二次函数的应用—面积问题

二次函数的应用—面积问题
二次函数的应用—面积问题

二次函数面积问题

基础知识

()

在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点:

1.运用配方法求最值;

2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;

3.建立函数模型求最值;

4.利用基本不等式或不等分析法求最值.

知识典例

(夯实基础)(30分钟)

[例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动.

(1)运动第t秒时,△PBQ的面积y(cm2)是多少?

(2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围.

(3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?

()(5分钟)

[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

强化练习

x

[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.

(1)判断图(2)中四边形EFGH是何形状,并说明理由;

(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?

回顾小结

()(2分钟)

1.某人从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)

h.

的函数关系式是,那么小球运动中的最大高度

最大

2.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.

5 m 12 m A

B C

D

3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )

A .424m

B .6 m

C .15 m

D .2

5m 4.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )

A .7

B .6

C .5

D .4

5.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:

3

5321212++-=x x y ,则该运动员此次掷铅球的成绩是( ) A .6 m

B .12 m

C .8 m

D .10m x

y O A

B M

O

(图5) (图6) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所

在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面

340m ,则水流落地点B 离墙的距离OB 是( )

A .2 m

B .3 m

C .4 m

D .5 m

7.小明在某次投篮中,球的运动路线是抛物线21 3.55

y x =-

+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( )

A .4.6m

B .4.5m

C .4m

D .3.5m

8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m2).

(1)求y 与x 之间的函数关系,并写出自变量的取值范围;

(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?

9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.

(1)要使鸡场面积最大,鸡场的长度应为多少m ?

(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?

x

10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.

A B C D

P Q

11.如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,?分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?

12.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.

13.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当x是多少时,矩形场地面积S最大?最大面积是多少?

14.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关

系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)

(1)分别求出利润与关于投资量的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

15.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

16.一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.

(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;

(2)求支柱的长度;

(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.

二次函数的应用——面积最大问题

《二次函数的应用——何时围得面积最大?》 说课稿 【教材分析】 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,也为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。 【课时安排】 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。 【学情及学法分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课

标中知识与技能呈螺旋式上升的规律。 【教学目标】 1.知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的 图象与性质,理解顶点与最值的关系,会求解最值问题。 2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中 的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的 能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合 作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛 的应用价值。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 正确构建数学模型 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本 节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探 究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性, 突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入: 复习引入阶段我设计了三个问题:

浅谈与二次函数有关的面积问题

实际问题与二次函数 柘城县牛城一中李中凯 一、知识和能力 能够根据二次函数中不同图形的特点选择方法求图形面积 二、过程和方法 通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 三、情感态度和价值观 由简单题入手逐渐提升,从而消除学生的畏难情绪,让学生有兴趣和积极性参与数学活动。 加强学生之间的合作交流,提高学生的归纳总结能力,培养学生不断反思的习惯。 四、教学重点和难点 重点:选择方法求图形面积 难点:如何割补图形求面积 教学方法 启发式、讨论式 教学用具: 多媒体课件 五、教学过程: 与二次函数有关的面积问题 小结方法 1、三角形的边在轴上或与轴平行 2、不规则图形或三角形三边均不与轴平行

教学活动 例题:已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求(1)抛物线解析式 (2)抛物线与x轴的交点A、B,与y轴交点C 学生完成后展示过程、交流 (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE 思考:这几个图形求面积有何共同点?(三角形边特殊吗?) 小结: 教师活动追问:你能求四边形OCDB的面积吗?你有几种方法? 你肯定行:△ADE的面积如何求呢?

小结:不规则图形或三边不具特殊性的三角形如何求面积 能力提升: (4)若点F(x,y)为抛物线上一动点,其 中-1≤x≤4,求当△AEF面积最大时点F的坐标及最大面积。 解决问题: (二次函数检测)17.已知平面直角坐标系xOy中, 抛物线2(1) =-+与直线y kx y a x a x =的一个公共点为(4,8) A. (1)求此抛物线和直线的解析式; (2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值; (3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN 恰好是梯形,求点N的坐标及梯形AOMN的面积.

二次函数的应用--最大面积

二次函数的应用—面积问题 【知识要点】 (1)求出面积与自变量的函数关系y=ax2+bx+c(a≠0) (2)用配方法用配方法将y=ax2+bx+c化为y=a(x-h)2+k的形式: y=ax2+bx+c==a=a+. 当a>0时,则时,y最小值= 当a<0时,则时,y最大值= (3)确定自变量的取值范围,检验是否在取值范围内,若不在,则根据函数的增减性,代入自变量的端点值求出最值 求几何图形的常见方法: ①利用几何图形的面积公式; ②利用三角形的相似(面积比等于相似比的平方); ③利用割补法求几何图形的面积和或差; 【例题解析】 例4、有窗框料12m长,现要制成一个如图所示的窗框,问长宽各为多少米,才能使光照最充足?

