变限积分习题

变限积分习题

1. 设函数???≤<-≤≤=2

1,210,)(2x x x x x f ,试求)(x f 在[0,2]上的一个原函数。

2.设?

?=Φ+x x x t tdt e x sin 23sin sin )(,求)(x Φ'。

3.已知?-+=x

dt t x t x 30

)1ln()(φ,求)(x φ'。

4.设)(x f 在[0,1]内可导,1)(00)0(≤'<=x f f ,

。试证: dx x f dx x f )())((103210??≥。

5.设)(x f ,)(x g 在[a ,b]上连续,证明:至少存在一个),(b a ∈ξ,使得??=b a dx x f g dx x g f ξξ

ξξ)()()()(

6. 设dt t t x f ?-=ππ0sin )(,求dx x f ?π0)(。

7.设连续函数)(x f 满足2)1(=f ,且?+=-x x dt t x tf 021)2(,求?21)(dx x f

8.设)(x f 连续,且常数0>a ,证明:??+=+a a x dx x a x f x dx x a x f 121222

)()(。

9.求?+)()()(x b x a dy y x f dx d ,其中)(,)(x b x a 是),(+∞-∞内的可微函数。

复变函数经典例题

第一章例题 例1.1试问函数二-把」平面上的下列曲线分别变成 ].;平面上的何种曲线? (1) 以原点为心,2为半径,在第一象项里的圆弧; (2) 倾角 二的直线; (3) 双曲线''■='。 解 设Z = x + =r(cosfi + ι SiIl θ)7 = y + jv = Λ(cos

0 特别,取 - ,则由上面的不等式得 ∣∕(z)∣>l∕(z o )∣-^ = M>0 因此, f ② 在匚邻域 内就恒不为0。 例1.3 设 /⑵ 4C ri ) (3≠o) 试证一 在原点无极限,从而在原点不连续。

证令变点匚—…:弓仁门 1 F ,则 而沿第一象限的平分角线 故「匚在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1 北)= 匚在二平面上处处不可微 证易知该函数在二平面上处处连续。但 Δ/ _ z+?z -z _ ?z ?z ?z ?z 零时,其极限为一1。故匚处处不可微。 证因UaJ )二倆,呛J ) = C I 。故 但 /(?) - /(0) _ λj?j ?z ? + i?y 从而 (沿正实轴。一 H ) 当I: 「时,极限不存在。因 二取实数趋于O 时,起极限为1 ,二取纯虚数而趋于 例2.2 在了 — 1满足定理 2.1的条件,但在_ I.不可微。 M (ΔJ 7O)-?(O,O) = 0 = v∕0,0) (O f O) = Ii(Q i Ly)-Ii(Ofi) Ay

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

含有变限积分或定积分的极限的求法

含有变限积分或定积分的极限的求法 【摘要】通过对变限积分和定积分的学习和研究,认识到处理含积分极限问题需利用被积函数、变限积分的相关性质,根据极限变量的类型需要相应的解决方法。 【关键词】变限积分定积分极限洛必达法则等价无穷小积分中值定理夹逼准则积分估值定理 1.含变限积分的极限的求法。 1.1 利用洛必达法则。洛必达法则则是在求解型或者型未定式极限的一种行之有效的法则,同时也要注意某些技巧,如:等价无穷小因子代换、变量代换法、恒等变形、有确定极限对的因子先求出极限等。 小结:对变限积分施行适当的变量代换,变形成带有型或型的极限问题后,一般用洛必达法则求解。而对于积分变量不是连续型变量,一般不用洛必达法则求之。 当然,洛必达法则也不是处处可以用的,例如“已知是以T为周期的连续函数,设求”,此题不能用洛必达法则,是因为分子和分母同时求导后得到,其极限不存在。一个比较直观的解法是令,其中。利用被积函数的周期性将积分区间分解成和,最终得到 1.2 换元法。积分中使用换元法实质就是对积分实施适当的变量替换,运用积分基本性质和运算法则,推出所要证明的结果,这是积分中经常使用的方法。 例2.设函数可导,且,求 例3.设在点x=0的某领域内连续,并且,求 解:当时,,令则于是 小结:但是要注意的是在使用换元法时要注意积分上下限要跟着变化,在等式两边上下限相同时,要把等式的一边化为另一边时,一般使用换元法来达到目的。 1.3 利用变限积分的等价无穷小代换。作等价无穷小代换时,如果只对分子或(分母)中的某一项做替换就会出错,必须将分子和分母的整体分别换成它们各自的等价无穷小,但是如果分子或者分母为若干个无穷小因子做替换,这时可以保证所得的新的分子或(分母)的整体与原来的分子或(分母)的整体式等价无穷

