土壤的污染源

土壤的污染源
土壤的污染源

土壤的污染源

土壤的污染,一般是通过大气与水污染的转化而产生,它们可以单独起作用,也可以相互重叠和交叉进行,属于点污染的一类。随着农业现代化,特别是农业化学化水平的提高,大量化学肥料及农药散落到环境中,土壤遭受非点污染的机会越来越多,其程度也越来越严重。在水土流失和风蚀作用等的影响下,污染面积不断地扩大,根据污染物质的性质不同,土壤污染物分为无机物和有机物两类:无机物主要有汞、铬、铅、铜、锌等重金属和砷、硒等非金属;有机物主要有酚、有机农药、油类、苯并芘类和洗涤剂类等。以上这些化学污染物主要是由污水、废气、固体废物、农药和化肥带进土壤并积累起来的。

(一)污水灌溉对土壤的污染

生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,一般有增产效果。但污水中还含有重金属、酚、氰化物等许多有毒有害的物质,如果污水没有经过必要的处理而直接用于农田灌溉,会将污水中有毒有害的物质带至农田,污染土壤。例如冶炼、电镀、燃料、汞化物等工业废水能引起镉、汞、铬、铜等重金属污染;石油化工、肥料、农药等工业废水会引起酚、三氯乙醛、农药等有机物的污染。

(二)大气污染对土壤的污染

大气中的有害气体主要是工业中排出的有毒废气,它的污染面大,会对土壤造成严重污染。工业废气的污染大致分为两类:气体污染,如二氧化硫、氟化物、臭氧、氮氧化物、碳氢化合物等;气溶胶污染,如粉尘、烟尘等固体粒子及烟雾,雾气等液体粒子,它们通过沉降或降水进入土壤,造成污染。例如,有色金属冶炼厂排出的废气中含有铬、铅、铜、镉等重金属,对附近的土壤造成污染;生产磷肥、氟化物的工厂会对附近的土壤造成粉尘污染和氟污染。

(三)化肥对土壤的污染

施用化肥是农业增产的重要措施,但不合理的使用,也会引起土壤污染。长期大量使用氮肥,会破坏土壤结构,造成土壤板结,生物学性质恶化,影响农作物的产量和质量。过量地使用硝态氮肥,会使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧的输送,使其患病,严重的导致死亡。

(四)农药对土壤的影响

农药能防治病、虫、草害,如果使用得当,可保证作物的增产,但它是一类危害性很大的土壤污染物,施用不当,会引起土壤污染。

喷施于作物体上的农药(粉剂、水剂、乳液等),除部分被植物吸收或逸入大气外,约有一半左右散落于农田,这一部分农药与直接施用于田间的农药(如拌种消毒剂、地下害虫熏蒸剂和杀虫剂等)构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。此外,农药在杀虫、防病的同时,也使有益于农业的微生物、昆虫、鸟类遭到伤害,破坏了生态系统,使农作物遭受间接损失。

(五)固体废物对土壤的污染

工业废物和城市垃圾是土壤的固体污染物。例如,各种农用塑料薄膜作为大棚、地膜覆盖物被广泛使用,如果管理、回收不善,大量残膜碎片散落田间,会造成农田“白色污染”。这样的固体污染物既不易蒸发、挥发,也不易被土壤微生物分解,是一种长期滞留土壤的污染物。

土壤污染的防治

科学地进行污水灌溉

工业废水种类繁多,成分复杂,有些工厂排出的废水可能是无害的,但与其他工厂排出的废水混合后,就变成有毒的废水。因此在利用废水灌溉农田之前,应按照《农田灌溉水质标准》规定的标准进行净化处理,这样既利用了污水,又避免了对土壤的污染。

合理使用农药重视开发高效低毒低残留农药

合理使用农药,这不仅可以减少对土壤的污染,还能经济有效地消灭病、虫

、草害,发挥农药的积极效能。在生产中,不仅要控制化学农药的用量、使用范围、喷施次数和喷施时间,提高喷洒技术,还要改进农药剂型,严格限制剧毒、高残留农药的使用,重视低毒、低残留农药的开发与生产。

合理施用化肥,增施有机肥

根据土壤的特性、气候状况和农作物生长发育特点,配方施肥,严格控制有毒化肥的使用范围和用量。

增施有机肥,提高土壤有机质含量,可增强土壤胶体对重金属和农药的吸附能力。如褐腐酸能吸收和溶解三氯杂苯除草剂及某些农药,腐殖质能促进镉的沉淀等。同时,增加有机肥还可以改善土壤微生物的流动条件,加速生物降解过程。

施用化学改良剂,采取生物改良措施

在受重金属轻度污染的土壤中施用抑制剂,可将重金属转化成为难溶的化合物,减少农作物的吸收。常用的抑制剂有石灰、碱性磷酸盐、碳酸盐和硫化物等。例如,在受镉污染的酸性、微酸性土壤中施用石灰或碱性炉灰等,可以使活性镉转化为碳酸盐或氢氧化物等难溶物,改良效果显著。

