几种常见的黄金检测方法及科学检测方法

几种常见的黄金检测方法及科学检测方法
几种常见的黄金检测方法及科学检测方法

日常生活中常见的检测黄金真假纯度的方法:

1、用牙齿咬?

经常听人说“真金用牙咬过后,会留下淡淡的牙痕,因为黄金的延展性很好,有点软,不纯的就硬,咬不动。” 在日常生活及电视剧里,这种检验黄金成色的办法比较常见。

据了解,人齿的莫氏硬度为6 ,黄金和银的相对莫氏硬度是2.53 ,纯铜是3 ,铁是4 。很多金属材料的硬度都比较低,用牙齿咬都会留下明显的咬痕。“因此,用牙齿咬区分哪个是金子哪个不是金子是没有科学依据的。”

2、用火烧?

黄金的熔点约为1064摄氏度,当火焰达到或是超过这个温度时,黄金就会变成液态。真金不怕火炼本意是讲,纯金在高温的状态下,不会氧化,颜色和重量都不会发生任何的变化,如果不是纯金,用火烧过后,颜色和重量都会发生变化。

用火烧金的方法辨别真金是有科学道理的,但是针对普通消费者而言,专家并不提倡用这样的方式,因为用一千多度的温度去烧黄金,是比较危险的,所以,这个方式不是最好的辨别真假的方法。

3、看颜色?

在试金石上画一些金的条痕,然后滴上硝酸,如果黄金条痕没有任何变化,就是真黄金,因为黄金是不溶于硝酸的。专家表示,金黄色是黄金的固有物理性质,在没有分析测试的条件下,光靠肉眼看颜色辨别真伪是不可行的。因为黄金可以加入其他的元素,把颜色改变,所以,这个鉴别方法没有科学依据。

4、吸铁石吸一吸?

“ 如果黄金饰品里含有杂质,用吸铁石吸一吸,如果能吸的起来,就说明黄金有杂质。” 最近,这种黄金辨别法开始在网上被广泛流传。

只有铁、钴、镍三种金属能被吸铁石吸起来,因此,如果黄金饰品添加了其他物质,那么吸铁石这一检测方法也就无从谈起了。

5、掂重量?

掂重量,越重越好?黄金的比重约为19.32克每立方厘米,银的比重约为10.5克每立方厘米,如果这两种材料都是1千克,银的体积将是黄金的2倍左右,但黄金的密度要更高一些。专家表示,掂黄金分量需要很多的前提条件,例如金首饰的体积、外观、形状要差不多,掂分量还需要一定的经验,例如每天都能够接触到黄金制品的人,所以,掂分量辨别真假还是不可行的。

我们日常生活中常见的检查方法原来都不靠谱,那么什么方法才是靠谱的呢?

1、密度测算法简单可行

据了解,黄金的密度在常温下是19.26 克/ 立方厘米至19.37 克/ 立方厘米,因此,可以用精度较高的量杯注入一定量的水,然后把金条放入水中,测量新的水体积,两者相减就知道金条的体积,进而得出金条的密度。如果这个密度处于标准值之间,那么该金条成色较高的可能性较大,否则就可能掺假。

普通检测可采用密度测算法,这种方法相对简单易行,能排除部分掺假的黄金。

该方法能够排除大多数掺假黄金,但如果掺假黄金经过严格的配比添加其他金属,就无法辨别了,例如铱和钨,其比重和黄金相近,光靠掂分量、测密度是辨别不出来的。

2、化学分析或光谱分析

据悉,辨别黄金最科学的办法就是在实验室里,经过化学分析或光谱分析。X荧光光谱法(西凡光谱仪厂家,何Dora: 壹叁柒贰柒叁捌陆玖叁柒)是目前比较先进科学的检测方法,非破坏性分析技术,能在几秒内识别和确定各种元素的存在,分析精度高。

小知识

千足金:金子的含量大于等于99.9%,纯度极高,几乎不含杂质。

足金:金子的含量大于等于99%。

K金:金元素和其它的金属元素(银、铜)按照不同的比例混合形成的合金。18K金:金子的含量大于等于75%。

14K金:金子的含量大于等于58.5%。

24K金:金子含量理论值是100%,现实生活中应该不存在。

常用电子元器件检测方法与技巧

常用电子元器件检测方法与技巧

民常用电子元器件检测方法与技巧元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定 1固定电容器的检测 A检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 2电解电容器的检测 A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是

