统(GPS)、俄罗斯的全球卫星导航系统GLONASS、正在发展研究的有欧盟的GALILEO系统、中国北斗卫星导航广域增强系统。 全球定位系统(GPS)是众多卫星导航系统之一,GPS是英文Navigation Satellite Timing and Ranging/Global Positioning System的字头缩写词NAVSTAR/GPS的简称。它的含义是:利用导航卫星进行测时和测距,以构成全球定位系统。GPS具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了广泛的应用,在物探测量工作中广泛普及及应用。对于物理点的放样已经不再仅仅是采用测角和量距,而是借助GPS导航卫星信号来确定地面点的准确位置。 随着GLONASS系统、GALILEO系统以及中国的北斗系统逐步组网运营,综合各大导航系统的多星系统接收机逐步替代了先前的GPS定位的单一系统,其作业效率、定位精度、定位的稳定性与可靠性都得到了大幅度的改善。 二、卫星定位技术的发展 1957年10月4日,前苏联成功地发射了世界上第一颗人造地球卫星后,人们就开始利用卫星进行定位和导航的研究,人类的空间科学技术研究和应用跨入了一个崭新的时代,世界各国争相利用人造地球卫星为军事、经济和科学文化服务。同时,卫星定位技术在大地测量学的应用也取得了惊人的发展,迅速跨入了一个崭新的时代。 (一)早期的卫星定位技术 卫星定位技术是指人类利用人造地球卫星确定测站点位置的技术。卫星大地测量就是利用人造地球卫星为大地测量服务的一门学科。它的主要内容是在地面上观测人造地球卫星,通过测定卫星位置的方法,来解决大地测量任务,例如测定地面点的相对位置,测定地球的形状和大小等。 早期,人造地球卫星仅仅作为一种空间观测目标,由地面上的观测站对卫星的瞬间位置进行摄影测量,测定测站点至卫星的方向,建立卫星三角网。同时也可利用激光技术测定观测站至卫星的距离,建立卫星测距三角网。通过这两种观测方法,均可以实现地面点的定位,也能进行大陆同海岛的联测定位,解决了常规大地测量难以实现的远距离联测定位问题,这是常规定位技术望尘莫及的。 1966至1972年期间,美国国家大地测量局在英国和联邦德国测绘部门的协作下,用卫星三角测量方法测设了一个具有45个测站点的全球三角网,获得了±5m的点位精度。然而,

GPS定位原理介绍习题答案

14 全球定位系统(GPS)定位原理简介 一、填空题: 1、GPS接收机基本观测值有伪距观测值、载波相位观测值。 2、GPS接收机按用途分,可分为导航型接收机、测地型接收机、授时型接收机和姿态测量型接收机。其中测地型接收机,按载波频率又可分为单频接收机、双频接收机。 3、GPS接收机主要由GPS接收机天线、GPS接收机主机和电源三部分组成。 4、GPS定位是利用空间测距交会定点原理。 5、全球定位系统(GPS)主要由空间卫星部分、地面监控部分和用户设备三部分组成。 6、GPS卫星星座由 24颗卫星组成。其中21颗工作卫星, 3 颗备用卫星。工作卫星分布在 6 个近圆形的轨道面内,每个轨道上有 4 颗卫星。GPS工作卫星距离地面的平均高度是20200km。 7、地面监控部分按功能可分为监测站、主控站和注入站三种。 8、GPS接收机接收的卫星信号有:伪距观测值和载波相位观测值及卫星广播星历。 9、根据测距原理,GPS卫星定位方法有伪距定位法、载波相位测量定位和 G PS 差分定位。对于待定点位,根据接收机运动状态可分为静态定位和动态定位。根据获取定位结果的时间可分为实时定位和非实时定位。 10、在两个测站上分别安置接收机,同步观测相同的卫星,以确定两点间相对位置的定位方法称为相对定位。 11、载波相位相对定位普遍采用将相位观测值进行线性组合的方法。具体方法有三种,即单差法、双差法和三差法。 12、GPS差分定位系统由基准站、流动站和无线电通信链三部分组成。 13、GPS测量实施过程与常规测量一样包括方案设计、外业测量和内业数据处理三部分。 二、名词解释: 1、伪距单点定位----利用GPS接收机在某一时刻测定的四颗以上GPS卫星伪距及从卫星导航电文中获得的卫星位置,采用距离交会法求定天线所在的三维坐标. 2、载波相位相对定位----用两台GPS接收机,分别安置在测线两端(该测线称为基线),固定不动,同步接收GPS卫星信号。利用相同卫星的相位观测值进行解算,求定基线端点在WGS一84坐标系中的相对位置或基线向量。当其中一个端点坐标已知,则可推算另一个待定点的坐标。 3、整周跳变----当GPS接收机在跟踪卫星进行载波相位测量过程中,若因某种原因引起对卫星跟踪短暂失锁,如卫星和接收机天线之间视线方向有阻挡物或接收机受到外界电磁干扰等,将造成载波相位整周观测值的意外丢失现象。这种现象称为整周跳变。 4、静态定位---进行GPS定位时,接收机的天线始终处于静止状态,用GPS测定相对于地球不运动的点位。GPS接收机安置在该点上,接收数分钟乃至更长时间,以确定其三维坐标,又称为绝对定位。 5、动态定位----进行GPS定位时,接收机的天线始终处于运动过程中,动态定位