因为重金属大部分为亲硫元素,所以在水田中施用绿肥、稻草等,在旱地上施用适量的硫化钠、石硫合剂等有利于重金属生成难溶的硫化物。

总之,按照“预防为主”的环保方针,防治土壤污染的首要任务是控制和消除土壤污染源,对已污染的土壤,要采取一切有效措施,清除土壤中的污染物,控制土壤污染物的迁移转化,改善农村生态环境,提高农作物的产量和品质,为广大人民群众提供优质、安全的农产品。

源解析方法摘录讲述讲解-共15页

排放源清单法、扩散模型法以及受体模型法 排放源清单法存在两个重大的缺陷:第一是需要估计排放量,而大气颗粒物的来源极其广泛,根本没有办法进行准确的估计;第二是空气质量与污染排放源之间关系复杂,源与受体之间并不是简单的线性关系。随着社会的发展,污染源种类不断增多,排放源清单法渐渐已不能满足人类对于大气颗粒物源解析技术的要求。 一种是以污染源为对象的扩散模型;另一种是以受污染区域为对象的受体模型。 扩散模型通过以污染源排放资料为基础进行污染物空间分布的估算,来判断各种源对于目标区域内大气环境的污染的贡献,它对于小尺度区域内有组织的工业烟尘及粉尘源同区域大气颗粒物浓度间响应关系的建立有较好的效果。但其需要收集较为详细的污染源的排放资料、气象资料、地形数据以及粒子在扩散输运过程中的主要特征参数。因此在面对较大尺度范围或无组织开放源问题时,这些参数的取得及其规律性的把握为扩散模型的实际应用带来很大的困难。

总体来说,受体模型分为两大类:一类是无需知道污染源详细信息的源未知受体模型;另一类是需要知道源类及其详细组成特征信息的源已知受体模型。 源已知受体模型最主要的代表模型是化学质量平衡法,其基本原理是质量守恒。 源解析主要有物理法、显微法、化学法。 物理方法主要有两种,即X射线衍射(XRD)法和轨线分析法( Trajectory Analysis),其主要原理是利用XRD确定颗粒物中的物相组成,根据物相组成及相关资料来分析、推断颗粒物的可能来源。 显微法的实质是利用显微镜对颗粒污染物的大小、形貌等表面特征进行分析,以判断其可能的排放源。根据仪器的不同可分为光学显微镜法(OM)、电子扫描显微镜法(SEM)以及计算机控制电子扫描显微镜法(CC-SEM)等。该法的基础是某些污染源排放的大气颗粒污染物往往具有特定的形态特征。显微法的优点是直观,简便,但其需要建

环境空气颗粒物源解析监测技术方法指南(试行)(可编辑)

环境空气颗粒物源解析监测技术方法指南(试行) 环境空气颗粒物来源解析监测方法指南 (试行 ) (第二版 ) 7>2014 年 2 月 28 日前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》 , 防治环境 空气颗粒物污染, 改善环境空气质量, 规范全国环境空气颗粒物来源解析的监测技术, 制定本 指南。 本指南规定了环境空气颗粒物来源解析中涉及的监测技术方法, 主要包括污染源样品的采 集、环境受体样品采集、样品的管理、颗粒物监测项目和分析方法、全过程质量保证与质量控 制等,以提高环境空气颗粒物来源解析中监测结果的可靠性与可比性。 本指南由中国环境监测总站组织北京市环境保护监测中心、上海市环境监测中心、浙江省 环境监测中心、江苏省环境监测中心、重庆市环境监测中心、济南市环境监测中心站共同起草。 目录 1、适用范围1 2、规范性引用文件1 3、术语和定义. 2

4、源样品采集. 2 4.1 源分类及采样原则2 4.2 固定源采样. 3 4.2.1 稀释通道法3 4.2.2 烟道内直接采样法5 4.3 移动源采样. 7 4.3.1 现场实验法( 隧道法 ) 7 4.3.2 全流式稀释通道采样法 8 4.3.3 分流式稀释通道采样法 9 4.4 开放源采样 11 4.5 其他源类采样. 15 4.5.1 生物质燃烧尘采样 15 4.5.2 餐饮油烟尘采样. 17 4.5.3 海盐粒子采样20 4.6 二次颗粒物前体物采样 20 5、受体样品采集. 20 5.1 点位布设原则21 5.2 采样仪器和滤膜选择21 5.3 采样时间和周期 21 5.4 采样前准备21 5.5 样品采集 21 5.6 采样注意事项. 21 6、样品管理 22 6.1 样品标识 22 6.2 样品保存 22

