材料的电镜(扫描透射)分析实验报告

材料的电镜(扫描透射)分析实验报告
材料的电镜(扫描透射)分析实验报告

扫描电镜实验报告

扫描电镜分析实验 一实验目的 1. 了解扫描电子显微镜的原理、结构; 2. 运用扫描电子显微镜进行样品微观形貌观察。 二实验原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。扫描电镜由下列五部分组成,如图1(a)所示。各部分主要作用简介如下: 1.电子光学系统 它由电子枪、电磁透镜、光阑、样品室等部件组成,如图1(b)所示。为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪,

其性能如表2所示。前两种属于热发射电子枪,后一种则属于冷发射电子枪,也叫场发射电子枪。由表可以看出场发射电子枪的亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。 电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。 六硼化镧阴极电子枪105~1061~10 ≈500 10-4 场发射电子枪107~108 0.01~ 0.1 ≈5000 10-7~10-8 样品室中有样品台和信号探测器,样品台还能使样品做平移运动。 2.扫描系统 扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。 3.信号检测、放大系统 样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴极荧光

sem实验报告

电子显微镜 一、实验目的 1、了解并掌握电子显微镜的基本原理; 2、初步学会使用电子显微镜,并能够利用电子显微镜进行基本的材料表面分析。 二、实验仪器 透射电镜一是由电子光学系统(照明系统)、成像放大系统、电源和真空系统三大部分组成。 本实验用S—4800冷场发射扫描电子显微镜。 实验原理 电子显微镜有两类:扫描电子显微镜、透射电子显微镜,该实验主要研究前者。 (一)扫描电子显微镜(SEM) 由电子枪发射的电子束,经会聚镜、物镜聚焦后,在样品表面形成一定能量和极细的(最小直径可以达到1-10nm)电子束。在扫描线圈磁场的作用下,作用在样品表面上的电子束将按一定时间、空间顺序作光栅扫描。电子束从样品中激发出来的二次电子,由二次电子收集极,经加速极加速至闪烁体,转变成光信号,此信号经光导管到达光电倍增管再转变成电信号。该电信号经视屏放大器放大,输送到显像管栅极,调制显像管亮度,使之在屏幕上呈现出亮暗程度不同的反映表面起伏的二次电子像。由于电子束在样品表面上的扫描和显像管中电子束在荧屏上的扫描由同一扫描电路控制,这就保证了它们之

间完全同步,即保证了“物点”和“像点”在时间和空间上的一一对应。 扫描电镜的工作原理如图1。 图1 扫描电镜的工作原理 高能电子束轰击样品表面时,由于电子和样品的相互作用,产生很多信息,如图2所示,主要有以下信息:

图2 电子束与样品表面作用产生的信息示意图 1、二次电子:二次电子是指入射电子束从样品表面10nm左右深度激发出的低能电子(<50eV)。二次电子的产额主要与样品表面的起伏状况有关,当电子束垂直照射表面,二次电子的量最少。因此二次电子象主要反映样品的表面形貌特征。 2、背散射电子象:背散射电子是指被样品散射回来的入射电子,能量接近入射电子能量。背散射电子的产额与样品中元素的原子序数有关,原子序数越大,背散射电子发射量越多(因散射能力强),因此背散射电子象兼具样品表面平均原子序数分布(也包括形貌)特征。 3、X射线显微分析:入射电子束激发样品时,不同元素的受激,发射出不同波长的特征X射线,其波长λ与元素原子序数Z有以下关系(即莫斯莱公式):ν=hc/λ=K(Z-σ)2 SEM主要特点

实验透射电镜的结构原理及应用

实验透射电镜的结构原理及应用 一、目的要求 1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。 2.学习衍射图谱的分析步骤。 3.学习操作透射电镜,获得的明暗场像 二、透射电镜的基本结构 透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。 2.1 电子光学系统 电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。 照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终

