天文学一些基本名词

天文学一些基本名词
天文学一些基本名词

天文学一些基本名词

任何一门学科,一个知识体系都是由一些较基本较抽象的新的概念和名词组成的。天文学也一样。下面为了能够初步接触一下天文学, 先介绍几个天文学的基本名词,作为入门的第一步。

它们分别是天球,周日视运动,子午圈,中天,黄道和目视星等。

1、天球

天球就是以观测者为球心,以无限大为半径所描绘出的假想球

面,我们看到的天体(星星、月亮、太阳)是其在这个巨大的圆球的球面上的投影位置。

2、周日视运动

由于地球自转(自西向东),所以地面上的观测者看到的天体在

天中在天球上自东向西沿着与转轴垂直的平面内的小圆转过一周。

3、子午圈

过观测者的天顶和南北天极的大圆。

4、中天

天体经过观测者的子午圈时,叫做中天。由于地球的自转,天体

天要穿过子午圈两次,其中离观测者天顶较近一次(一般是晚上的那一次)叫上中天。另外那一次叫下中天

5、黄道

简单的说就是太阳在天球中的运行轨迹。由于运动的相对性,所以黄道也就是地球公转轨道与天球的交线。

6、目视星等

公元前2世纪,希腊天文学家喜帕恰斯(伊巴谷)将恒星按照其亮度分为六等。亮度越大,星等越小。后来发现,一等星比六等星约亮10 0倍,所以定义"星等"每差一等,亮度差2.512倍。如果

比一等星还亮2.512倍为0等,比0等星还要亮2.512倍的为- 1

等... ...?依次类推。

面是一些较亮天体的目视星等

天狼星(大犬座a )-1.45 等

金星大距时)-4.4 等

木星-2.7

满月-12. 7等

太阳—2 6. 74等

天体的视亮度不仅与天体本身的发光强度有关,还和天体离我们的距

离有关。为了能够反映天体本身的真实发光强度,我们把天体假想置于距离地球10秒差距处所得到的目视星等就是该天体的绝对星等。

太阳的目视星等是- 26.74 等,但如果假想把太阳移到离我们1

0秒差距处,我们将发现它只不过是一颗非常普通的五等小星。太阳的绝对星等是+ 4.85 等。

根据天球的理论,我们将地球的赤道面无限延伸,令其与天球相交的大圆为天赤道。地球自转轴与天球的交点分别为南北天极。过两天极的大圆称为赤经圈或时圈。图中虚线所画为黄道,它与天赤道有两个交点,其中的升交点(即春分点)被定为赤经零度。赤纬的定义方法与地球纬度的定位相同,天赤道以北为正,以南为负。这样,每个天

体的位置就可以通过由赤经和赤纬构成的一对数来唯一的表示了。

太阳、行星、卫星

了解太阳系,首先需了解太阳系中各类天体名称。

太阳是一颗很普通的恒星,恒星是由炽热气体组成的能自己发光 的球状或类球状天体。在太阳系中只有太阳自身会发光,其它天体都 是因为反射太阳光才被我们发现的。

在椭园轨道上环绕太阳运行的近似球状的天体被称为行星。 太阳 系目前有九大行星。按从内到外的顺序依次是水星、金星、地球、火 星、木星、土星、天王、海王和冥王星。为了研究问题方便以及按各 行星本身特点不同,九大行星又有不同的分类, 见下图:

类木行星,

为类地行星和类木行星;根据各行星与地球的相对位置,又将它们分 成地内行星和地外行星;分布于火星与木星轨道之间,沿椭园轨道绕 太阳运行的小天体构成一个小行星带。 我国在小行星的发现方面处于 世界领先水平。 以地球为中心,地球和行星的连线与地球和太阳连线之间的交角在黄 道上的投影称为行星的距角。距角为0°时称为 "合",这时行星、太 阳、地球基本成一直线,行星被太阳的光辉所淹没。对于地外行星, 距角为 90°时称 "方照",为 180°时称为 "冲"。对地内行星,当距角 最大时称为 "大距 "。

卫星是绕行星运行的天体。月亮就是地球的卫星。

太阳系其它天体

A 、彗星:在扁长轨道上绕太阳运行的一种质量较小的天体,呈

类地行星 水星 金星 地 火(小行星带)木 土 天王 海王

冥王

匚地内行星」 地外行星

由于行星质量、 大小、密度以及化学组成不同可以把九大行星分

云雾状的独特外貌。彗星的外貌和亮度随着它离太阳远近而显著变化。当它远离太阳时,呈现为朦胧的星状小暗斑,其较亮的中心部分叫作"彗核"。彗核外围的云雾包层称为"彗发"。它是在太阳的辐射作用下由彗核中蒸发出来的气体和微小尘粒组成的。彗核与彗发合称为"彗头"。当彗星走到离太阳相当近的时候,彗发变大,太阳风和太阳的辐射压力把气体和微尘推开生成"彗尾"。由于彗星的这种独特外貌,中国民间又称其为扫帚星。

E、流星:行星际空间叫做流星体的尘粒和固体块闯入地球大气

圈同大气摩擦后燃烧产生的光迹。流星体的体积一般都不比小石子大,但速度很高。据估计每年落到地球上亮度大于10等的流星约2

000吨,一般认为后半夜看到的流星比前半夜多。

恒星和星际物质

我们夜晚观星,所看到的几乎都是恒星。晴朗无月的夜晚,大约可以看到3000 多颗。因为它们都离我们非常远,所以很难发现其在天

球上的位置变化,因此,古人就把它们叫作恒星。下面将逐一介绍双星,聚星,星团,变星,星云。

①:双星

两星互相之间因为引力的作用,每颗星绕两星的质量中心作旋转运动,这样的两颗星称为双星。双星系统在银河系中很普遍,约占总数的三分之一。双星可分为目视双星,分光双星,食双星。

目视双星是人眼通过望远镜可以直接分辩出的双星,这种双星系统中的两星之间的视角一般较大,从而能从光学上直接分辩出来。

分光双星是通过观测它们的光谱线的多普勒位移才发现它们的绕转运动的,因此两子星间的角距离较小。多普勒位移是因为光和观测者的相对运动而产生的一种波频率发生变化的效应。现代高技术天文设备已可分辨出遥远恒星相对地球5 ?m/s的速度差别了。