常用电子元器件检测方法模板

常用电子元器件检 测方法

电子技术实用知识 ( .6.1由朱昌平在网上收集) 常见电子元器件检测方法 元器件的检测是家电维修的一项基本功, 如何准确有效地检测元器件的相关参数, 判断元器件的是否正常, 不是一件千篇一律的事, 必须根据不同的元器件采用不同的方法, 从而判断元器件的正常与否。特别对初学者来说, 熟练掌握常见元器件的检测方法和经验很有必要, 以下对常见电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法: 1固定电阻器的检测。A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度, 应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系, 它的中间一段分度较为精细, 因此应使指针指示值尽可能落到刻度的中段位置, 即全刻度起始的20%~80%弧度范围内, 以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、 ±10%或±20%的误差。如不相符, 超出误差范围, 则说明该电阻值变值了。B注意: 测试时, 特别是在测几十kΩ以上阻值的电阻时, 手不要触及表笔和电阻的导电部分; 被检测的电阻从电路中焊下来, 至少要焊开一个头, 以免电路中的其它元件对测试产生影响, 造成测量误差; 色环电阻的阻值虽然能以色环标志来确定, 但在使用时最好还是用万用表测试一下其实际阻值。 2水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3熔断电阻器的检测。在电路中, 当熔断电阻器熔断开路后, 可根据经验作出判断: 若发现熔断电阻器表面发黑或烧焦, 可断定是其负荷过重, 经过它的电流超过额定值很多倍所致; 如果其表面无任何痕迹而开路, 则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断, 可借助万用表R×1挡来测量, 为保证测量准确, 应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大, 则说明此熔断电阻器已失效开路, 若测得的阻值与标称值相差甚远, 表明电阻变值, 也不宜再使用。在维修实践中发现, 也有少数熔断电阻器在电路中被击穿短路的现象, 检测时也应予以注意。 4电位器的检测。检查电位器时, 首先要转动旋柄, 看看旋柄转动是否平滑, 开关是否灵活, 开关通、断时”喀哒”声是否清脆, 并听一听电位器内部接触点和电阻体摩擦的声音, 如有”沙沙”声, 说明质量不好。用万用表测试时, 先根据被测电位器阻值的大小, 选择好万用表的合适电阻挡位, 然后可按下述方法进行检测。 A用万用表的欧姆挡测”1”、”2”两端, 其读数应为电位器的标称阻值, 如万用表的指针不动或阻值相差很多, 则表明该电位器已损坏。 B检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测”1”、”2”(或”2”、”3”)两端, 将电位器的转轴按 逆时针方向旋至接近”关”的位置, 这时电阻值越小越好。再顺时针慢慢旋转轴柄, 电阻值应逐渐增大, 表头中的指针应平稳移动。当轴柄旋至极端位置”3”时, 阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象, 说明活动触点有接触不良的故障。 5正温度系数热敏电阻(PTC)的检测。检测时, 用万用表R×1挡, 具体可分两步操作: A常温检测(室内温度接近25℃); 将两表笔接触PTC热敏电阻的两引脚测出其实际阻值, 并与标称阻值相对比, 二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大, 则说明其性能不良或已损坏。B加温检测; 在常温测试正常的基础上, 即可进行第二步测试—加温检测, 将一热源(例如电烙铁)靠近PTC热敏电阻对其加热, 同时用万用表监测其电阻值是否随温度的升高而增大, 如是, 说明热敏电阻正常, 若阻值无变化, 说明其性能变劣, 不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻, 以防止将其烫坏。 6负温度系数热敏电阻(NTC)的检测。 (1)、测量标称电阻值Rt 用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同, 即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感, 故测试时应注意以下几点: A Rt是生产厂家在环境温度为25℃时所测得的, 因此用万用表测量Rt时, 亦应在环境温度接近25℃时进行, 以保证测试的可信度。B测量功率不得超过规定值, 以免电流热效应引起测量误差。C注意正确操作。测试时, 不要用手捏住热敏电阻体, 以防止人体温度对测试产生影响。 (2)、估测温度系数αt 先在室温t1下测得电阻值Rt1, 再用电烙铁作热源, 靠近热敏电阻Rt, 测出电阻值RT2, 同时用温度计测出此时热敏电阻RT 表面的平均温度t2再进行计算。 7压敏电阻的检测。用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻, 均为无穷大, 否则, 说明漏电流大。若所测电阻很小, 说明压敏电阻已损坏, 不能使用。 8光敏电阻的检测。A用一黑纸片将光敏电阻的透光窗口遮住, 此时万用表的指针基本保持不动, 阻值接近无穷大。此值越大说明光敏电阻性能越好。若此值很小或接近为零, 说明光敏电阻已烧穿损坏, 不能再继续使用。B将一光源对准光敏电