的图像。观察记录部分由荧光屏及照像机组成。试样图像经过透镜多次放大后,在荧光屏上 显示出高倍放大的像。如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由 于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的 图像。 2.2 真空系统 电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情 况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无 法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。 目前一般电镜的真空度为10-5托左右。真空泵组经常由机械泵和扩散泵两级串联成。为 了进一步提高真空度,可采用分子泵、离子泵,真空度可达到10-8托或更高。 2.3 电源与控制系统 供电系统主要用于提供两部分电源:一是电子枪加速电子用的小电流高压电源;一是透 镜激磁用的大电流低压电源。一个稳定的电源对透射电镜非常重要,对电源的要求为:最大 透镜电流和高压的波动引起的分辨率下降要小于物镜的极限分辨本领。 三、透射电镜的工作原理 透射电子显微镜是依照阿贝成像原理工作的,即:平行入射波受到有周期性特征物体的 散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的 特征的像。因此根据阿贝成像原理,在电磁透镜的后焦面上可以获得晶体的衍射谱,故透射 电子显微镜可以做物相分析;在物镜的像面上形成反映样品特征的形貌像,故透射电镜可以 做组织分析。 四、衍射花样标定 以已知晶体结构,定晶面取向的标定为例,基本程序如下: 1)测量距离中心斑点最近的三个衍射斑点到中心斑点的距离R; 2)测量所选衍射斑点之间的夹角φ; 3)根据公式λL Rd =,将测得的距离换算成面间距d; 4)因为晶体结构是已知的,将求得的d值与该物质的面间距表(如PDF卡片)相对照, 得出每个斑点的晶面族指数; }{HKL 5)决定离中心斑点最近衍射斑点的指数。若R1最短,则相应斑点的指数可以取等价晶 面中的任意一个; }{111L K H )(111L K H 6)决定第二个斑点的指数。第二个斑点的指数不能任选,因为它和第一个斑点间的夹角必须符合夹角公式。对立方晶系来说,两者的夹角可用下式(9.6)求得 )()(cos 22222221212 12 12121L K H L K H L L K K H H ++++++=φ (9.6) 在决定第二个斑点指数时,应进行所谓尝试校核,即只有代人夹角公式后 )(222L K H

扫描电镜实验报告

扫描电镜实验报告 姓名:xxx 专业:xxx 学号:xxxxxxxx 一、实验目的 1. 了解扫描电镜的构造及工作原理; 2.学习扫描电镜的样品制备; 3. 学习扫描电镜的操作; 3. 利用扫描电镜对铝粉的形貌进行观察。 二、实验原理 扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。扫描电镜由下列五部分组成,主要作用简介如下: 1.电子光学系统。其由电子枪、电磁透镜、光阑、样品室等部件组成。为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。 2. 扫描系统。扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。 3. 信号检测、放大系统。样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。 4. 真空系统。镜筒和样品室处于高真空下,它由机械泵和分子涡轮泵来实现。开机后先由机械泵抽低真空,约20分钟后由分子涡轮泵抽真空,约几分钟后就能达到高真空度。此时才能放试样进行测试,在放试样或更换灯丝时,阀门会将镜筒部分、电子枪室和样品室分别分隔开,这样保持镜筒部分真空不被破坏。 5. 电源系统。其由稳压、稳流及相应的安全保护电路所组成,提供扫描电镜各部分所需要的电源。

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

扫描电镜实验报告

扫描电镜实验报告 一实验目的 1 了解扫描电镜的发展,原理,应用范围。 2 初步掌握扫描电镜的使用及其注意事项。 二实验仪器及样品 JEOL扫描电镜;硫酸钙晶须。 三实验原理 扫描电镜,全称为扫描电子显微镜,英文为scanning electron microscope(SEM),是一种用于观察物体表面结构的电子光学仪器。 1 扫描电镜的原理 扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对X射线的采集,可得到物质化学成分的信息。扫描电镜的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。 2扫描电镜的结构 (1)镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 (2)电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几纳米至几十纳米的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。 (3)电子信号的显示与记录系统扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 (4)真空系统及电源系统扫描电镜的真空系统由机械泵与油扩散泵组成。电源系统供给各部件所需的特定的电源。 3扫描电镜的用途 扫描电镜最基本的功能是对各种固体样品表面进行高分辨形貌观察。大景深图像是扫描电镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表