当双星轨道面的法线与观测者的视线交角接近9 0°时,会观测到双星的一个子星掩食另一个子星的现象,称这样的双星为食双星或几何变星。

②:聚星

少至三个多至十多个恒星依靠引力,彼此聚集在一起,这样的恒星集团

称为聚星。

③:星团

星团是由至少十个多至百万颗的恒星组成的集团,它们聚集在一个不大的区域里,有很多共同的物理性质,因此对研究恒星的起源和演化具有重要意义。

星团一般分为疏散星团和球状星团。

疏散星团一般形状不规则,结构较松散,全天共约1 2 0 0多个, 其中最出名的要算金牛座的昴星团和毕星团。冬天的夜晚,在南面星

空可以看到一颗发红的亮星,那就是金牛座a,它是毕星团中最亮的

星,在其西北方向一点,有一团模糊的星,它就是著名的昴星团。眼力好的人可以辨出其中的六颗亮星。

球状星团:是由很老的几万颗恒星所组成的具有紧凑的球对称外形的恒星集团。其核心部分恒星的密度很大,从照片上看就像是抱成

—团的白蚁,最出名也是全天最亮的球状星团是位于武仙座的M 13, 质量约是300000 个太阳质量。

④变星

变星是一种亮度随时间变化的恒星,它有很多特殊的性质,是天文爱好者观测的热门对象。

变星按亮度变化的原因可分为食变星和物理变星。

食变星即是食双星(参见①的介绍)。物理变星又可分为脉动变星和激变变星。

脉动变星的光度成周期变化,其原因是由于自身的周期性的膨胀和收缩。其中造父变星(脉动变星的一种)在天文学中的地位不亚于射电望远镜,它被誉为"量天尺"。因为对造父变星结构和成因了解的比较透彻,即存在一个简单的周光关系(光变周期越长,光度一一绝对星等就越大),所以只需要观测出遥远星系中造父变星的变光周期,就可以推算出星系的距离。

激变变星包括新星和超新星。亮度突然增大(爆发)的星称为新星。亮度增幅比新星大百倍至数千倍的星称为超新星。超新星爆发时光度增为原来的千万到亿万倍,非常壮观,使其它恒星黯然失色。超新星爆发是恒星死亡的象征,其爆发后剩余的物质由于强大的自身引力而急剧收缩,终于将原子核外的电子压入核内与质子结合成中子。

根据泡利不相容原理,各简并态中子之间的简并压力顶住了引力的压缩,从而形成了中子星。1987 年。国际上对银河系的伴系大麦哲伦星系中的一颗超新星的研究全面证实了恒星演化的理论。国际上第一颗中子星的光学认证与1054 年的超新星爆发直接有关,我国在这方面的全面记载为其作出了不可磨灭

⑤星云

星云即是由一些星际分子、离子和尘埃组成的非恒星状的气体尘埃云。星云有很多分类,在此就不一一赘述了。一般认为星云是恒星爆发瓦解后抛出的气体云,但更有人认为恒星正是由于星云的引力收缩才诞生的。全天最亮的星云是猎户座大星云,其视亮度在4等左右,是每一位天体摄影爱好者渴望拍好的首选对象。

⑥恒星的演化

恒星的演化理论是天文学中少数几个被公认完美的理论之一。几乎所有的观测都证实其正确性。在介绍其之前,让我们先来了解一下赫罗图。

光谱型 B A F G K M N 绝-4

星0

等2

太阳

免疫学名词解释1

免疫学名词解释 免疫(immunity):机体免疫系统识别“自己”和“非己”,对自身成分产生天然免疫耐受,对非己异物产生排除作用的一种生理反应。 免疫防御:防止外界病原体的入侵及清除已入侵病原体及其他有害物质。 免疫监视:随时发现和清除体内出现的“非己”成分,如肿瘤细胞、衰老凋亡细胞和病毒感染细胞。 免疫自身稳定:通过自身免疫耐受和免疫调节两种主要的机制来达到免疫系统内环境的稳定。 免疫应答:是指免疫系统识别和清除“非己”物质的整个过程 固有免疫(innate immunity):固有免疫是生物在长期进化中逐渐形成的,是机体抵御病原体入侵的第一道防线 适应性免疫(acquired immunity):适应性免疫应答是指体内T、B淋巴细胞接受“非己”的物质(主要指抗原)刺激后,自身活化、增殖、分化为效应细胞,产生一系列生物学效应(包括清除抗原等)的全过程。 黏膜相关淋巴组织(MALT,mucosal-associated lymphoid tissue):概念:亦称黏膜免疫系统,主要指呼吸道、胃肠道及泌尿生殖道黏膜固有层和上皮细胞下散在的淋巴组织,以及含有生发中心的淋巴组织,如扁桃体、小肠派尔集合淋巴结及阑尾等,是发生黏膜免疫应答的主要部位。 淋巴细胞再循环:指定居在外周免疫器官的淋巴细胞由输出淋巴管经淋巴干、胸导管或右淋巴导管进入血液循环,经血液循环到达外周免疫器官后,穿越HEV,重新分布于全身淋巴器官和组织的反复循环过程。 淋巴细胞归巢(lymphocyte homing):成熟淋巴细胞离开中枢免疫器官后,经血液循环趋向性迁移并定居在外周免疫器官或组织的特定区域,称为淋巴细胞归巢。 Ag(抗原,antigen):是指所有能激活和诱导免疫应答的物质,通常指能被T、B淋巴细胞表面特异性抗原受体(TCR或BCR)识别及结合,激活T、B细胞增殖、分化、产生免疫应答效应产物(特异性淋巴细胞或抗体),并与效应产物结合,进而发挥适应性免疫应答效应的物质。 免疫原性(immunogenicity):指刺激特异性免疫细胞,使之活化、

(完整版)普通天文学知识点之名词解释.doc

名词解释 绪论 1、天文学:人类认识宇宙的一门自然科学,观测研究各种天体和天体系统,研究它们的位 置、分布、运动、结构、物理状况、化学组成及起源演化规律。 2、宇宙:宇就是空间,宙就是时间。宇宙就是客观存在的物质世界,而物质是不断运动 和变化发展的,空间和时间就是物质的表现形式。现代物理学和天文学的观测和理论都确 切地表明,空间和时间不仅跟物质不可分割,而且空间和时间是密切联系在一起的时空, 这才是辩证唯物的科学宇宙观和时空观。 3、天体:宇宙各种物质客体的总称。 第一章天球和星空 1、视星等:星等一般对应于星的观测(”视“)亮暗程度。 2、星座:为了识别星而把星空划分为一些区域。 3、星图:观测星空的地图。 4、天球仪:直观展示星座和恒星在天球上的分布的仪器。 5、星表:载有一系列天体的准确赤道坐标、星等、视差(距离)、光谱型等资料的表册。 6、天文年历:载有很多重要的天象资料的工具书。 7、真太阳时:以地球相对于太阳的自转周期——昼夜(一天或一日)作为时间计量标准。 8、平太阳时:在天球上以真太阳赤经平均变化速度作均匀运动所产生的一个周期作为时间 计量标准。 9、恒星时:以地球相对于遥远恒星的自转周期(恒星日)作为时间计量标准,简记为ST。 10、世界时:国际上采用英国格林威治天文台旧址的子午圈为本初子午圈(即零子午圈), 以格林威治的地方平太阳时作为世界时,简记为UT。 11、北京时间:我国同一采用东八时区的区时(东经120°的地方平太阳时)。 12、历书时:以地球绕太阳公转周期为基准,简记为ET。 13、原子时:以铯 133 原子基态的两个超精细能级之间在零磁场中跃迁辐射9192631770 个周期所经历的时间间隔是一秒为基准,简记为TAI。 14、太阴历:以太阴(即月球)圆缺变化(朔望)周期为基准——称为月。 15、太阳历:以太阳的周年视运动(即回归年)为基准,也称为阳历。 第二章天体的运动和距离测定 1、内行星:相对于地球轨道而言,轨道半径小的水星核和金星。 2、外行星:相对于地球轨道而言,轨道半径大的火星、木星、土星、天王星、海王星和冥