目前最常用的测沉渣方法

目前最常用的仍为“测绳法”。但同为测绳,具体方法却不尽相同。 1、对沉渣厚度定义理解的不同 沉渣指钻孔和清空过程中沉淀或塌孔留下的,未被循环泥浆带走的沉淀物。一般是较粗颗粒。 但也有人认为,沉渣厚度就是一清测得孔深与下导管后测得孔深之差。 或者说不同的理解体现了对钻孔深度与沉淀后实际孔深的不同理解。 2、具体方法的不同: (1)方法1:同一种吊锤、同一种吊法,某两次测得孔深之差。这里“某两次”还真不好说具体是哪两次,操作中清孔前、一清、二清、下导管后、下导管后再清,这其中任两次都有可能。实在不晓得他们的想法是什么,坛中若有人用过,请解释一下您的想法。 (2)方法2:量取钻具下到地面以下长度作为孔底深度(注:钻头长度一般取其2/3计算),测绳测得深度作为沉渣顶面深度,二者之差为沉渣厚度。 (3)方法3:“测针测饼法”:下放测针,测得深度作为孔底深度;下放测饼,测得深度作为沉渣顶面深度。二个数据之差为沉渣厚度。 (ps:所谓测针,就是二根25钢筋,长度约20cm,上面焊一个小提把,然后在测绳(细钢丝绳,上面适当做些长度记号)的底部固定一个可活动的螺栓活动扣与测针连接,测绳长度根据桩底到地面长度+2m左右;测饼:一个厚约1cm,直径约12cm 的钢板,钢板中心开一直径约5cm的孔,钢板上焊一个高15cm的由三根钢筋组成的等边三角形锥体,在锥体上方也焊上一个小圈子作提把.) 引自:https://www.360docs.net/doc/4d10737481.html,/bbs/thread-186810-1-1.html (4)方法4:同一种吊锤。先轻轻下放,测得深度作为沉渣顶面深度。再抖动下放,测得深度作为孔底深度。二者之差为沉渣厚度。请大家谈谈您用的哪种方法。为何? 如果您用了仪器测量,也请您说明仪器判定沉渣顶面和孔底的原理。 ps:有人对上述方法2的评价:(1)钻杆间有间隙,这个量累计后是不小的数字。(2)用两种工具( 我们这都用的绳测,沉渣太厚就有断桩可能,多清清,差不多就行啊,不一定要多准,哈哈,,,我以前也搞过钻孔桩施工,谈谈我本人对沉渣厚度的理解,所谓沉渣厚度就是钻孔桩成孔后测得的孔深与钻孔桩灌注前测得的孔深之差,两次量取的孔深都参照同一个基准点,量孔深时一般靠近孔壁量取,中心位置是钻尖处孔深相对比较深,一般提钻时钻头带动的泥很可能把钻尖位置填平。测孔深时一般采取测砣就是你所说的用钢板焊接成的三角锥测饼(叫法不同),底板是平的接触面积比较大,既不容易下沉,自重相对又比较大些,量取的孔深又比较准。

电子元器件检测方法

电子元器件检测方法 元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定电阻器的检测。 A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。 B注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。 2水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。 4电位器的检测。检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。