SEM扫描电镜结构与断口观察

扫描电镜结构与断口观察 一、实验目的: 1、了解扫描电镜的基本结构,成相原理; 2、掌握电子束与固体样品作用时产生的信号和各种信号在测试分析中的作用; 3、了解扫描电镜基本操作规程; 4、掌握扫描电镜样品制备技术; 5、掌握韧性断裂、脆性断裂的典型断口形貌。 二、实验原理: 1、扫描电子显微镜的构造和工作原理: 扫描电子显微镜(Scanning Electronic Microscopy, SEM)。扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,扫描电镜的优点是,①有较高的放大倍数,20-30万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它像透射电镜一样是当今十分有用的科学研究仪器。 扫描电子显微镜是由电子光学系统,信号收集处理、图象显示和记录系统,真空系统三个基本部分组成。 其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。扫描电子显微镜中的各个电磁透镜不做成相透镜用,而是起到将电子束逐级缩小的聚光作用。一般有三个聚光镜,前两个是强磁透镜,可把电子束缩小;第三个透镜是弱磁透镜,具有较长的焦距以便使样品和透镜之间留有一定的空间,装入各种信号接收器。扫描电子显微镜中射到样品上的电子束直径越小,就相当于成相单元的尺寸越小,相应的放大倍数就越高。 扫描线圈的作用是使电子束偏转,并在样品表面做有规则的扫动。电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步,因为它们是由同一个扫描发生器控制的。电子束在样品表面有两种扫描方式,进行形貌分析时都采用光栅扫描方式,当电子束进入上偏转线圈时,方向发生转折,随后又有下偏转线圈使它的方向发生第二次转折。发生二次偏转的电子束通过末级透镜的光心射到样品表面。在电子束偏转的同时还带用逐行扫描的动作,电子束在上下偏转线圈的作用下,在样品表面扫描出方形区域,相应地在样品上也画出一帧比例图像。样品上各点受到电子束轰击时发出的信号可由信号探测器收集,并通过显示系统在

透射电镜实验

实验二透射电镜结构原理及明暗场成像 令狐采学 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏

上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附

加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在105托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×108Pa或更高。如果电镜的真空度达不到要求会出现以下问题: (1) 电子与空气分子碰撞改变运动轨迹,影响成像质量。

扫描电镜及能谱分析—南理工

扫描电镜及能谱分析 实验报告书 班级:9131161502 学号:913116150208 姓名:安志恒 理工大学 材料科学与工程学院 2016.5. 30 一、实验目的 1. 了解扫描电子显微镜的基本结构和工作原理 2. 了解扫描电镜的一般操作过程 3. 了解扫描电镜的图像衬度和图像分析方法

二、扫描电子显微镜的基本结构和工作原理 1. 基本结构 镜筒:包括电子枪、聚光镜、物镜及扫描系统 电子信号收集与处理系统 电子信号的显示与记录系统 真空系统及电源系统 实验仪器为美国FEI 公司生产的场发射环境扫描电子显微镜(FEI Quanta 250 FEG),能高效地收集电子显微图像、衍射花样、元素分布等有用信息,并能直接进行纳米尺度的观察和研究,实现对金属或纳米材料在原子尺度上微结构和缺陷的表征。主要技术指标:高真空模式二次电子(SE)像分辨率:30 kV 时优于 1.0 nm;高低真空模式背散射电子(BSE)像:30 kV 时优于 2.5 nm;加速电压:0.2 kV-30 kV;放大倍数:14 倍-100 万倍;电子枪:Schottky 场发射电子枪,最大束流200 nA;探测器:二次电子、背散射电子、红外CCD 相机;能谱仪:分析型SDD 硅漂移电制冷探测器,元素分析围Be(4)~Pu(94);EBSD 电子背散射衍射分析仪。 扫描电子显微镜的结构主要由电子光学系统;信号检测处理、图像显示和记录系统以及真空系统三大系统组成。其中,电子光学系统是扫描电子显微镜的主要组成部分。FEI Quanta 250 FEG 扫描电子显微镜的主要组成部分如图 1 所示,包括电子枪、两级聚光镜、扫描控制单元、物镜、样品室以及各类探测器等组成。 2. 工作原理 电子枪产生束流细小稳定、角度分散性小的电子束,作为照明光源。电子束首先进入由数级电磁透镜组成的聚光镜聚焦后形成纳米束斑照射于样品表面。入射样品的电子与样品表面原子发生交互作用产生各种信号,如二次电子、背散射电子和特征X射线。扫描电子显微镜的探测器系统收集并放大各类信号,并转换成电压值(与信号强度成正比)传送到监视器,用于控制扫描点对应图像的亮度。扫描控制单元产生信号,通过上下偏转线圈,使电子束产生偏转并以光栅模式样品表面选择区域扫描。扫描过程中,随着收集到信号的强度变化,探测器不断向显示器发生电压值,而监视器则把收集到的信号调制成与样品扫描区域相对应的图像。因此,扫描电子显微镜的放大倍率,实际上为监视器图像扫描幅度A c与样品上同步扫描幅度A s的比值,即A = A c/A s。通过改变电子束在样品表面的扫描幅度,可以连续改变扫描电子显微镜的放大倍率。