卫星定位系统原理及各国发展的历史

简述:卫星定位系统原理及各国发展的历史 1、子午卫星导航系统(NNSS) 该系统又称多普勒卫星定位系统,它是58年底由美国海军武器实验室开始研制,于6 4年建成的“海军导航卫星系统”(Navy Navigation Satellite System)。这是人类历史上诞生的第一代卫星导航系统。 1957年10月前苏联成功发射了第一颗人造卫星后,美国霍普金斯大学应用物理实验室的吉尔博士和魏分巴哈博士对卫星遥测信号的多普勒频移产生了浓厚的兴趣。经研究他们认为:利用卫星遥测信号的多普勒效应可对卫星精确定轨;而该实验室的克什纳博士和麦克卢尔博士则认为已知卫星轨道,利用卫星信号的多普勒效应可确定观测点的位置。霍普金斯大学应用物理实验室研究人员的工作,为多普勒卫星定位系统的诞生奠定了坚实的基础。而当时美国海军正在寻求一种可以对北极星潜艇中的惯性导航系统进行间断精确修正方法,于是美国军方便积极资助霍普金斯大学应用物理实验室开展进一步的深入研究。1958年12月在克什纳博士的领导下开展了三项研究工作:①研制卫星;②建立地球重力场模型以便卫星的精确定轨和准确预报卫星的空间位置;③研制多普勒接收机。经过众人的努力子午卫星导航系统于1964年1月正式建成并投入军方使用,直至1967年7月该系统才由军方解密供民间使用。此后用户数量迅速增长,最多达9.5万户,而军方用户最多时只有650个,不足总数的1%,可见因生产的需要民间用户远远大于军方。 1.1 子午卫星导航系统的组成 (1)卫星星座:子午卫星星座,由六颗独立轨道的极轨卫星组成。 在设计上要求卫星的轨道的偏心率为零,轨道倾角i =90°;卫星运行周期为T=107 m;卫星高度约为H=1075km;按理论上的设计,六颗卫星应当均匀分布在相互间隔为3 0度轨道平面上。但由于早期卫星入轨精度不高,各卫星周期、倾角、偏心率都存在不同程度的误差,故各卫星轨道进动的大小和方向也都不尽相同,这样经过一段时间后各卫星轨道间的间距就变得疏密不一。因而地面可观测卫星的时间分布就变得更加没有规律,中纬度地区的用户平均1.5小时左右可以观测到一颗卫星,有时在高纬上空可出现多颗卫星造成信号的互相干扰(此时必须将信噪比差的卫星关闭避免干扰);但在低纬度地区最不利时要等待10小时才能观测到卫星。

简述卫星定位系统的构成和工作原理

简述卫星定位系统的构成和工作原理 摘要:本文在于简述全球卫星定位系统(Global Positioning System)工作的基本原理和该系统的主要构成部分。 关键词:卫星定位;原子钟;vrml;web 1 引言 全球卫星定位系统(Global Positioning System)是由美国国防部于上世纪七十年代开始研制的一代新的卫星导航系统。其初始目的是为美国的海陆空三军提供实时,全天候和全球性的导航服务。在历经20年的不断建设和完善过后,其以能为全世界的目标提供三维坐标,三维速度和时间信息。因为GPS定位有高精度、高效率和低成本的优点,其在各领域得到了广泛的应用。其在国民生产中的地位可想而知。我国已在2003发射了第一颗北斗导航卫星,开始了我国的“北斗”卫星导航系统的建设。 2 卫星定位系统的构成 卫星定位系统由三部分组成:空间部分———GPS卫星;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。下面逐一简绍。 2.1 GPS卫星 全球卫星定位系统的空间部分是由24颗工作卫星组成,它位于距地表20200km 的上空, 均匀分布在6个轨道面上(每个轨道面4颗)轨道倾角为55°。此外, 还有4 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方任何时间都可观测到4颗以上的卫星,并能保持良好定位解算精度的几何图象。这就提供了在时间上连续的全球导航能力。GPS卫星产生两组电码,一组称为C/A码(Coarse/Acquisition Code1.023MHz);一组称为P码(Procise Code10.23MHz),P码因频率较高,不易受干扰, 定位精度高,因此受美国军方管制,并设有密码, 一般民间无法解读,主要为美国军方服务。C/A码人为采取措施而刻意降低精度后,主要开放给民间使用。 2.2 地面监控系统