免疫学名词解释整理

免疫(immunity):是指机体识别“自我”与“非我”抗原,对自身抗原形成天然免疫耐受同时排除非己抗原的,维持机体内环境生理平衡的功能。正常情况下,对机体有利;免疫功能失调时,会产生对机体有害的反应。 固有免疫应答(innate immune response):也称非特异性或获得性免疫应答,是生物体在长期种系发育和进化过程中逐渐形成的一系列防御机制。此免疫在个体出生时就具备,可对外来病原体迅速应答,产生非特异性抗感染免疫作用,同时在特异性免疫应答过程中也起作用。 适应性免疫应答(adaptive immune response):也称特异性免疫应答,是在非特异性免疫基础上建立的,该种免疫是个体在生命过程中接受抗原性异物刺激后,主动产生或接受免疫球蛋白分子后被动获得的。 免疫防御(immunologic defence):是机体排斥外来抗原性异物的一种免疫保护功能。该功能正常时,机体可抵御病原微生物及其毒性产物的感染和损害,即抗感染免疫;异常情况下,反应过高会引起超敏反应,反应过低或缺失可发生免疫缺陷。 免疫自稳(immunologic homeostasis):是机体免疫系统维持内环境稳定的一种生理功能。该功能正常时,机体可及时清除体内损伤、衰老、变性的细胞和免疫复合物等异物,而对自身成分保持免疫耐受;该功能失调时,可发生生理功能紊乱或自身免疫性疾病。 免疫监视(immunologic surveillance):是机体免疫系统及时识别、清除体内突变、畸变细胞和病毒感染细胞的一种生理功能。该功能失调时,有可能导致肿瘤发生,或因病毒不能清除而出现持续感染。 MALT(mucosal-associated lymphoid tissue):即黏膜伴随的淋巴组织。是指分布在呼吸道、肠道及泌尿生殖道的粘膜上皮细胞下的无包膜的淋巴组织。除执行固有免疫外,还可执行局部特异性免疫。 抗原(antigen,缩写Ag,不是银!):能诱导(活化/抑制)免疫系统产生免疫应答,并与相应的反应产物(抗原/致敏淋巴细胞)进行特异性结合(体内/体外)的物质。 半抗原(hapten):又称不完全抗原,是指仅具有与抗体结合的能力(抗原性),而单独不能诱导抗体产生(无免疫原性)的物质。当半抗原与蛋白质载体结合后即可成为完全抗原。 抗原决定簇(antigen determinant,AD):指抗原分子中决定抗原特异性的特殊化学基团。抗原表位(epitope):是与TCR、BCR或抗体特异性结合的基本单位,也称抗原决定基。又称抗原决定簇。 胸腺依赖性抗原(thymus dependent antigen,TD-Ag):是一类必须依赖Th细胞辅助才能诱导机体产生抗体的抗原。该抗原由T表位和B表位组成,绝大多数蛋白质类抗原为TD-Ag,可刺激机体产生体液免疫应答和细胞免疫应答。

名词解释

一、名词解释 1、智者:所谓“智者”在荷马时代,是指某种精神方面的能力和技巧,以及拥有这些能力和技巧的人。随着“智者”词义的延伸,具有治国能力的人同样被当做智者。到前5世纪后期,该词被用来专指以收费授徒为职业的巡回教师。 2、职官学校:约创办于中王国时期,训练一般的能从事某种专项工作的官员,修业期十二年。 3、寺庙学校:又称僧侣学校。这是中王国以后出现的一种附设在寺庙中的学校,着重科学技术教育,亦为学术中心。 4、产婆术:即“苏格拉底法”,问答法。是苏格拉底的教育思想之一,他将教师比喻成“知识”产婆,因此也叫产婆术。是西方最早的启发式教育。产婆术包括:讥讽、助产术、归纳和定义四个步骤。讥讽是就对方的发言不断追出提问,迫使对方自陷矛盾,终于承认自己的无知。助产术即帮助对方自己得到问题的答案。归纳即从各种具体事物中找到事物的共性、本质,通过对具体事物的比较寻求“一般”。定义是把个别事物归入一般概念得到事物的普遍概念。 5、宫廷学校:是一种设在国王或贵族宫廷中,主要培养王公贵族后代的教育机构。 6、古儒学校:公元前8世纪以后,随着科学文化的发展,古印度出现了办在婆罗门僧侣家中的学校,即“古儒学校”,教师即被称为“古儒”。儿童入学须经古儒的考验。古儒声称不收学费,但实际上接受家长丰厚的馈赠,其田地由学生代耕。学生入学后住到古儒家中,学习年限为12年,《吠陀》经为主要的学习内容,规定语音学、韵律学、文法学、字源学、天文学和祭礼这六科是学习《吠陀》经所必需的基本训练。因此,虽然学校课程以神学为主,但涉及的知识领域相当广泛,在客观上有利于印度学术的发展。由于学科的学术性质导致教学方法有一定的改进,但体

医学免疫学名词解释63862

第一章 免疫(immunity)机体识别和排除抗原性异物,维持机体正常生理平衡和稳定的功能。 免疫防御(immune defense)防止外界病原体的入侵及清除已入侵病原体(如细菌、病毒、真菌、支原体、衣原体、寄生虫等)及其他有害物质。 免疫监视(immune surveillance)随时发现和清除体内出现的“非己”成分,如肿瘤细胞和衰老、凋亡细胞。免疫自身稳定(immune homeostasis)通过自身免疫耐受和免疫调节两种主要的机制来达到免疫系统内环境的稳定。 免疫应答(immune response)是指免疫系统识别和清除抗原的整个过程。 第二章 造血诱导微环境(hemopoietic inductive microenvironment,HIM)由基质细胞及其所分泌的多种细胞因子(IL-3、IL-4、IL-6、IL-7、SCF、GM-CSF 等)与细胞外基质共同构成的造血细胞赖以分化发育的环境。 脾集落形成单位(colony forming unit-spleen,CFU-S)应用同系小鼠骨髓细胞输注给经射线照射的小鼠,可在受体小鼠脾脏内形成由单一骨髓干细胞发育分化而来的细胞集落,包括红细胞、粒细胞和巨核细胞等,此称为脾集落形成单位。 体外培养集落形成单位(colony forming unit-culture,CFU-C)用半固体培养技术,在有造血生长因子存在的条件下,干细胞在体外可以分化为不同谱系的细胞集落,称为体外培养集落形成单位。 初始淋巴细胞(na?ve lymphocyte)尚未接触过抗原的成熟B、T 细胞被称为初始淋巴细胞。淋巴细胞归巢(lymphocyte homing)成熟淋巴细胞离开中枢免疫器官后,经血液循环趋向性迁移并定居于外周免疫器官或组织的特定区域,称为淋巴细胞归巢。 淋巴细胞再循环(lymphocyte recirculation)淋巴细胞在血液、淋巴液、淋巴器官和组织间反复循环的过程称为淋巴细胞再循环。 第三章 抗原(antigen,Ag)是指能与T 细胞、B淋巴细胞的TCR或BCR 结合,促使其增殖、分化,产生抗体或致敏淋巴细胞,并与之结合,进而发挥免疫效应的物质。 免疫原性(immunogenicity)抗原刺激机体产生免疫应答,诱导产生抗体或致敏淋巴细胞的能力。抗原性(antigenicity)抗原与其所诱导产生的抗体或致敏淋巴细胞特异性抗原的能力。 免疫原(immunogen)或完全抗原(complete antigen)同时具有免疫原性和抗原性的物质。不完全抗原(incomplete antigen)或半抗原(hapten)仅具备抗原性的物质。 变应原(allergen)能诱导变态反应的抗原又称为变应原。耐受原(tolerogen)可诱导机体产生免疫耐受的抗原又称为耐受原。 抗原表位(epitope)或抗原决定簇(antigenic determinant)抗原分子中决定抗原特异性的特殊化学基团,是抗原与 BCR/TCR 结合的基本单位。 抗原结合价(antigenic valence)抗原分子上能与抗体分子结合的抗原部位的总数称为抗原结合价。构象表位(conformational epitope)或非线性表位(non-linear epitope)是序列上不相连的多肽或多糖通过空间构象形成的决定基。如BCR 或抗体识别的决定基,通常位于分子表面。 顺序表位(sequential epitope)又叫线形表位(linear epitope)是序列上连续线性排列的多肽形成的决定基,如TCR 识别的决定基,通常位于分子内部。 功能决定基是指位于分子表面能被BCR 或抗体直接识别的决定基。隐蔽决定基是位于分子内部,因理化因素作用而暴露才被BCR或抗体识别的决定基. 共同抗原表位(common epitope)抗原分子中常有多种抗原表位,不同抗原之间含有的相同或相似的抗原表位,称为共同抗原表位。 交叉反应(cross-reaction)抗体或致敏淋巴细胞对具有相同或相似表位的不用抗原的反应,称为交叉反应。胸腺依赖抗原(thymus dependent antigen, TD-Ag)此类抗原刺激 B 细胞产生抗体时依赖于T 细胞辅助,故又称T 细胞依赖性抗原。绝大多数蛋白质抗原属于此类。 第 1 页共9 页 胸腺非依赖抗原( thymus independent antigen, TI-Ag )该类抗原刺激机体产生抗体时无需T 细胞的辅助,又称T 细胞非依赖性抗原。