电镜实验报告

贴壁培养细胞表面形貌的扫描电镜观察 【实验目的】 1.了解扫描电镜生物样品制备的基本过程 2.了解扫描电镜的基本操作 【实验原理】 扫描电镜的基本原理:扫描电子显微镜是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。 其核心是电子光学系统,又分为两个部分:电子枪和透镜系统。 电子枪:提供电子束。来自热阴极或场发射阴极的电子被1-30KV的电压加速,由阳极孔射出,形成一交叉电子束。其交叉斑对于热阴极为10-50μm,对于场发射阴极为10-100nm。 透镜系统:由两个或三个电磁透镜组成,改变透镜的励磁电流可连续调节透镜的焦距,在透镜系统的作用下,能将电子枪形成的电子束交叉斑缩小,在样品的表面形成最小直径为3-10nm的电子束照射斑。 (图1)扫描电镜的基本构造示意图 相互作用:当电子束轰击样品表面时,一部分的能量转变成热能,还有部分的能量由于电子与样品原子的相互作用而发射出各种有用的信息,其中包括二次电子、背散射电子、俄歇电子等等。 二次电子:入射电子使样品原子激发所产生的电子,能量较低,一般小于50eV。具体来讲,它是由入射电子与核外松散的被束缚的外层电子之间发生非弹性散射的结果。松散的外层电子由于入射电子能量的降低而获得一定能量而脱离原有的轨道,而为人们所探测

到;但如果它们产生在样品表面以下100?的地方,则这些二次电子被样品强烈吸收,难以逃逸。因此二次电子反映样品表面以下100?的一个薄区域的情况。 成像原理:来自扫描发生器的扫描信号分别送给电子光学系统的扫描线圈和显象管的扫描线圈,让电子束与显象管的阴极射束做同步扫描,使阴极射束在荧光屏上的照射点与电子束在样品上的照射点一一对应,样品上的物点在电子束作用下所产生的信号被检测器随时检出,经视频放大器放大后控制显象管阴极射束的强度使荧光屏上象点的亮度受试样上物点所产生的信号的大小的调制,从而得到与样品性质有关的图象。 临界点干燥:临界点干燥技术是实验室中为保持较好的样品外形而常用的一种干燥方法,因为细胞或者组织如果在空气或真空环境中进行干燥,待观测表面将会塌陷或遭受其他损伤。干燥过程中,我们常用临界点较低的液化气体,一般采用液态CO2 取代乙酸异戊酯,然后升温,让液体瞬间汽化,将样品表面的其他物质都带走,实现干燥操作。 干燥器:主体是一个集成有加热冷却夹套的压力干燥器,干燥器上装有各种控制阀、温度计、压力表和支架,圆柱舱的一端装有可拆式观察窗,另一端装有可拆式进样门等等。在使用临界点干燥液取代载液乙酸戊酯之后,关闭所有阀门,开始水浴加热。此时,液/气弯界面将扩散消失,舱内仅剩下气体。稍稍开启排气阀,待气体排出后,组织样本的干燥即完成。 【实验仪器、材料、试剂及用品】 1) 仪器:扫描电镜(HITACHI S-4800)、临界点干燥仪(HITACHI HCP-2)、离子溅射镀膜仪(EIKO IB-3) 2) 材料:贴壁培养细胞(HeLa细胞) 3) 试剂:2.5%戊二醛溶液、磷酸缓冲液、乙酸异戊酯、乙醇、双蒸水等 4) 用品:培养皿、盖玻片、镊子、移液器、双面胶带、扫描电镜样品台等 【实验步骤】 1)取样、清洗:对多数的生物材料而言,要经过扫描电镜观察其表面,首先必须采用化学或物理方法将其固定、脱水和干燥,然后喷金以提高材料的导电性和二次电子产额。第一步则是将培养好的样品放入小培养皿中,用0.1mol/l的磷酸缓冲液把样品表面的附着物清洗干净。 2)固定:用移液枪取1ml的2.5%的戊二醛溶液固定1h,然后用0.1mol/l的磷酸缓冲液再次清洗。(理论上也可用1%的四氧化锇单固定,四氧化锇也可以良好地保存组织细胞