水质氨氮的测定

水质氨氮的测定 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 氨氮的测定方法主要有纳氏比色法、气相分子吸收法、苯酚——次氯酸盐(或水杨酸——次氯酸盐)比色法和电极法等。本节将主要介绍纳氏比色法和蒸馏——酸滴定法。 当水样带色或浑浊以及含有其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法(加适量的硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊);对污染严重的水或工业废水,则用蒸馏法消除干扰(调节水样的pH值使在6.0-7.4的范围,加入适量氧化镁使成微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸——次氯酸盐比色法时,则以硫酸溶液为吸收液)。 本实验的主要目的: 1 掌握水样预处理的方法; 2 掌握氨氮的测定原理及测定方法的选择 3 掌握分光光度计的使用方法,学习标准系列的配制和标准曲线的制作 一、纳氏试剂光度法(A1) 1 实验原理 碘化汞和碘化钾与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用410~425nm范围。 2 实验仪器 2.1 分光光度计 2.2 pH计 2.3 20mm比色皿 2.4 50mL比色管 1本方法与GB7479-87等效。

3 实验试剂 3.1 纳氏试剂:可任择以下两种方法中的一种配制。 3.1.1 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存待用。 3.1.2 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。 另称取7g碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存待用。 3.2 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,加热煮沸以去除氨,放冷,定容100ml。 3.3 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 3.4 铵标准使用液:移取5.00ml铵标准贮备液(3.3)于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 4 实验步骤 4.1 标准曲线的制作 4.1.1 吸取0、0.50、1.00、3.00、 5.00、7.00和10.00ml铵标准使用液(3.4)于50ml 比色管中,加水至标线,加1.0ml酒石酸钾钠溶液(3.2),摇匀。加1.5ml纳氏试剂(3.1.1或3.1.2),混匀。放置10min后,在波长420nm出,用光程20mm比色皿,以水为参比,测量吸光度。 4.1.2 由测得的吸光度减去空白的吸光度后,得到校正吸光度,以氨氮含量(mg)对校正吸光度的统计回归标准曲线。 4.2 水样的测定 4.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml 比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同标准曲线的制作(4.1)。 4.2.2 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢

各种硬度测试方法

二 硬 度 1、硬度试验 1.1硬度(hardness ) 材料抵抗弹性变形、塑性变形、划痕或破裂等一种或多种作用同时发生的能力。 最常用的有:布氏硬度、洛氏硬度、维氏硬度、努氏硬度、 肖氏硬度等。 1.2布氏硬度试验(Brinell hardness test ) 对一定直径的硬质合金球加规定的试验力压入试样表面,经规定的保持时间后,卸除试验力,测量试样表面的压痕直径。布氏硬度与试验力除的压痕表面积的商成正比。 HBW=K · ) (22 2 d D D D F ??π 式中:HBW ——布氏硬度; K ——单位系数 K=0.102; D ——压头直径mm ; F ——试验力N ; D ——压痕直径mm 。 标准块硬度值的表示方法,符号HBW 前为硬度值,符号后按顺序用数字表示球压头直径(mm ),试验力和试验力保持时间(10~15S 可不标注)。如350HBW5/750。表示用直径5mm 的硬质合金球在7.355KN 试验力下保持10~15S 测定的布氏硬度值为350,600HBW1/30/20表示用直径1mm 的硬质合金球在294.2N 试验力下保持20S 测定的布氏硬度值为600。 1.3洛氏硬度试验(Rockwell hardness test ) 在初试验力F 。及总试验力F 先后作用下,将压头(金刚石圆锥、钢球或硬质合金球)压入试样表面,经规定保持时间后,卸除主试验力F 1,测量在初试验力下的残余压痕深度h 。 HR=N- s h 式中:HR ——洛氏硬度; N ——给定标尺的硬度常数; H ——卸除主试验力后,在初试验力下压痕残留的深度(残余压痕深度);mm ; S ——给定标尺的单位;mm 。 A 、C 、D 、N 、T 标尺N=100, B 、E 、F 、G 、H 、K 标尺N=130;A 、B 、 C 、 D 、 E 、