天文奥赛知识点整理教学内容

天文奥赛知识点整理

一、2013年重大天象 2013年将有2次日食、3次月食,分别是:4月26日月偏食、5月10日日环食、5月25日半影月食、10月19日半影月食、11月3日日环食,但在我市均不可见。然而无需遗憾,今年的天象,仍有许多值得期待的重要看点。引人注目、令人神往的当属两颗明亮彗星的光临,尤其是11月底那颗预计比满月还要明亮的C/2012 S1(ISON)。下面,将哈尔滨今年建议观测的重要天象分类列出如下,以供参考: 1、彗星 (1)3月中上旬至4月初: C/2011 L4 (PanSTARRS) 。3月10日过近日 点,亮度预计达到1等或更亮,由于哈尔滨地处北半球中高纬度,日落后将现 身于西方低空,可观测时间短暂,稍纵即逝。4月初将降为5等左右,应是 1997年海尔-波普彗星以来,北半球肉眼可见的最亮彗星。 (2) 11月底至12月初: C/2012 S1 (ISON) 。2012年9月21日发现的掠 日彗星,2013年11月28日过近日点,近日距只有约0.012天文单位,深夜至 清晨东方天空可见,最大亮度预计达到-14等左右,如不出意外的话,将是有 史以来最亮的“超级大彗星”。 彗星的亮度将在11月初达到6等以上,现身于黎明前的东方;随后亮度不断提 高,11月下旬超过1等,黎明前趋近地平、观测时间紧迫;之后逐渐靠近太 阳,28日前后与太阳角距将不足半度,但亮度达到最大,预计为-10等以上超 过满月,白日肉眼可见;之后与太阳日远、亮度渐弱,12月初可能仍在1等左 右,12月底运行至北天极附近,亮度4-5等之间。如若预报变为现实,则为本 年度绝不亚于金星凌日的绝妙天象。 2、流星雨 (1)5月6日08时17分,宝瓶座Eta流星雨极大, ZHR=60(相当于每小时天顶流星数60颗),无月光干扰。 (2)8月13日01时59分英仙座ZHR = 90,月落无扰。 (3)12月14日13时30分,双子座流星雨极大,ZHR = 120,深夜月落无扰。 其它还有:4月22日天琴座、10月9日天龙座、10月21日猎户座、11月17日狮子座、12月22日小熊座等传统节目,让我们拭目以待。 3、日月行星 (1)4月26日03时57分月偏食;望月、食分0.015;我国西南及西部可见全过程,全国可见初亏,哈尔滨则难以看到。 (2)5月10日,11月3日将发生两次日环食,我国无法看到。 (3)5月23日19时32分,全年最大最圆超级月亮。 (4)11月1日始,金星最佳观测期;预计12月7日左右,亮度达到全年最高。 (5)12月2日06时25分,月掩水星,东北部分地区以及中国钓鱼岛可见带掩而出。

免疫名词解释

名词解释 1免疫:是指机体通过区别“自己”和“非己”,对非己物质进行识别,应答和予以清除的生物学效应的总和。 2初始淋巴细胞:未接触过抗原的成熟B,T淋巴细胞被称为初始淋巴细胞,分别通过BCR或TCR识别抗原,执行适应性免疫应答。 3免疫细胞:是指所有参与免疫应答或与免疫应答有关的细胞及其前身。 4淋巴细胞归巢:是指淋巴细胞的定向迁移,包括淋巴细胞再循环和白细胞向炎症部位迁移。 5抗原:是指能与TCR或BCR结合,激活T或B细胞增殖,分化,产生效应淋巴细胞或抗体,并与之特异性结合,从而发挥免疫效应的物质。 6完全抗原:是指同时具有免疫原性和免疫反应性的物质,即通常所说的抗原。例如:各种微生物,异种动物血清,细菌的外毒素等。 7半抗原:又称为不完全抗原。是指只有免疫反应性而无免疫原性的小分子物质,如青霉素,磺胺等。当与载体等大分子物质结合后又具有免疫原性。 8抗原决定基:是抗原分子中决定免疫应答特异性的特殊化学基团,是抗原与TCR,BCR或抗体特异结合的最小结构单位。 9抗原的结合价:一个抗原分子中,能和抗体分子结合的抗原表位总数,称为抗原的结合价。一个半抗原相当于一个抗原表位;天然蛋白大分子通常为多价抗原,含有多种,多价抗原表位,可诱导机体产生含有多种特异性抗体的多克隆抗体。10胸腺依赖性抗原:TD-Ag,是指刺激B细胞产生抗体是需要Th细胞的辅助的抗原。如,多数蛋白质抗原。 11胸腺非依赖性抗原:TI-Ag,是指刺激B细胞产生抗体时不需要Th辅助的抗原。可分为 TI-1抗原和TI-2抗原,如细菌脂多糖,聚合鞭毛素。 12共同抗原表位:在不同的抗原之间可以存在有相同或相似的抗原表位,称为共同抗原表位。共同抗原表位可引起交叉反应含有共同抗原表位的不同抗原称为交叉抗原。 13异嗜性抗原:指一类与种族无关的存在于人,动物,植物之间的共同抗原,又名Forssman抗原。 14同种异型抗原:是存在于同一种属不同个体之间的抗原。常见的人类同种异型抗原有血型抗原和组织相容性抗原。 15外源性抗原:并非由APC合成,来源于细胞外的抗原。 16内源性抗原:指在APC内新合成的抗原,如病毒感染细胞合成的病毒蛋白等。17抗体:是免疫系统在抗原的刺激下,由B细胞或记忆B增殖分化为浆细胞所产生的,可与相应抗原发生特异性结合的免疫球蛋白,称为抗体。 18免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白。 19互补决定区:Ig的VL与VH均有3个HVR,它们共同组成Ab的抗原结合部位,该部位因在空间结构上可与抗原决定簇形成精密的互补,故高变区又称互补决定区。 20调理作用:是指抗体,补体(C3b,C4b等调理素)促进吞噬细胞吞噬细菌等颗粒性抗原的作用。 21抗体依赖的细胞介导的细胞毒作用(ADCC):是一种细胞毒反应,指表达FcR 的具有杀伤活性细胞(如NK,单核巨噬)通过识别Ab的Fc段直接杀伤被抗体包