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

复变函数课后习题答案全

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

考研数学利用变限积分求导计算函数极限的方法

考研数学:利用变限积分求导计算函数极限的方法 在考研数学中,利用变限积分求导来计算定积分、函数极限和证明积分等式或不等式是常考的题型,事实上,变限积分是与微积分基本定理(牛顿-莱布尼茨公式)紧密联系在一起的,其重要性不言而喻。在上一篇文章中,文都考研数学辅导老师向大家介绍了利用变限积分求导来计算定积分的技巧,下面对利用变限积分求导来计算函数极限这类题的解题方法进行分析介绍,供各位考生参考,希望对大家有所裨益。 变限积分求导的基本公式: 公式1:若()f x 连续,则 ()()x a d f t dt f x dx =?; 公式2:若()f x 连续,12(),()x x ??可导,则21 () 2211()()(())()(())()x x d f t dt f x x f x x dx ??????''=-? 利用变限积分求导计算函数极限的基本方法: 1)如果函数是含变限积分的分式,可以考虑使用变限积分求导法计算极限; 2)通常是对 00型和∞ ∞ 型不定式积分使用,并结合洛必达法则使用; 3)如果被积函数中含参数x ,应该先将参数x 分离出来,提到积分号前面去。 例1. 求极限2 2 2lim x t x x te dt x e →∞ ? 解析:这是一个 ∞ ∞ 型不定式极限,可以运用洛必达法则,而分子是一个变上限积分函数,因此可如下计算:2 2 2 2 2 20 232lim lim 22x t x x x x x x te dt x e x x e xe x e →∞ →∞ ?==+?2 2 lim 11x x x →∞=+ 例2. 0 ()()(0)0,lim ()x x x tf x t dt f x f x f t dt →-≠??若连续,求 解析:这是一个 型不定式极限,可以运用洛必达法则,但分子中的被积函数含参数x ,需要先将x 分离出来,提到积分号外面去,这可以通过积分换元法实现,具体过程如下: 1.()()()()()()()x t u x x x x x tf x t dt x u f u du x t f t dt x f t dt -=-= --= -=-?? ? ? ?

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =? 。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。(8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有 22v u x y x ??==+??,所以(,)2222()v x y x dy xy y C x =+=++? 2,v u y x y ??=-=??又2()v y C x x ?'=+? ,所以 ()0C x '=,即()C x 为常数。

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

复变函数习题集(1-4)

第一章 复数与复变函数 一、选择题: 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 32 1+ - (D )i 2 12 3+ - 3.复数z -3(cos -isin )5 5 π π =的三角表示式为( ) A .44-3(cos isin )5 5 ππ+ B . 443(cos isin )55ππ- C . 443(cos isin )5 5 ππ+ D .44-3(cos isin )5 5 ππ- 4.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 二、填空题 1.设) 2)(3()3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π=-=i z z ,则=z 4.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线. 5.=+++→)21(lim 4 2 1z z i z 三.求方程z 3+8=0的所有复根. 第二章 解析函数 一、选择题:

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

复变函数积分(练习题)

基本要求 1. 正确理解复变函数积分的概念;01()lim ()n k k C k f z dz f z λζ→==?∑? 2. 掌握复变函数积分的一般计算法;()()()(())()C C f z dz u iv dx idy f z t z t dt βα '=++=??? 3. 掌握并能运用柯西—古萨基本定理和牛顿—莱布尼茨公式来计算积分; ()0C f z d z =? ,10 10()()()z z f z dz G z G z =-? 4. 掌握闭路变形定理、复合闭路定理,并能运用其计算积分; 1()()C C f z dz f z dz =?? ,1()()k n C C k f z dz f z dz ==∑?? 5. 掌握并能熟练运用柯西积分公式;00 ()2()C f z dz if z z z π=-? 6. 掌握解析函数的高阶导数公式,理解解析函数的导数仍是解析函数,会用高阶导数公式计算积分。 0102()()()! n C if z f z dz z z n π+=-? 一、填空题 1.2||122z dz z z ==++? ( ) ; 2.22|1|111z z dz z -=+=-? ( ) ; 3.2||1cos ()z z dz z π==-? ( ) ; 4.设()f z 在单连通域D 内解析且不为零,C 为D 内任一条简单闭曲线,则()2()1() C f z f z dz f z '''++=? ( ); 5.解析函数()f z 的导函数仍为( ),且()()n f z =( )。 二、计算下列各题 1.计算积分2(2)C iz dz +?,C 是由(1,0)A 到(0,1)B 的直线段; 111.33 i -+ 2.计算积分22z C e dz z z +? ,:||2C z =; 22(1).i e π--