电子元器件检测方法完整

课题二电子元器件检测方法 电子产品中的各种元器件种类繁多,其性能和应用范围有很大不同。随着电子工业的飞速发展,电子元器件中的新产品层出不穷,其品种规格十分繁杂。本课题只对电阻器、电位器、电容器、电感器、晶体管等最常用的电子元器件作简要介绍,希望能对众多的电子元器件有个概括的了解。元器件的检测是所有电器维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的连接是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要。 第一部分阻容元件 一、电阻 电阻器是电子产品中最常用的电子元件。它是耗能元件,在电路中分配电压、电流,用作负责电阻和阻抗匹配等。 电阻,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值为一欧姆。电阻的主要职能就是阻碍电流流过。事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。 (一)符号电阻器在电路图中用字母R表示,图2-1为电阻器常用符号。图2—2是常用电阻的外形图。 图2-1 电阻器常用符号图2—2 常用电阻的外形图 (二)种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的

有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。 (三)参数 电阻器的主要参数有标称阻值、允许误差(精度等级)、额定功率、温度系数、噪声、最高工作电压、高频特性等。在选用电阻器时一般只考虑标称阻值、允许误差和额定功率这三项最主要的参数,其它参数在有特殊需要时才考虑。 1)标称阻值 电阻器表面所标注的阻值叫标称阻值。不同精度等级的电阻器,其阻值系列不同。标称阻值是按国家规定的电阻器标称阻值选定的,标称阻值系列见表2-1,阻值单位为欧姆(Ω)。 表2-1 电阻器标称阻值系列 2 )允许误差 电阻器的允许误差就是指电阻器的实际阻值对于标称阻值的允许最大范围,它标志着电阻器的阻值精度。普通电阻器的误差有+5%、+10%、+20%三个等级,允许误差越小,电阻器的精度越高。精密电阻器的允许误差可分为+2%、+1%、+0.5%、…. +0.001%等十几个等级。 3)额定功率 电阻器通电工作时,本身要发热,如果温度过高就会将电阻器烧毁。在规定的温度中允许电阻器承受的最大功率,即在此功率限度以下,电阻器可以长期稳定地工作、不会显著改变其性能、不会损坏的最大功率限度就称为额定功率。电阻器的额定功率系列见表2-2所示。

水质氨氮检测方法及操作步骤

水质氨氮检测方法及操作步骤 氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮检测方法,通常有纳氏比色法、苯酚-次氯酸盐(或水酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂

几种特殊的测量方法

科学兴趣小组讲章(): 几种特殊的测量方法 长度的特殊测量 长度测量是最基本的测量。一般情况下,可以用测量工具刻度尺直接测量。如果受到某些条件的限制,不能或不易用测量工具直接测量,那么只能用间接测量。间接测量长度的方法通常有以下几种: 一、累积法 又叫测多算少法,通过积少成多的办法进行测量,再通过求平均来求得,这种方法还可以减小误差。可用于测纸的厚度和细金属线的直径。如要测某一课本中每张纸的厚度,可取若干张纸(纸的张数要适量),压紧后,用最小刻度为毫米的刻度尺量出其总厚度,然后将总厚度除以纸的张数,所得的商即是每张纸的厚度。 又如,要测细金属丝的直径,我们只要找一支圆铅笔(或粗细适 当的圆柱体),将金属丝在铅笔上依次密绕适当的圈数,用有毫米刻 度的刻度尺量出这个线圈的长度,再将线圈长除以圈数,所得的商就是金属丝的直径。 二、化曲为直法 也称棉线法。比较短的曲线,可以用一根弹性不大或没有弹性的柔软棉线替代曲线来测量。方法是把棉线的起点放在曲线的一端点处,让它顺着曲线弯曲,标出曲线 另一端点在棉线处的记号作为终点,然后把棉线拉直,用刻度尺量出棉线起点 至终点间的距离,即为曲线长度。 曲线的长度是不易直接测出的,但可以将曲线化为直线,再用工具测出直 线长。例如,测地图上某两城市铁路线的长度,可用棉线使之与地图上的铁路线重合,再把棉线弄直,用刻度尺测出其长度,即是地图上铁路线的长度。