天文学基础知识

天文学基础知识 1.什么是宇宙? 宇宙是天地万物,是广漠空间和其中存在的各种天体以及弥漫物质的总称。 辨证唯物主义哲学认为,世界的本质是物质的,物质可以转换不同的存在形式,但在本质上是永久存在,永久不灭的。宇宙是普遍永恒的物质世界,在空间和时间上都是无限的。从空间看宇宙是无边无际,它没有边界,没有形状,也没有中心,如果承认宇宙以外还有什么东西,就否认了世界的物质本性;从时间看宇宙无始无终,它没有起源,没有年龄,也不会终结,如果承认宇宙有起源,就会导致创世说,实际上也否认了世界的物质本性。 但具体事物的有限性也不能否认。宇宙的无限与具体事物的有限并不矛盾,因为只有无数具体的有限才能构成全部的无限。人类观察到的宇宙是动态的,随着科学技术的进步,人类所知的宇宙在不断扩大。18世纪以前人类认识宇宙的范围只限于太阳系,随后认识到太阳系以外还有千亿个恒星,它们组成了银河系。19世纪人类又发现了河外星系,发现银河系在宇宙大家庭中只不过是相当渺小的一员。20世纪50年代的光学望远镜、60年代的射电天文望远镜把人类对宇宙的探测距离猛增,人类可以永远扩大自己对物质世界的观察视野,不会停留于某一固定的边界上,这有力证明宇宙是无限的。 天文学上通常将天文观测所及的整个时空范围称为“可观测宇宙”,有

时又叫“我们的宇宙”,或简称“宇宙”。现代科学的基本观念之一,就是可观测宇宙也像其他事物一样,有它诞生发展的历史。据现代宇宙学说估算,宇宙年龄是极其漫长的,约为150亿岁;可观测的全部宇宙空间是极为庞大的,已观测到的最远的星系距离我们大约150亿光年。 宇宙既有统一性又有多样性。宇宙的统一性在于它的物质性,宇宙的多样性在于物质的表现形式千差万别,组成宇宙的物质在存在状态、质量和性质上有着极大的差异。 宇宙是由各类天体和弥漫物质组成的。宇宙中有形形色色的天体,恒星、星云、行星、卫星、彗星、流星等天体都是宇宙物质的存在形式。2.什么是恒星和星云? 宇宙中最主要的天体是恒星和星云,因为它们拥有巨大的质量。恒星是由炽热气态物质组成,能自行发热发光的球形或接近球形的天体。恒星是像太阳一样本身能发光的星球,晴夜用肉眼看到的许多闪闪发光的星星中,绝大多数是恒星。星云是由极其稀薄的气体和尘埃组成的,形状很不规则,似云雾状的天体。 3.什么是星系? 由无数恒星和星际物质构成的巨大集合体称为星系。它们的尺度可以从几千到几十万光年。星系或称恒星系,是宇宙系统中的重要一环。星系数量众多。到目前为止,人们已在宇宙中观测到了约1000亿个星系。地球就处在由1000多亿颗恒星以及银河星云组成银河系中。有的星系离银河系较近,可以清楚地观测到它们的结构。离银河系最

免疫学名词解释

免疫学名词解释 1.免疫(Immunity):传统概念:指机体对感染有抵抗能力,而不患疫病或传染病。现代 概念:机体对自己和非己物质的识别,并排除非己物质的功能。即机体识别和清除抗原性异物,以维持机体生理平衡和稳定的功能。 2.抗原:是指能刺激机体的免疫系统产生特异性免疫应答,并能与免疫应答的产物(抗体 或致敏淋巴细胞)在体内外特异性结合的物质。 3.免疫原性(immunogenicity):能刺激机体产生免疫应答的能力(产生抗体或致敏T细 胞)。 4.抗原性(antigenicity):能与抗体或致敏淋巴细胞发生特异性结合的能力。又称:免疫反 应性(immunoreactivity)或反应原性(reactogenicity) 5.半抗原(hapten) /不完全抗原(incomplete antigen):只具有抗原性而无免疫原性的物质。 6.抗原决定基(抗原表位):抗原分子中决定抗原特异性的特殊化学基团。 7.异嗜性抗原(heterophilic antigen):是一类与种属无关的存在于人、动物及微生物之间的 共同抗原。 8.超抗原(Superantigen,SAg):极低浓度即可激活较多的T细胞克隆,产生极强的免疫应 答,这类抗原称为超抗原。 9.抗体(Ab):是B细胞识别抗原后增殖分化为浆细胞,由浆细胞合成并分泌的、能与相 应抗原特异性结合的、具有免疫功能的球蛋白。 10.免疫球蛋白(Immunoglobulin,Ig):是指具有抗体活性或化学结构与抗体相似的球蛋白。 11.单克隆抗体(monoclonal antibody,M cAb):只针对某一特定的抗原决定基,纯度高的 抗体。 12.ADCC(抗体依赖细胞介导的细胞毒作用):是指IgG与带有相应抗原的靶细胞结合后, 通过其Fc段与NK细胞、巨噬细胞、单核细胞表面的FcR结合,从而导致对靶细胞的直接杀伤作用。 13.补体(Complement,C):正常人或动物体液中存在的一组与免疫有关,并具有酶活性的 球蛋白。 14.白细胞分化抗原:有称CD抗原或CD分子,指血细胞在分化成熟的不同阶段及细胞活 化过程中,出现或消失的细胞表面标记分子。 15.黏附分子(adhesion molecules,AM):是众多介导细胞间或细胞与细胞外基质间相互接 触和结合分子的统称。 16.细胞因子(Cytokine,CK):是由活化细胞分泌的具有生物活性的小分子多肽、蛋白质 物质。细胞因子能介导多种免疫细胞间的相互作用。 17.白介素(interleukin,IL) :在白细胞间发挥作用的细胞因子,后来发现也可作用于其它细 胞。 18.肿瘤坏死因子(TNF):一种能使肿瘤发生出血坏死的细胞因子。 19.生长因子(GF):具有刺激细胞生长作用的细胞因子。TGF- β,EGF,VEGF,NGF等。 20.趋化因子:由白细胞与造血微环境中的基质细胞分泌,可结合在内皮细胞的表面,对中 性粒细胞、单核细胞、淋巴细胞、嗜酸性粒细胞和嗜碱性粒细胞具有趋化和激活活性。 如IL-8。 21.组织相容性:指不同个体间进行组织或器官移植时,受者与供者双方相互接受的程度。 22.组织相容性抗原:引起排斥反应的抗原,也称移植抗原。 23.主要组织相容性复合体( MHC ):是一群高度多态性、紧密连锁的编码主要组织相容性 抗原的基因复合体。 24.人类白细胞抗原(Human Leukocyte Antigen ,HLA):由于人类主要组织相容性抗原首先