例5、在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少? 例6、如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N 作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时. (1)P点的坐标为______(用含t的代数式表示); (2)记△MPA的面积为S,求S与t的函数关系式(0<t<4); (3)当t=______秒时,S有最大值,最大值是______; (4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式. 【课堂练习】

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

二次函数与三角形周长,面积最值问题

知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·宜宾)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。 练习 1、如图,已知二次函数24 y ax x c =-+的图象与坐标轴交于点A(-1, 0)和点B(0,-5).(1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐

标. 2、如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由. 例2. (2018?莱芜)如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0, 3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于E . (1)求抛物线的函数表达式; (2)如图1,求线段DE 长度的最大值;

练习 1、如图,抛物线y =2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. (4)过点F 作FG 垂直X 轴,并与直线BC 交于点H ,求FH 的最大值。 2、 如图,在平面直角坐标系中,直线3342y x = -与抛物线214 y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. (1)求该抛物线的解析式; (2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数的应用_——最大面积问题教学设计

《二次函数的应用——面积最大问题》教学设计 二次函数的应用——面积最大问题。所用教材是教育材九年级上册第三章第六节二次函 数的应用,本节共需四课时,面积最大是第一节。 下面我将从教材容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程 的设计和教学效果预测几方面对本节课进行说明。 一、教学容的分析 1、地位与作用: 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际 问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数 的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利 用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感 兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题 奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和 函数有关的应用问题。此部分容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以 后学习更多函数打下坚实的理论和思想方法基础。 2、课时安排 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有 归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运 动中的二次函数、综合应用四课时,本节是第一课时。 3.学情及学法分析 学生由简单的二次函数y =x 2学习开始,然后是y =ax2,y =ax 2+c ,最后是y=a(x-h)2, y =a(x-h)2+k ,y =ax 2+bx+c ,学生已经掌握了二次函数的三种表示方式和图像的性质。 对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值, 但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这 一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力, 这也符合新课标中知识与技能呈螺旋式上升的规律。 二、教学目标、重点、难点的确定 教学目标: 1、知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性 质,理解顶点与最值的关系,会求解最值问题。 2.过程与方法:经历“实际问题转化成数学问题——利用二次函数知识解决问题— —利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务 于 生活。 3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过 程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究 式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论, 充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使

二次函数综合应用—面积问题(学生版)

二次函数与图形面积 适用学科数学适用年级九年级 适用区域全国课时时长(分钟)120分钟 知识点二次函数面积问题 教学目标通过数形结合,讨论二次函数面积问题 教学重点充分考虑到二次函数中“数”的规律和“形”的特征,运用好数形结合; 对于各种可能的情况我们常常要运用分类讨论逐一加以研究 教学难点运用数学模型,利用“构造法”达到解决问题 教学过程 一、复习预习 求面积常用的方法 a.直接法 b.简单的组合 c.面积不变同底等高或等底等高的转换 d.相似 e.三角函数 f.找面积的最大最小值利用二次函数的性质 二、知识讲解 考点/易错点1 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线一侧上的动点,求三角形面积最大

考点/易错点2 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线上一动点,求三角形面积等于定值的动点坐标。 考点/易错点3 二次函数中所围成的四边形面积求法:

三、例题精析 例题1【题干】已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式; (2)设此二次函数的顶点为P,求△ABP的面积. 【例题2】【题干】已知二次函数y=x2-8x+15的图象交x轴于A、B两点,交y轴于点C.请 结合这个函数的图象解决下列问题: (1)求△ABC的面积; (2)点P在这个二次函数的图象上运动,能使△PAB的面积等于1个平方单位的P点共有多少个?请直接写出满足条件的P点坐标; (3)在(2)中,使△PAB的面积等于2个平方单位的P点是否存在?如果存在,写出P点的个数;如果不存在,请说明理由

【例题3】【题干】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的解析式; (2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 题目(重庆市江津区) 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3, 0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

解答 (1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P点(x,-x2-2x+3)(-3

二次函数的应用—面积问题

二次函数面积问题 基础知识 () 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 知识典例 (夯实基础)(30分钟) [例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动. (1)运动第t秒时,△PBQ的面积y(cm2)是多少? (2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围. (3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? ()(5分钟) [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 强化练习 x

二次函数线段、周长、面积最值问题

1. 如图,对称轴为直线x=-1的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)若a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于 点D ,求线段QD 长度的最大值. 2.如图,二次函数y=ax 2-32 x+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知点A (-1,0),点C (0,-2).(1)求抛物线的函数解析式;(2)若点M 是线段BC 下方的抛 物线上的一个动点,求△MBC 面积的最大值以及此时点M 的坐标. 3.如图,二次函数y=ax 2 +bx 的图象与一次函数y=x+2的图象交于A 、B 两点,点A 的横坐标是-1,点B 的横坐标是2.(1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.