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

不定积分练习题

一. 单项选择题 1 ( D ); (A) (B) (C) (D) 2 设 的一个原函数是,则( ) (A) (B) (C) (D) 3 ,则( ) (A) (B) (C) (D) 4 ( ); (A) (B) (C) (D) 5下列等式中正确的是 ( ); (A) (B) (C) (D) 6 ( ) (A) (B) (C) (D) 7 设且,则( ) (A) (B) (C) (D) 8 设存在,则下式不正确的是( ) =?)(arcsin x d x sin C x +sin x arcsin C x +arcsin x x f 2tan 3 4 )(-=)2ln(cos x k ?=k 32- 3234-3 4C x x dx x f +=?ln )(=)(x f 1ln +x x x +ln 1ln +x x x x x +ln ?=xdx dx d cot x 2sec x tan x sec ln x cot 2 3 x dx x C =+?3 44x dx x C ---=+?sin cos xdx x C =-+?33x x dx C =+? 1 12dx x =-?ln |12|x C -+1 ln |12|2 x C - -+2 1 (12)C x +-1ln |12|2x --2 /11)(x x F -= 2 3)1(π = F =)(x F 2 arcsin π + x π+x arcsin 2 12π + -x π+-21x )(/ x f

(A) (B) (C) (D) 9若 ,则( ) (A) (B) (C) (D) 10 已知是的一个原函数,则( A ) (A ) (B) (C) (D) 二, 求下列不定积分 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) )()(/x f dx x f ?=? +=c x f dx x f dx d )()(c x f dx x f +=? )2()2(/? =)2()2(x f dx x f dx d ? +=c e x dx x f x 22)(=)(x f x xe 22x e x 222x xe 2)1(22x xe x +x x +2 )(x f =? dx x xf )(/ c x +2 x x 21323+343 1 41x x +c x +22?2x dx ?x x dx 2dx x ?-2)2(dx x x ?+22 1??-?dx x x x 32532dx x x x ?22sin cos 2cos ?-++dx x x x 103322dx x x ?+33 dx x ?-3 )23(?-3 32x dx dt t t ? sin ?-+x x e e dx dx x x )cos(2?dx x x ?-4313dx x x ?3cos sin dx x ?3cos

不定积分练习题及答案

不定积分练习题 一、选择题、填空题: 1、 ((1—sin 2 X )dx = 2 ------------- 2、 若 e x 是f (x)的原函数,贝x 2f(lnx)dx = ________ 3、sin (I n x)dx 二 __ 12、若 F '(x)工 f(x), ? '(x)工 f (x),则 f(x)dx = _______________________________________________ (A)F(x) (B) : (x) (C) : (x) - c (D)F(x) (x) c 13、下列各式中正确的是: (A) d[ f(x)dx]二 f(x) (B) —[ f(x)dxp f(x)dx dx L (C) df(x)二 f(x) (D) df(x)二 f(x) c 14、设 f(x)=e :则: f(lnx) dx = _____________ 2 已知e 公是f (x)的一个原函数,贝V f (tan x)sec xdx 二__ 在积分曲线族(卑中,过(1,1点的积分曲线是y=_ 'x\!x F'(x)= f (x),贝》J f'(ax+b)dx = ________ ; 设 [f (x)dx =丄 + c ,贝叮 "号)dx = _________ ; e 「dx= ____ ; "f(x) f '(ln x) =1 x,则f (x)二 ______ ; 10、 若 f (x)在(a, b)内连续,则在(a, b)内 f (x) ___ ; (A)必有导函数 (B)必有原函数 (C)必有界(D)必有极限 11、 ______________________________________________ 若 Jxf (x)dx = xs in x — [sin xdx,贝 V f (x) = ________ ; 4、 5、 6、 7、 9、 设 xf (x)dx =arcsin x c,贝V

复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

相关文档
最新文档