化学名词解释(自己整理的)

1.盖斯俄国化学家1836年经过许多次实验,他总结出一条规律:在任何化学反应过程中的热量,不论该反应是一步完成的还是分步进行的,其总热量变化是相同的,1860年以热的加和性守恒定律形式发表。这就是举世闻名的盖斯定律。盖斯定律是断定能量守恒的先驱,也是化学热力学的基础。我们常称盖斯是热化学的奠基人。 2.勒·夏特列/勒·夏特利埃(Le Chatelier,Henri Louis),法国化学家。对热学的研究很自然将他引导到热力学的领域中去,使他得以在1888年宣布了一条他因而遐迩闻名的定律,那就是至今仍称为的勒夏特列原理。如果改变影响平衡的一个条件(如浓度,压强或温度等),平衡就向能够减弱这种改变的方向移动。 3.阿伏加德罗(Ameldeo Avogadro,1776~1856)意大利物理学家、化学家。第一个认识到物质由分子组成、分子由原子组成。 4.德米特里·门捷列夫,19世纪俄国化学家,他发现了元素周期律,并就此发表了世界上第一份元素周期表。 5.1962年,巴特利特在研究无机氟化物时,发现强氧化性的六氟化铂可将O2氧化为O2+。由于O2到O2+的电离能(1165 kJ mol)与Xe到Xe的电离能相差不大(1170 kJ mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的固体。巴特利特认为它是六氟合铂酸氙(Xe[PtF6])。这是第一个制得的稀有气体化合物。后期的实验证明该化合物化学式并非如此简单,包括XeFPtF6和XeFPt2F11。 6.吉尔伯特·路易斯(GilbertNewtonLewis,1875—1946年)美国化学家。1916年,路易斯和柯塞尔同时研究原子价的电子理论。柯塞尔主要研究电价键理论。路易斯主要研究共价键理论,该理论认为,两个(或多个)原子可以相互“共有”一对或多对电子,以便达成惰性气体原子的电子层结构,而形成共价键。路易斯提出的共价键的电子理论,基本上解释了共价键的饱和性,明确了共价键的特点。共价键理论和电价键理论的建立,使得十九世纪中叶开始应用的两元素间的短线(即表示原子间的相互作用力或称“化学亲和力”)开始有明确的物理意义。但还没解决共价键的本性问题。 7.鲍林(1901.2.28—1994.8.19)是著名的量子化学家鲍林对化学键本质的研究,引申出了广泛使用的杂化轨道概念。杂化轨道理论认为,在形成化学键的过程中,原子轨道自身回重新组合,形成杂化轨道,以获得最佳的成键效果。根据杂化轨道理论,饱和碳原子的四个价层电子轨道,即一个2S轨道和三个2P轨道喙线性组合成四个完全对等的sp3杂化轨道,量子力学计算显示这四个杂化轨道在空间上形成正四面体,从而成功的解释了甲烷的正四面体结构。(现代价键理论,VB法)鲍林于1932年首先提出了用以描述原子核对电子吸引能力的电负性概念,并且提出了定量衡量原子电负性的计算公式。 8.弗里德里希·洪特(Friedrich Hund,1896年2月4日—1997年3月31日),德国理论物理学家,在能量相等的轨道上,自旋平行的电子数目最多时,原子的能量最低。所以在能量相等的轨道上,电子尽可能自旋平行地多占不同的轨道。例如碳原子核外有6个电子,按能量最低原理和泡利不相容原理,首先有2个电子排布到第一层的1s轨道中,另外2个电子填入第二层的2s轨道中,剩余2个电子排布在2个p轨道上,具有相同的自旋方向,而不是两个电子集中在一个p轨道,自旋方向相反。 9.分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。1932年,美国化学家慕利肯和德国化学家洪特提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。

第5章__恒星的基本知识(浙师大天文学题库)

第5章恒星的基本知识 对于未说明观测地点的观测,可以认为是在(东经120度,北纬40度)进行的。 一、选择题 1.赫罗图中(横轴取温度递减),大部分恒星分布从左上方到右下方对角线的狭窄带,这个区域称为“主星序”,而位于主星序左下方的是()。(A) (A)白矮星(B)红矮星(C)红巨星(D)超巨星 2.从高温到低温,恒星光谱型的正确顺序是()。(B) (A)OABFKGM (B)OBAFGKM (C)OKFMBAK (D)ABCDEFG 3.下列光谱型中哪一种对应的温度最高?()。(B) (A) A (B) B (C)G (D)K 4.天空中的恒星有的相对发红,有的相对发蓝。蓝星与红星相比较,哪种说确?()。(D) (A)更为年老(B)质量较小(C)重元素较少(D)表面温度高 5.一个视力正常的中学生,应邀到国家天文台位于兴隆的观测基地参观,在晴朗无月的夜里,他不借助望远镜能看到的最暗的恒星大约是几等?()。(B) (A)4等(B)6等(C)7等(D)8等 6.恒星A是9等星而恒星B是4等星,则()。(B) (A)恒星B比恒星A亮5倍(B)恒星B比恒星A亮100倍 (C)恒星A比恒星B亮5倍(D)恒星A比恒星B亮100倍 7.负1等星的亮度为4等星的()倍。(D) (A)1 / 100 (B)1 / 5 (C)5 (D)100 8.1等星比6等星亮多少倍?()。(C) (A)10倍(B)152倍(C)100倍(D)106倍 9.A星视星等值比B星小10等,它的亮度是B的()倍?(A) (A)10000 (B)100 (C)10 (D)1/10000 10.下列哪一个量与亮度是一致的? ()。(D) (A)绝对星等(B)产能率(C)色指数(D)视星等 11.根据Doppler效应,向着我们运动的天体的颜色将()。(C) (A)偏红(B)不变(C)偏蓝(D)无规则变化 12.在良好的观测条件下,我们用肉眼看见仙女座大星系,我们用什么单位描述它的视大小?()。(C) (A)光年(B)秒差距(C)度(D)弧度 13.我们看到了一颗恒星视星等为5等,另一颗与之类似的恒星离我们的距离大约大10倍,其视星等大约为几等?()。(B) (A) 5 (B)10 (C)15 (D)105

教您天文望远镜基础知识入门知识讲解

教您天文望远镜基础知识入门 一、望远镜种类 (一)折射式望远镜 折射式望远镜的构造如下图: 折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ 优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。缺点:有色像差(色差)问题,会降低分辨率。 (二)反射式望远镜 反射式望远镜的构造如下图:

上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ 优点:无色差、强光力和大视场,非常适合深空天体的目视观测。缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。 (三)折反射式望远镜 折反射式望远镜的构造如下图:

上图为星特朗Omni XLT 127

综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。 三种类型望远镜优缺点对比: (1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。 (2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。首先,造价低廉,很多爱好者可以自己磨制。其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。 (3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。 三种望远镜优缺点对比: 折射式 优点:结构简单,便携,成像锐度好, 缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵 光学结构:物镜——目镜结构 反射式 优点:口径大,成像亮度高,无色差,价格相对便宜 缺点:不便携,有球差,镜筒开放维护保养相对困难 光学结构:反射镜——副镜——目镜结构 折反式 优点:便携,成像质量较好,镜筒封闭维护保养容易,

医学免疫学名词解释

医学免疫学和微生物学名词解释 1.免疫球蛋白:是指具有抗体活性或化学结构与抗体相似的球蛋白。 2.病毒体:结构完整并具有感染性的病毒颗粒。 3.菌毛:是许多革兰阴性菌与少数革兰阳性菌的菌体上具有比鞭毛细、短而直、数量多的丝状物。 4.质粒:是细菌染色体外的遗传物质,为双股环状DNA。 5.抗原:是指能与T细胞抗原受体和B细胞抗原受体特异性结合,导致T/B淋巴细胞活化产生正免疫应答,即诱导抗体和/或效应T细胞产生,并能与之特异性结合,产生免疫效应或反应的物质。 6.毒血症:产外毒素的致病菌侵入机体后,在局部组织生长繁殖,释放外毒素进入血液,到达特定靶器官组织细胞,引起特殊的毒性症状。7.Dane颗粒:是用发现者名字命名的乙肝病毒体,是Dane通过电镜观察乙肝病毒感染者血清所见到的直径42nm、具有双层衣壳的完整乙肝病毒颗粒。 8.细胞因子:是指由多种细胞,特别是免疫细胞产生的一类具有多种生物学活性的小分子多肽或糖蛋白。 9.正常菌群:在正常情况下,这些微生物对人类是有益无害的故称之为正常微生物群,命名为正常菌群。 10.免疫:是指机体免疫系统识别“自己”和“非己”,对自身成分产生天然免疫耐受,对非己异物产生排除作用的一种生理反应。 11.非胸腺依赖性抗原:又称TI抗原,由单一重复B细胞表位组成,刺激B细胞产生抗体无需Th细胞辅助。 12.消毒:是指杀灭或清除传播媒介上的致病微生物,使之达到无害化的处理。 13.真菌:是一类具有细胞壁,无叶绿素,以寄生或腐生方式生存,少数为单细胞,多数为多细胞,大小差别很大,既能进行无性繁殖,也能进行有性繁殖的真核细胞型微生物。 14.脓毒血症:化脓性细菌侵入血液后在其中大量繁殖,并通过血液扩散到其他组织器官,产生新的化脓性病灶。 15.荚膜:某些细菌在生长繁殖时,可分泌一些粘液性物质包绕在细胞壁外围,当粘液性物质牢固与细胞壁结合,厚度大于0.2um,边界明显光镜下可见时,称之为荚膜。 16.抗体:是B细胞识别抗原后增殖分化为浆细胞所产生的一类能与相应抗原特异性结合的球蛋白。 17.支原体:是一类缺乏细胞壁,呈多形态性,可通过滤菌器,能在无生命培养基中生长繁殖的最小的原核细胞型微生物。 18.侵袭力:突破宿主机体的免疫防御机制,并在宿主生理环境中定居、生长繁殖和扩散能力。 19.超敏反应:是指机体的免疫系统在对抗原发生免疫效应时所发生的一种以机体生理功能紊乱或组织细胞损伤为主的特异性免疫应答。20.核衣壳:由核心和衣壳组成的结构。 21.抗原决定簇:是指抗原分子中决定特异性的特殊化学基团。 22.人工自动免疫:是用疫苗或类毒素等抗原性物质免疫机体,使之产生特异性免疫应答,从而对相应病原体感染产生抵抗作用的措施,也称为预防接种。 25.败血症:致病菌侵入血液,并在其中大量生长繁殖,并通血液扩散到其他组织器官,产生新的化脓性病灶。 26.TD抗原:又称胸腺依赖性抗原,既有T细胞表位,又有B细胞表位,刺激B细胞产生抗体需要Th细胞辅助。 26.抗原提呈细胞(APC):泛指具有摄取、加工处理抗原,并将抗原肽提呈给T/B淋巴细胞的一类免疫细胞,可分为专职抗原提呈细胞和非专职抗原提呈细胞两大类。 27.微生物:是一大类肉眼不能直接观察到,必须借助显微镜放大几百倍乃至几万倍后方能看到的微小生物的总称。 28.免疫学:是生命科学的一个重要组成部分,是研究机体免疫系统的组织结构和生理功能的一门学科。 29.抗原决定基:是指抗原分子中决定抗原特异性的特殊化学基团,又称表位。 30.补体:是由人或脊椎动物血清与组织液中的一组不耐热可溶性蛋白和表达于细胞表面的一组膜蛋白所组成。 31.MHC:主要组织相容性复合体,MHA的基因是一组紧密连锁的基因群,称为主要组织相容性复合体。 32.HLA:人类白细胞抗原,人的MHA因首先在白细胞表面发现,故称为人类白细胞质抗原。 33.T细胞:T淋巴细胞是来自骨髓的始祖T细胞,在胸腺环境作用下,分化发育成熟的淋巴细胞,故称胸腺依赖性淋巴细胞,简称T淋巴细胞或T细胞。 34.B细胞:B淋巴细胞是由哺乳动物骨髓或禽类法氏囊中始祖B细胞分化成熟而来,故称骨髓/法氏囊依赖性淋巴细胞,简称B淋巴细胞或B 细胞。 35.适应性免疫应答又称特异性免疫应答:是指体内抗原物异性T/B淋巴细胞接受抗原刺激后,自身活化、增殖、分化为效应细胞,产生一系列生物学效应的全过程。 36.ADCC效应:IgG类抗体与肿瘤或病毒感染细胞表面相应抗原表位特异性结合后,可通过其Fc段与NK细胞表面相应的低亲和力IgGFc受体即FcγRIII(CD16)结合,增强或触发NK细胞对靶细胞的杀伤破坏作用,即为抗体依赖性细胞介导的细胞毒作用,简称ADCC效应。37.人工被动免疫:是给机体注射含特异性抗体的免疫血清或细胞因子等免疫效应分子,以治疗或紧急预防传染性疾病的措施。 38.血清学试验:采用含有已知特异性抗体的免疫血清,不仅可对分离培养出的未知纯种细菌进行鉴定,亦可区分同一菌种的不同群和型。39.类毒素:外毒素经0.3%~0.4%甲醛溶液处理后,丧失其毒性作用,仍保留原有免疫原性,即为类毒素。 40.免疫细胞:指所有参加免疫应答或与免疫应答有关的细胞及其前体细胞。 41.有丝分裂原:指能够非特异多克隆刺激T/B淋巴细胞发生有丝分裂的物质。 42.造血干细胞:主要来源于骨髓,具有自我更新和分化两种潜能,在造血组织微环境中,可增殖分化为各种功能不同的血细胞。 43.单核巨噬细胞:包括血液中的单核细胞和组织器官中的巨噬细胞。 44.树突状细胞DC:广泛分布于脑以外的全身组织和脏器,数量较少,仅占人外周血单个核细胞的1%,因其具有许多分枝突起故名。45.NK细胞:自然杀伤细胞来源于骨髓淋巴样干细胞,其发育成熟依赖于骨髓和胸腺微环境。主要分布于外周血和脾脏。 46.白细胞介素IL:主要由白细胞产生的,能介导白细胞间或白细胞与其他细胞间相互作用的细胞因子。 47.无菌操作:是指在无菌状态下的操作,即防止微生物进入人体或其他物品的操作方法。 48.菌血症:病原菌由局部侵入血流,但未在血液中繁殖,仅通过血液播散到合适的组织器官中进一步繁殖。如伤寒杆菌感染早期可引起菌血症。 49..隐性感染:当机体抗感染的免疫力较强,或侵入体内的病原菌数量较少,毒力较低时,则虽有病原菌感染,但不出现明显的临床症状,并可刺激机体产生特异性免疫。如脑膜炎球菌、甲型肝炎病毒等的感染,以隐性感染为主。 50.不完全吞噬:吞噬细胞吞噬某些病原菌后,不能将其消化降解,使病原菌反而受到保护,并随吞噬细胞的游走在体内扩散。如结核杆菌因具有硫酸脑苷酯,可抵抗吞噬,因此在特异性免疫产生之前,吞噬细胞对其的吞噬常常为不完全吞噬。