测出如图所示曲线的长度。 取一段没有弹性的棉线,将它与所示图形完全重合,记下起点和终点位置,然后将棉线拉直后用刻度尺测出两点之间的距离,这一距离即为所示曲线的长度。显然,利用此方法还可测出地图上任意两地铁路线之间的图上距离,结合地图上的比例尺,利用公式“实际距离=图上距离/比例尺”便可算出两地之间的实际距离。 三、滚轮法 比较长的曲线,可用一轮子,先测出其直径,后求出其周长,再 将轮沿曲线滚动,记下滚动的圈数,最后将轮的周长与轮滚动的圈数 相乘,所得的积就是曲线的长度。 例如,要测运动场上跑道的长,可用已知周长的滚轮在长跑道上滚动,由滚动的圈数×滚轮的周长,就可算出跑道的长度。 四、平移法 这种测量方法也叫“卡测法”。卡测法对于部分形状规则的物体, 某些长度端点位置模糊,或不易确定,如圆柱体、乒乓球的直径,圆 锥体的高等,需要借助于三角板或桌面将待测物体卡住,把不可直接 测量的长度转移到刻度尺上,从而直接测出该长度。例如,用直角三角板和刻度尺测球体的直径、圆锥体的高、硬币的直径、圆柱体的直径等都用这种方法。 五、比例法 根据相似三角形的对应线段成比例,利用已知的长度长,求出未 知的长度长。例如,用竹子、刻度尺,在晴天测量一幢楼房的高度, 就是利用竹子的长与楼房的高的比等于他们的影子的长度之比;飞 机、轮船利用俯角和仰角以及一些已知的距离可求出未知距离的长度。

实验二、常用电子元器件的识别与检测

《电子工艺实习基础》实验报告 实验二、常用电子元器件的识别与检测 学号:014301234210 姓名:金聪班级:0143012342 1.实验目的 a.熟悉常用电子元器件基础知识 b.掌握使用万用表辨别常用元器件的方法。 2.实验内容 (1)常用电子元器件的介绍 (2)色环法识别电阻 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第四条色环:10的幂数; 第五条色环:误差表示。 例如:电阻色环“绿蓝黑黑棕”——第一位:5;第二位:6;第三位:0; 10的幂为0;误差为1%,即阻值为:560*100欧=560欧=560Ω判别第一条色环的方法: 四色环电阻为普通型电阻,从标称阻值系列表可知,其只有三种误差系列,允许偏差为±5%、±10%、±20%,所对应的色环为:金色、银 色、无色。而金色、银色、无色这三种颜色没有有效数字,所以,金色、银色、无色作为四色环电阻器的偏差色环,即为最后一条色环(金色, 银色也可作为乘数)

(3)电容器的识读 A.直标法:1-100 pF的瓷片电容、电解电容 B.数码表示法:第1、2位为有效数值,第三位为倍率 例:103=10 乘10的3次方pF,即=0.01uF C.字母表示法:主要是针对涤纶电容 例:4n7=4.7n=4700p,22n=0.022uF D.小数点表示法:自然数以下的单位为uF 例:标0.47,等效值为0.47uF d.二极管极性的判别 指针式万用表拨在R×1O0或R×1K电阻档上,数字万用表直接用二极管档。如下图所示:

二极管性能测量 二极管性能测量二极管性能鉴别的最简单方法是用万用表测其正、反向电阻值,阻值相差越大,说明它的单向导电性能越好。因此,通过测量其正、反向电阻值, 可方便地判断管子的导电性能。 (4)三极管PNP型,NPN型和基极的判别 A.将指针式万用表拨在R×1O0或R×1K电阻档上. B.红表笔任意接触三极管的任意一个电极,黑表笔依次接触另外两个电极,分别测量它们之间的电阻值.当红表笔接触某一电极时,其余两电极与该电极之间均为几百欧的电阻时则该管为PNP型,而且红表笔所接触的电极为B极; C.若黑表笔为基准,即将两根表笔对调后,重复上述测量的方法,若同时出现低电阻的情况则该管为NPN型,黑表笔所接触的是它的B极。 在判别出管型和基极B的基础上,任意假定一个电极为E极,另一个电极为C.将万用表拨在R×1K电阻档上.对于PNP型管,令红表笔接其C极,黑表笔接E极,再用手同时捏一下管子的B,C极,注意不要让电极直接相碰.在用手捏管子B,C极的同时,注意观察一下万用表指针向右摆动的幅度;