材料分析(SEM)实验报告

材料专业实验报告 题目:扫描电镜(SEM)物相分析实验学院:先进材料与纳米科技学院专业:材料物理与化学 姓名: 学号:1514122986 2016年6月30日

扫描电镜(SEM)物相分析实验 一.实验目的 1.了解扫描电镜的基本结构与原理 2.掌握扫描电镜样品的准备与制备方法 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4.了解扫描电镜图片的分析与描述方法 二.实验原理 1.扫描电镜的工作原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 本次实验中主要通过观察背散射电子像及二次电子像对样品进行分析表征。 1)背散射电子 背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。弹性背反射电子是指被样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。背反射电子的产生范围在100nm-1mm深度。背反射电子产额和二次电子产额与原子序数的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加,所以,利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬

扫描电镜实验报告

HUNAN UNIVERSITY 姓名:扫描电镜实验报告 姓名:高子琪 学号: 2

一.实验目的 1.了解扫描电镜的基本结构与原理; 2.掌握扫描电镜样品的准备与制备方法; 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像; 4.了解扫描电镜图片的分析与描述方法。 二.实验设备及样品 1.实验仪器:D5000-X衍射仪 基本组成:1)电子光学系统:电子枪、聚光镜、物镜光阑、样品室等 2)偏转系统:扫描信号发生器、扫描放大控制器、扫描偏转线圈 3)信号探测放大系统 4)图象显示和记录系统 5)真空系统 2.样品:块状铝合金 三.实验原理 1.扫描电镜成像原理 从电子枪阴极发出的电子束,经聚光镜及物镜会聚成极细的电子束(0.00025微米-25微米),在扫描线圈的作用下,电子束在样品表面作扫描,激发出二次电子和背散射电子等信号,被二次电子检测器或背散射电子检测器接收处理后在显象管上形成衬度图象。二次电子像和背反射电子反映样品表面微观形貌特征。而利用特征X射线则可以分析样品微区化学成分。 扫描电镜成像原理与闭路电视非常相似,显像管上图像的形成是靠信息的传送完成的。电子束在样品表面逐点逐行扫描,依次记录每个点的二次电子、背散射电子或X射线等信号强度,经放大后调制显像管上对应位置的光点亮度,扫描发生器所产生的同一信号又被用于驱动显像管电子束实现同步扫描,样品表面与显像管上图像保持逐点逐行一一对应的几何关系。因此,扫描电子图像所包含的信息能很好地反映样品的表面形貌。 2.X射线能谱分析原理 X射线能谱定性分析的理论基础是Moseley定律,即各元素的特征X射线频率ν的平方根与原子序数Z成线性关系。同种元素,不论其所处的物理状态或化学状态如何,所发射的特征X射线均应具有相同的能量。

材料测试分析技术实验报告

本科生实验报告 实验课程材料研究方法与分析测试实验 学院名称材料与化学化工学院 专业名称材料科学与工程(无机非金属方向) 学生姓名闵丹 学生学号201202040327 指导教师邓苗、冯珊、张湘辉、胡子文、孔芹实验地点测试楼、理化楼 实验成绩 二〇一四年十一月——二〇一五年一月