4.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 5.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.求S与m的函数关系式。S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

二次函数应用(面积最值)

二次函数应用(面积最值) 1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2. (1)写出广告牌的面积S与边长x的函数关系式; (2)画出这个函数的大致图象(其中0≤x≤10); (3)根据图象观察当边长x为何值时,广告牌面积S最大? 2、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面 用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养 鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 3如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m), 围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2. (1)求S与x的函数关系式; (2)如果要围成面积为45 m2的花圃,AB的长是多少米?

(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由. 4、 如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB 上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE; (2)求y与x之间的函数关系式,并求出x的取值范围; (3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值

5、 如图所示,在生产中,为了节约原材料,加工零件时常用一些边角余料,△ABC为锐角三角形废料.其中BC=12 cm,BC边上高AD=8 cm,在△ABC上截取矩形PQMN,与BC边重合,画出草图说明P,N两点落在什么位置上,才能使它的面积最大?最大面积是多少?并求出这时矩形的长和宽. 6、 如图所示,E,F分别是边长为4的正方形ABCD的边BC,CD上的点,CE=1,CF= ,直线EF交AB的延长线于G,过线段FG上一个动点H作HM⊥AG,HN⊥AD,垂足分别为M,N.设HM=x,矩形AMHN的面积为y. (1)求y与x之间的函数关系; (2)当x为何值时,矩形AMHN的面积最大?最大面积是多少?

解决二次函数面积问题的技巧(无答案)

求“半天吊”三角形面积技巧: 如图1||,过△ABC的三个顶点分别作出与水平垂直的三条线||,外侧两条直线之间的距离叫△ABC的“水平宽”||,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高h” ||。三角形面积的新方法:||, 即三角形面积等于水平宽与铅垂高乘积的一半||。 注意事项:1.找出B、C的坐标||,横坐标大减小||,即可求出水平宽; 2.求出直线BC的解析式||,A与D的横坐标相同||,A与D的纵坐标大减小||,即可求出铅垂高; 3.根据公式: S△=×水平宽×铅锤高||,可求出面积||。 真题分析:如图||,抛物线顶点坐标为点C(1||,4)||,交x轴于点A(3||,0)||,交y轴于点B (1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点||,连PA||,PB||,当P点运动到顶点C时||,求△CAB的铅垂高CD 及;(3)在(2)中是否存在一点 P||,使||,若存在||,求出P点的坐标;若不存在||,请说明理由. 解析:(1)由顶点C(1||,4)||,A(3||,0)可以得出抛物线的解析式为: y1=-x2+2x+3||,已知B点的坐标为(0||,3)||, 所以直线AB的解析式为:y2=-x+3 (2)因为C点坐标为(1||,4)||,把x=1代入y2=-x+3可得D(1||,2)||,因此CD=4-2=2|| , (3)设P(x||,-x2+2x+3)||,由A、D横坐标相等易知D(x||,-x+3)||,则PF= =(-x2+2x+3)-(-x+3)=-x2+3x 由S△PAB= S△CAB得:×OA×PF= ×3×(?x2+3x)= ×3||, 第1页/共3页

二次函数中的面积最值问题最佳处理方法

因材教育二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形. 方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P 点(x ,-x 2-2x +3)(-3

二次函数中面积最值问题

课题:二次函数中面积最值问题(复习课) 教学目标:利用二次函数的最值求面积最值问题 教学重点:利用二次函数的顶点公式或者配方法求解面积的最值 教学难点:利用二次函数的性质和自变量取值范围求面积的最值 教学过程:复习巩固:小题热身:1.二次函数 142--=x x y 的顶点是_________ 2.当x= 时, y=3(x-5)2+6 有最___值为________ . 3.当x= 时,y=-2x2+8x-7有最___值为_______ . 引入: 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 变一变 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,(墙长10米)另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 巩固:(2016?绍兴) 课本中有一个例题: 有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大? 1.这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m2. 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m ,利用图3,解答下列问题: (1)若AB 为1m ,求此时窗户的透光面积? (2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大? 请通过计算说明. 归纳总结:运用二次函数求几何图形面积最值一般步骤 1.审题 2.引入自变量 3.用含自变量的代数式分别表示与所求几何图形相关的量 4.根据几何图形的特征,列出其面积的计算公式,并且用函数表示这个面积,并求得自变量的取值范围. 5.根据函数关系式,求出最值及取得最值时自变量的值. 6.检验结果的合理性

二次函数与三角形的面积问题

二次函数与三角形的面积问题 【教学目标】 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。 2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问 题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。【教学重点和难点】 1.运用 2铅垂高 水平宽? = s; 2.运用y; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 【教学过程】 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求: (1)抛物线解析式; (2)抛物线与x轴的交点A、B,与y轴交点C; (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 变式训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点 C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB =8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方? x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

相关文档
最新文档