气象学名词解释整理

气象学名词解释整理 第一章 气压:大气的压力,即单位面积上所承受的整个大气柱的重量 大气湿度:大气中水汽含量的多少 绝对湿度:单位体积空气中所含的水汽质量 水汽压:大气中的水汽产生的压力 饱和水汽压:饱和空气产生的水汽压 相对湿度:实际水汽压/饱和水汽压*100% 饱和差:饱和水汽压-实际水汽压 比湿:湿空气中,水汽的质量/该团空气总质量(水汽+干空气) 露点温度:当空气中水汽含量不变,且气压一定时,使空气冷却到饱和的温度 降水:天空降落到地面的液态或固态水 风:空气的水平运动,是矢量 云量:将地平面以上全部天空划分为10份,被云遮蔽的份数 能见度:视力正常的人在当时的天气条件下,能够从天空背景中看到和辨出目标物的最大水平距离 第二章 辐射:是能量的一种形式,指物体以电磁波的形式放射能量 辐射通量密度:单位时间内通过单位面积的辐射能量 太阳光谱:太阳辐射能量随波长的分布 太阳高度(角):太阳光线和观测点地平线(面)间的夹角 太阳常数:在日地平均距离条件下,地球大气上界垂直于太阳光线的面上所接受的太阳辐射通量密度 日照时数:每日太阳实际照射地面的时间 直接辐射:太阳以平行光线的形式直接投射到地面上的辐射 散射辐射:经过大气散射后到达地面的辐射 太阳总辐射:直接辐射+散射辐射 大气透明系数:当太阳在天顶时,到达地面与太阳光垂直面上的太阳辐射通量密度与太阳常数之比 反射辐射:到达地面的总辐射由于地面的反射作用返回大气或宇宙空间 反射率:反射辐射/总辐射 大气逆辐射:大气辐射指向地面的部分 地面有效辐射:地面发射的长波辐射-地面吸收的大气逆辐射 地面净辐射:地面吸收太阳辐射获得的能量与地面有效辐射失去的能量 第三章 比热:单位质量的物质温度变化1 ℃所吸收或放出的热量 热容量:单位体积的物质,温度变化1℃所收或放出的热量 干绝热变化:一团干空气或未饱和湿空气团,在绝热上升或绝热下降过程中的绝热变化 湿绝热变化:一团饱和湿空气团,在绝热上升或绝热下降过程中的绝热变化 气温年较差:一年中月平均气温的最高值与最低值之差 气温直减率:在对流层中气温的垂直变化用气温垂直梯度表示,高度每升高100m,气温的减低值

微生物与免疫学名词解释

微生物与免疫学名词解 释 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《医学免疫学》与《医学微生物学》名词解释 1.抗原:能刺激机体的免疫系统发生免疫应答,并能与免疫应答产物发生特异性结合的物质。 2.表位(抗原决定簇):抗原分子中决定抗原特异性的特殊化学基团。 3.异嗜性抗原:存在于人、动物、微生物等不同种属之间的共同抗原。 4.抗体:免疫系统在抗原刺激下,由B淋巴细胞或记忆B细胞增殖分化成的浆细胞所产生 的、可与相应抗原发生特异性结合的免疫球蛋白。 5.免疫球蛋白:血清中一类主要的蛋白,由α1、α2、β和γ球蛋白组成。 6.抗体依赖的细胞介导的细胞毒作用(ADCC):抗体Fab段结合病毒感染的细胞或肿瘤细 胞表面的抗原表位,其Fc段与杀伤细胞表面的FcR结合,介导杀伤细胞直接杀伤靶细胞。 7.补体:正常人或动物体液中存在的一组与免疫有关,并具有免疫活性的免疫球蛋白。 细胞因子:由免疫细胞及组织细胞分泌的具有生物学活性的小分子蛋白。 8.主要组织相容性复合体(MHC):某一染色体上的一群紧密连接的,决定移植组织是否 相容,与免疫应答有关的基因群。 9.人类白细胞抗原(HLA):人的MHC。 10.B细胞受体(BCR):表达于B细胞表面的免疫球蛋白。 细胞受体(TCR):表达于T细胞表面的免疫球蛋白。

12.抗原提呈细胞(APC):能够摄取、加工、处理抗原,并以抗原肽—MHC 分子复合物的形式将抗原肽信息提呈给T细胞的一类细胞。 13.免疫耐受:免疫活性细胞接触某种抗原性物质时所表现的一种特异性无应答状态。 14.超敏反应:机体受到某些抗原刺激时,出现生理功能紊乱或组织细胞损伤等异常的适应 性免疫应答。 L型细菌:细胞壁的肽聚糖结构受到理化或生物因素直接破坏或合成被抑制后的细菌,在高渗环境下仍可存活,这种细胞壁受损后,仍能够生长和分裂的细菌称为细胞壁缺陷型或L型细菌。 质粒:染色体外的遗传物质,存在于细胞质中。为闭合环状的双链DNA,控制细菌某些特定的遗传特性。 荚膜:某些细菌如肺炎球菌、炭疽杆菌等在细胞外面有一层较厚的粘液性物质,称为荚膜。 鞭毛:有些杆菌、弧菌及螺形菌的菌体上具附有细长、弯曲的丝状物,称为鞭毛。它是细菌的运动器官。 芽胞:某些菌在一定的环境条件下,细胞质脱水、浓缩,在菌体内形成折光性强、不易着色的圆形或卵圆形的小体,称为芽胞。 菌落:单个细菌经一定时间培养后形成的一个肉眼可见的细菌集团。 消毒:杀灭物体上的病原微生物,但不一定能杀死芽胞的方法。 灭菌:杀灭物体上所有微生物,包括病原微生物、非病原微生物和芽胞的方法。

相关文档
最新文档