实验一X射线物相定性分析 一.实验目的 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 二.实验原理 根据晶体对X射线的衍射特征-衍射线的位置.强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小.质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 三. 实验仪器 X射线衍射仪,主要由X射线发生器(X射线管).测角仪.X射线探测器.计算机控制处理系统等组成。 1. X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝.阳极.聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W.Ag.Mo.Ni.Co.Fe.Cr.Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑.发散狭缝.接收狭缝.防散射狭缝.样品座及闪烁探测器等组成。 (1) 衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2) 从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照

扫描电镜实验报告要求

扫描电镜实验报告要求 第一部分:实验预习报告 一、实验目的、意义 1、了解扫描电镜的基本结构与原理 2、掌握扫描电镜样品的准备与制备方法 3、掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4、了解扫描电镜图片的分析与描述方法 二、实验基本原理与方法 1、扫描电镜的基本结构构造 2、扫描电镜的工作原理 3、扫描电镜成像原理 三、主要仪器设备及耗材 1、JSM-5610 LV扫描电镜 2、JFC-1600离子溅射仪(样品喷涂导电层用) 3、银导电胶、双面胶(制样用) 4、粉末样品、块状样品 四、实验方案与技术路线 1、介绍扫描电镜的基本情况与最新进展(场发射扫描电镜、环境扫描电镜的特点及应用) 2、结合具体仪器介绍扫描电镜的构造与工作原理; 3、重点介绍扫描电镜样品的准备与制备方法,并要求每位同学动手制样,掌握扫描电镜样 品的准备与制备方法; 4、了解扫描电镜的操作过程,掌握二次电子像的观察过程,要求每位同学上机操作,并在 2-4个样品上拍摄2-4张二次电子像图片,要求图片清晰有代表性; 5、仔细观察和分析现场给出的200多张图片,并对某类或某几张自己感兴趣的图片进行描 述(要求总字数150字以上)。 第二部分:实验过程记录 一、实验原始记录 按实验过程进行记录: 1、样品的准备与制备过程 2、仪器操作过程与照片的拍摄过程。 第三部分:结果与分析 一、实验结果与分析 1、现场没描述照片的同学,对“附件二、扫描电镜图片”进行微观形态描述(要求:写清 楚图片或样品名称,不需要打印照片,描述图片张数自己确定,总字数要达到150字以上); 2、将2-4张自己拍摄的照片打印并粘贴到实验报告上,写上样品名称。 3、总结对扫描电镜实验课的体会。

透射电镜报告

透射电镜实验报告 1、样品要求: 首先获得样品的悬浊液(薄膜要用刀片从衬底上刮除后,用乙醇浸润),样品必须是分散剂而不能是溶剂。铜网直径为3mm,有三个部分所组成:一是物理支撑,上有几um直径的网孔;二是有机膜,防止样品从网孔掉落;三是石墨层,用来消除样品的静电积累和导热。铜网的正面喷有石墨,比较光滑,背面有铜的颜色,凹凸不平,铜网上不能有肉眼能看到的杂质。夹铜网时,用尖镊的尖端慢慢挑起铜网的一端,而后夹紧,切勿用力过猛而损坏铜网,将铜网正面向上放在滤纸上,用镊子缠一小段脱脂棉成圆锥状,夹住脱脂棉的另一端,蘸取少量样品悬浊液,轻轻涂在铜网上。从侧面观察,乙醇溶剂会有小鼓包。如果样品过浓,应重新制样或涂样时快速地涂在铜网上。水溶剂干的比较慢,不会干燥的有机溶剂则不能测,乙醇制备的样品2、3分钟后就会自然干燥,然后铜网可放入样品架。 2、仪器组成: 灯丝 聚光镜光栏:聚光、整流 物镜 极靴:强力约束磁场的形状,由于极靴和样品架的间隙很小,故进样时应加倍小心。 物镜光栏:限定景深,消除杂散光(样品对电子束的散射形成) CCD探测器;侧插式(分辨率相对较低,靠近光束线) 3、仪器启动 ①加速电压为超高压,需要精确稳定,高压始终开着为100KV,7650的最高压为120KV。 ②打开灯丝电压,20V,稳定后灯丝电流为14uA。目前所用的灯丝为钨丝,寿命为200—400h,是发卡式灯丝,或者也可以采用LaB6单晶。 ③加遮光板偏压,843V。因电子打在样品上会产生一定剂量的X射线,可能对人体有害,故在换样时应将偏压切断,此时加反向偏压,抑制灯丝电流。4、观察拍照 按RESET键,重置所有参数,归零。调节亮度,使光斑扩散至整个观察窗。按下WOB—辅助聚焦按钮,调节Z轴使物平面和电子束聚焦平面重合,此时观察窗中的图像不再抖动。调节X,Y轴,将欲观察的区域移到观察窗中心,调节放大倍数按钮至合适的倍数。将亮度打暗至肉眼稍稍能看清为止,在软件窗口点击动态观察按钮,点击自动查看曝光时间,如果时间小于250ms,应立即点击拍照键,退出摄像头,将亮度调亮后重新动态观察,曝光后调整图像的亮度(红线)和对比度(蓝线)。