GPS导航系统基本原理

简述GPS导航系统的基本原理 利用GPS定位卫星,在全球范围内实时进行定位、导航的系统,称为全球卫星定位系统,简称GPS。 GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距 离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR))。当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的 C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒, 相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫 星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位 置速度等信息便可得知。 可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个

GPS导航定位原理以及定位解算算法之欧阳家百创编

GPS导航定位原理以及定位解算算 法 欧阳家百(2021.03.07) 全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。 GPS用户部分的核心是GPS接收机。其主要由基带信号处理和导航解算两部分组成。其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。

1 地球坐标系简述 要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。 地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。地球直角坐标系的定义是:原点O与地球质心重合,Z 轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90度方向)。 地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。地球表面任意一点的大地纬度为过该点之椭球法线与椭球赤道面的夹角φ,经度为该点所在之椭球子午面与格林威治大地子午面之间的夹角λ ,该点的高度h为该点沿椭球法线至椭球面的距离。设地球表面任意一点P在地球直角坐标系内表达为P( x,y,z ),在地球大地坐标系内表达为P ( φ,λ,h)。则两者互换关系为:大地坐标系变为直角坐标系: (1)式中:n为椭球的卯酉圈曲率半径,e为椭球的第一偏心 率。若椭球的长半径为a,短半径为b,则有

北斗卫星导航系统定位原理及应用 2

北斗卫星导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU 登记的无线电频段为L波段。北斗一号系统的基本功能包括:定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下:?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。?北斗一号?的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,

卫星导航定位系统工作原理

卫星导航定位系统工作原理 ——摘自“位置圈”网站 前言 以下是如何GPS工作的五个逻辑步骤: 1.全球定位系统的基础是三角测量 2.为了进行三角计算,GPS接收机利用电磁波电信号的传播时间计算距离。 3.为了测量电磁波信号传播时间,全球定位系统需要有非常精确的时间系统,设计者 们使用了一些技巧实现了这种设计。 4.除了距离,我们还需要知道卫星在太空中的位置。 5.最后,你必须修正信号通过大气层时引起的任何延迟。 我们将在接下来的5个章节中详细讲解以上每一点。 卫星导航定位系统工作原理知识导航 1.三角测量。 2.距离测量。 3.获取精确的时间。 4.卫星的位置。 5.误差改正。 1 三角测量 我们用的是“三角测量”这里很不严谨的,因为它是一个词大多数人可以理解,但是纯粹主 义者也不会要求什么全球定位系统是“三角测量”,因为没有涉及的角度。但这里的确是“三边”。利用三角形几何学知识可知,测边是确定对象相对位置的一种方法。

整个全球定位系统的构思是利用远在太空的卫星作为参考点为地球上的位置定位,它看起来上似乎是不可能的,但是它的的确确是正确的,通过我们非常、非常精确地测量出到三颗卫 星的距离,就可以计算出我们在地球上任何的位置。 我们的接收机是如何计算出这个距离的。我们将稍后讲解。首先考虑如何利用到三颗卫星的 距离准确的找到你的位置。 几何学上的创意: 步骤一:假设我们测量到我们到卫星的距离是11,000英里。我们可能的位置是一个是以这 个卫星为中心,半径为11,000英里球面上。 步骤二:下一步,我们假设测量出我们距第二颗卫星的距离为12,000英里。这告诉我们,我们不仅在第一球,我们也在以第二颗卫星中心半径为12,000英里的球面上。或者换句话说,我们的处在这两个球面相交的一个圆上。 步骤三:如果我们观测到第三颗卫星,并且测量到此卫星的距离为13,000英里,这样我们又缩小了我们位置的可能性——第三个球与第二步中产生的圆的交集将为两个点。这样,通过在太空中三颗卫星,我们可以将我们位置的可能性缩小到两点。

相关文档
最新文档