常用电子元件的检测方法概述

常用电子元件的检测方法 元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定电阻器的检测。 A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。 B?注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。 2水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。

氨氮检测方法

氨氮是指水中以游离氨(NH3)和铵离子(NH4)形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。 氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。 雨水径流以及农用化肥的流失也是氮的重要来源。 另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。 当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。 非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨的浓度≤0.02毫克/升。 氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。 纳氏试剂比色法 1 原理 碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色 度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量. 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地 面水,地下水,工业废水和生活污水中氨氮的测定. 2 仪器 2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管. 2.2 分光光度计 2.3 pH计 3 试剂 配制试剂用水均应为无氨水 3.1 无氨水可选用下列方法之一进行制备:

3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存. 3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱. 3.2 1mol/L盐酸溶液. 3.3 1mol/L氢氧化纳溶液. 3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐. 3.5 0.05%溴百里酚蓝指示液:pH6.0~7.6. 3.6 防沫剂,如石蜡碎片. 3.7 吸收液: 3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L. 3.7.2 0.01mol/L硫酸溶液. 3.8 纳氏试剂:可选择下列方法之一制备: 3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液. 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存. 3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温. 另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存. 3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml. 3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含 1.00mg氨氮. 3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 4 测定步骤 4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导 管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL. 采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.

几种特殊的测量方法

科学兴趣小组讲章(2017.9.27): 几种特殊的测量方法 长度的特殊测量 长度测量是最基本的测量。一般情况下,可以用测量工具刻度尺直接测量。如果受到某些条件的限制,不能或不易用测量工具直接测量,那么只能用间接测量。间接测量长度的方法通常有以下几种: 一、累积法 又叫测多算少法,通过积少成多的办法进行测量,再通过求平均来求得,这种方法还可以减小误差。可用于测纸的厚度和细金属线的直径。如要测某一课本中每张纸的厚度,可取若干张纸(纸的张数要适量),压紧后,用最小刻度为毫米的刻度尺量出其总厚度,然后将总厚度除以纸的张数,所得的商即是每张纸的厚度。 又如,要测细金属丝的直径,我们只要找一支圆铅笔(或粗细适 当的圆柱体),将金属丝在铅笔上依次密绕适当的圈数,用有毫米刻 度的刻度尺量出这个线圈的长度,再将线圈长除以圈数,所得的商就 是金属丝的直径。 二、化曲为直法 也称棉线法。比较短的曲线,可以用一根弹性不大或没有弹性的柔软棉线替代曲线来测量。方法是把棉线的起点放在曲线的一端点处,让它顺着曲线弯曲,标出曲线另一端点在棉线处的记号作为终点,然后把棉线拉直,用刻度尺量出棉线起点至终点间的距 离,即为曲线长度。 曲线的长度是不易直接测出的,但可以将曲线化为直线,再用工具测出直 线长。例如,测地图上某两城市铁路线的长度,可用棉线使之与地图上的铁路 线重合,再把棉线弄直,用刻度尺测出其长度,即是地图上铁路线的长度。 测出如图所示曲线的长度。 取一段没有弹性的棉线,将它与所示图形完全重合,记下起点和终点位置,然后将棉线拉直后用刻度尺测出两点之间的距离,这一距离即为所示曲线的长度。显然,利用此方法还可测出地图上任意两地铁路线之间的图上距离,结合地图上的比例尺,利用公式“实际距离=图上距离/比例尺”便可算出两地之间的实际距离。 三、滚轮法 比较长的曲线,可用一轮子,先测出其直径,后求出其周长,再 将轮沿曲线滚动,记下滚动的圈数,最后将轮的周长与轮滚动的圈数 相乘,所得的积就是曲线的长度。 例如,要测运动场上跑道的长,可用已知周长的滚轮在长跑道上 滚动,由滚动的圈数×滚轮的周长,就可算出跑道的长度。 四、平移法 这种测量方法也叫“卡测法”。卡测法对于部分形状规则的物体, 某些长度端点位置模糊,或不易确定,如圆柱体、乒乓球的直径,圆 锥体的高等,需要借助于三角板或桌面将待测物体卡住,把不可直接 测量的长度转移到刻度尺上,从而直接测出该长度。例如,用直角三 角板和刻度尺测球体的直径、圆锥体的高、硬币的直径、圆柱体的直径等都用这种方法。