透射电镜高中低倍光路图

透射电镜 一、基本原理 (一)分辨本领与放大倍数 分辨本领是指能够分辨物体上两点之间的最小距离。光学显微镜与电镜的分辨率相差达1000倍,因为光镜的分辨本领受到衍射效应的限制。当光线从一点出发透过显微镜时,所成的像不再是一点而是一个周围带有阴影的光斑。如果物体上两个质点靠得很近,所成的像就可能分辨不清。也就是说,光的波动性给光学显微镜规定了一个分辨本领的限制。光镜的分辨本领最终只能达到约为照明波长的0。4倍。 放大倍数是指物体经过仪器放大后的像与物的大小之比。放大了的像还可多次放大,但到一定限度后继续放大时便不能增加细节,这是分辨本领的限制所致。不能增加图像细节的放大倍数称为空放大,而与分辨本领相应的最高放大倍数称为有效放大倍数,为眼的分辨本领与仪器的分辨本领之比。 (二)电子波(束)特性 为了提高显微镜的分辨本领,就需要寻找波长更短的光波作照明。1924年法国学者德。布罗依等人创立了波动力学,提出了物质波的概念,指出高速运动的粒子不仅具有粒子性,而且具有波动性。这个假设不久就为电子衍射实验所证实。衍射是波动的特性,高速运动的电子能发生衍射,证明它是一种波。它具有波动所具有的共同特征量——波长、频率、振幅、相位等,并且服从于波动的规律。 (三)磁透镜的光学性质和聚焦原理 电镜实质上是电子透镜的组合。电子透镜有静电透镜和磁透镜二种。

磁透镜的聚焦原理:电子在进入磁场后受到磁场(洛伦兹力)作用,使电子束产生两种运动——旋转和折射,而电子在磁场中的旋转与折射是各自进行的。因此,在讨论磁透镜的聚焦作用时就可以暂不考虑电子的旋转,这样,电子在磁透镜的折射与光通过玻璃凸透镜的聚焦作用相似了。正如玻璃凸透镜可用于放大成像一样。磁透镜也能用于放大成像,而且还可以借用几何光学中的光线作图法与术语,如用焦点、焦距、物距、像距等概念来描述电子在磁透镜的运动轨迹。 电子枪发射的电子在阳极加速电压的作用下,高速地穿过阳极孔,被聚光镜会聚成很细的电子束照明样品。因为电子束穿透能力有限,所以要求样品做得很薄,观察区域的厚度在200nm左右。由于样品微区的厚度、平均原子序数、晶体结构或位向有差别,使电子束透过样品时发生部分散射,其散射结果使通过物镜光阑孔的电子束强度产生差别,经过物镜聚焦放大在其像平面上,形成第一幅反映样品微观特征的电子像。然后再经中间镜和投影镜两级放大,投射到荧光屏上对荧光屏感光,即把透射电子的强度转换为人眼直接可见的光强度分布,或由照相底片感光记录,从而得到一幅具有一定衬度的高放大倍数的图像。 二、透射电镜的基本结构 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统、真空系统三部分组成。 三、镜筒结构 (1)照明部分 照明部分由电子枪、双聚光镜、光阑组、电子束平移、倾斜装置和消象散器组成。它的作用是提供一束亮度大、孔径角小、相干性好、稳定度高的电子束照射到待分析的样品上。

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min) 0.1-100℃/min 天平灵敏度(μg) 0.1μg 温度范围(°C)室温-1000℃ 五、操作条件 第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。

六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重 曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每 mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在510.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在103.1℃达到最小值,即热功率的最小值。其失重量占试样总质量的18.76%,相当于每 mol CaC2O4分解出1mol CO,其热分解反应: CaC2O4 CaCO3 + CO 在600℃和800℃之间失重并开始呈现第四个平台,DTG曲线先升后降,在749.2℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在758.9℃达到最小值,即热功率的最小值。其失重量占试样总质量的29.38%,相当每 mol CaC2O4分解出1mol CO2,其热分解反应:

扫描电镜显微分析

扫描电镜显微分析实验报告 一、实验目的 1、了解扫描电镜的基本结构和原理。 2、掌握扫描电镜试样的制备方法。 3、了解扫描电镜的基本操作。 4、了解二次电子像、背散射电子像和吸收电子像,观察记录操作的全过程及其在组织形貌观察中的应用。

二、实验内容 1、根据扫描电镜的基本原理,对照仪器设备,了解各部分的功能用途。 2、根据操作步骤,对照设备仪器,了解每步操作的目的和控制的部位。 3、在老师的指导下进行电镜的基本操作。 4、对电镜照片进行基本分析。 三、实验设备仪器与材料 Quanta 250 FEG 扫描电子显微镜 四、实验原理 (一)、扫描电子显微镜的基本结构和成像原理 扫描电子显微镜(Scanning Electron Microscope,简称SEM)是继透射电镜之后发展起来的一种电子显微镜简称扫描电镜。它是将电子束聚焦后以扫描的方式作用样品,产生一系列物理信息,收集其中的二次电子、背散射电子等信息,经处理后获得样品表面形貌的放大图像。

扫描电镜主要由电子光学系统;信号检测处理、图像显示和记录系统及真空系统三大系统组成。其中电子光学系统是扫描电镜的主要组成部分,主要组成:电子枪、电磁透镜、光栏、扫描线圈、样品室等,其外形和结构原理如图1所示。 由电子枪发射出的电子经过聚光 镜系统和末级透镜的会聚作用形成一 直径很小的电子束,投射到试样的表 面,同时,镜筒内的偏置线圈使这束 电子在试样表面作光栅式扫描。在扫 描过程中,入射电子依次在试样的每 个作用点激发出各种信息,如二次电 子、背散射电子、特征X射线等。安 装在试样附近的探测器分别检测相关 反应表面形貌特征的形貌信息,如二 次电子、背散射电子等,经过处理后 送到阴极射线管(简称CRT)的栅极调制其量度,从而在与入射电子束作同步扫描的CRT上显示出试样表面的形貌图像。根据成像信号的不同,可以在SEM 的CRT上分别产生二次电子像、背散射电子像、吸收电子像、X射线元素分布图等。本实验主要介绍的二次电子像和背散射电子像。 (二)、扫描电子显微镜的特点 1、分辨本领强。其分辨率可达1nm以下,介于光学显微镜的极限分辨率(200nm)和透射电镜的分辨率(0.1nm)之间。 2、有效放大倍率高。光学显微镜的最大有效放大倍率为1000倍左右,透射电镜为几百到80万,而扫描电镜可从数十到20万,聚焦后,无需重新聚焦。 3、景深大。其景深比透射电镜高一个量级,可直接观察断口形貌、松散粉体,图像立体感强;改变电子束的入射角度,对同一视野可立体观察和分析。 4、制样简单。对于金属试样,可直接观察,也可抛光、腐蚀后再观察;对陶瓷、高分子等不导电试样,需在真空镀膜机中镀一层金膜后再进行观察。 5、电子损伤小。电子束直径一般为3~几十纳米,强度约为10-9~10-11mA,远小于透射电镜的电子束能量,加速电压可以小到0.5kV,且电子束在试样上是动态扫描,并不固定,因此电子损伤小,污染轻,尤为适合高分子试样。 6、实现综合分析。扫描电镜中可以同时组装其他观察仪器,如波谱仪、能谱仪等,实现对试样的表面形貌、微区成分等方面的同步分析。

相关文档
最新文档