常用元器件检测方法

常用电子元器件检测方法 元器件的检测是电子产品生产中不可缺少的重要部分,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供参考。 第一章电阻器的检测方法与经验 1、固定电阻器的检测。 A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。 根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。 B注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。2、水泥电阻的检测。 检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3、熔断电阻器的检测。 在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。 对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。 4、电位器的检测。 检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。 A用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。

锥度测量

锥度量规的测量方法 1.涂色法检查锥角 用涂色法检查锥角由于不需要使用复杂的测量工具,可以同时检查内外径尺寸,方法比较简单,而且测量时与使用情况相类似,属于综合性测量,在工具车间得到广泛使用。 在《圆锥量规的检定规程》(JJG177 -1977)中规定,涂色法是用特殊的红铅笔(即金属铅笔)或其他涂料,如印油、红丹等涂在塞规圆锥面上。《圆锥量规的检定规程》中规定,要检定合格的寒规(我们习惯称标准塞规),按圆周的三等分,均匀地涂三条线,涂色层厚度为2~3μm。“两锥面密合普通精度量规按触面不少于转动展开面的80%,以接触而最差的一条来确定密合性是否合格。”对高精度的锥度量规,按接触面积不少于转动展开面的95%来确定密合性是否合格。涂色层厚度不好测量,多凭经验掌握,一般不应超过5μm,着色层越厚误差越大。涂色层涂好以后,将塞规塞人套规孔内,使两者紧密结合,然后转动几次(每次转角要大于30 ?),抽出塞规,仔细观察接触情况。按着这种方法错开90?再进行一次检查,仔细观察接触情况,按上述要求确定套规是否合格。 如果大端接触面积多,而小端接触面积少,则说明套规的角度小;反之,若小端接触面积多而大端接触面少,则说明套规角度大。如果用套规检查锥度工件时,则先把工件的圆锥按三等分涂上涂料,再将套规套人工件锥体,按上述方法进行检查。 2.检查直径尺寸 把塞规塞人套规孔内,使两者紧密结台,如果新制的套规大端面与塞规的第一条环形刻线的左边缘(图1)重合为合格,允许偏差不得超过第一条环形刻线的0. 1mm。 3.用钢球测量内锥体大端直径D 这种方法比较方便,测量精度高。对于锥体较大,并且不宜在正弦尺和仪器上进行测量的内锥体而言,尤其显得方便,如图2所示。测量前一定要仔细地将精密平板和被测锥体用酒或航空汽油擦洗干净,以防灰尘或切屑小颗粒影响测量精度。然后,将被测锥体放在精密平板上,在锥体直径方向放上两个相等尺寸的钢球,且与锥面和平板相切,用量块测出两钢球间的最大距离L,由图2可知: <="" 2(90?-a)="45?-a/2 " style="padding: 0px; margin: 0px;"> 因为N=rtan(45?+ a/2) 所以D=L+2r+2r tan(45?+ a/2) = L+2r[1+ tan(45?+ a/2)] 式中 D -----内锥体大端直径,mm r------钢球半径,mm a------锥体斜角(?) 4.用钢球测量内锥体小端直径d0 首先将被测锥体和精密平板用酒精或航空汽油擦洗干净,然后,将被测内锥体放在精密平板上,如图3所示。在锥体内放上两个适当尺寸且直径相等的钢球,使之与锥面和平板相切,用最块测量出两钢球间的最大距离L1。根据上述原理和方法可以推导出小端直径d。(公式推导略)。 d0=L 1+2 r[1+tan(45?–a/2)] 式中 d0-------锥体小端直径,mm r--------钢球半径,mm a---------锥体斜角 (?) 5.用立式测长仪测量内圆锥 内锥度的测量,一般是在平板上用钢球、量块和千分表进行。这种方法测量精度较低,对于小尺寸孔径的锥体测量,此法就不适用了。我们在立式测长仪上利用自制专用测头和钢球测量内锥度,操作简单,若钢球尺寸与圆度误差适当控制,锥角的测量精度可在秒级范围。 测量方法:

相关文档
最新文档