不同类型水环境污染源解析方法研究分析

不同类型水环境污染源解析方法研究分析 摘要:综合国内外水环境污染源解析研究与应用的进展,综述了源解析方法的发展趋势及在水环境中的应用加以展望。 关键词:水环境;源解析;污染 0前言 近年来,我国流域河流污染问题日益突出,河流面临着有机污染物、重金属、农药等污染物所带来的巨大压力。控制和消除河流污染源是防止污染的根本措施。流域河流污染源解析就是识别流域河流污染物及其来源的因果对应关系,以提出减少和控制流域河流污染物输入的途径和措施。 1不同类型污染源解析方法 凡对环境质量可以造成影响的物质和能量输入,统称污染源;输入的物质和能量,称为污染物或污染因子。影响地面水环境质量的污染物按污染性质可以分为持久性污染物、非持久性污染物、水体酸碱度(pH值)和热效应四类。本文重点从以PAHs为代表的持久性有机污染物、以重金属类为代表的持久性无机污染物、以氮磷为主的非持久性污染物为主要对象,分别讨论了不同类型污染物的源解析方法。 1.1持久性有机污染物持久性有机污染物是指人类合成的能持久存在于环境中、通过生物食物链(网)累积、并对人类健康造成有害影响的化学物质。很多持久性有机污染物不仅具有致癌、致畸、致突变性,而且还具有内分泌干扰作用。PAHs是一种重要的致癌有机物,具有低水溶性、高辛醇-水分配系数、高沉积物-水分配系数和较低的蒸汽压,它可以通过大气沉降、城市污水排放以及雨水冲刷作用进入水体,对整个生态系统的健康造成威胁。水体中多环芳烃呈3种状态:吸附于颗粒物、溶解态、乳化态,吸附态占优势并最终归于沉积物。PAHs的理化性质决定了其从源到沉积物(受体)会经历一系列物理化学变化过程,主要是沉积物PAHs向水体释放、光化学反应和生物降解反应。由于PAHs与沉积物颗粒物之间较强的吸附作用,通常第一种反应被忽略。就后2种反应而言,不仅不同PAHs的反应速率不相同,而且同一种PAHs在不同迁移扩散过程中的反应速率也不相同。BaP比BeP易于降解,蒽比菲易于降解;来自石油的PAHs比燃烧生成的PAHs易于降解;菲在2个受体处(BR4和BR6)的半衰期分别为0.26和0.089年,而BaP则分别是O.7和0.25年;PAHs的气态和溶解态比颗粒物吸附态易于降解。针对这种情况,研究者通常有3种做法,一是考虑到源与受体距离越近,忽略PAHs的降解;二是在成分谱中剔除易降解且挥发性大的PAHs如萘;三是在方程中纳入降解因子α。 水环境中的PAHs的源解析多集中于沉积物,应用的方法和模型主要有比值法、CMB模型以及多元统计法等。比值法多用于定性解析,化学质量平衡法(cMB)要求源的成分谱较全面,而多元统计法则要求输入的数据较多。由于缺乏各污染

场地土壤污染成因与治理技术重点专项2019项目-国家科技部

附件2 “场地土壤污染成因与治理技术”重点专项 2019年度项目申报指南 为贯彻落实《关于加快推进生态文明建设的意见》,按照《关于深化中央财政科技计划(专项、基金等)管理改革的方案》(国发〔2014〕64号)要求,科技部会同有关部门及地方,制定了国家重点研发计划“场地土壤污染成因与治理技术”重点专项实施方案。本专项结合《土壤污染防治行动计划》目标和任务,紧紧围绕国家场地土壤污染防治的重大科技需求,重点支持场地土壤污染形成机制、监测预警、风险管控、治理修复、安全利用等技术、材料和装备创新研发与典型示范,形成土壤污染防控与修复系统解决技术方案与产业化模式,在典型区域开展规模化示范应用,实现环境、经济、社会等综合效益。 本专项要求以项目为单元组织申报,项目执行期3~4年。2019年拟安排22个研究方向,国拨经费总概算约5亿元。鼓励产学研用联合申报。对基础研究类项目,应充分发挥各类国家级科研基地的作用;对典型应用示范类项目,要充分发挥地方和市场作用,强化产学研用紧密结合,并明确相关配套资金,用于典型应用示范类项目的中央财政资金不得超过该专项中央财政资金总额的30%;用于典型市场导向且明确要求由企业牵头申报的项目,自筹 —1—

资金与中央财政资金的比例至少要达到1:1。同一指南方向下,原则上只支持1项,仅在申报项目评审结果相近,技术路线明显不同时,可同时支持2项,并建立动态调整机制,结合过程管理开展中期评估,根据中期评估结果,再择优继续支持。所有项目均应整体申报,须覆盖全部考核指标。除指南中有特殊说明外,基础研究与前沿技术类项目,每个项目下设课题数不超过4个,参与单位总数不超过6家;其他类项目,每个项目下设课题数不超过5个,参与单位总数不超过10家。 本专项2019年项目申报指南如下: 1.场地土壤污染成因与源解析理论与方法 1.1场地土壤持久性有机污染物迁移转化与积累效应 研究内容:研究场地土壤高关注度持久性有机污染物(POPs)的赋存形态及空间分布,揭示复杂介质环境条件下土—水—气—生的分配规律;探讨POPs在场地土壤—地下水—气—生物多界面的迁移转化过程及主控因子;研究场地土壤POPs积累过程与动力学机制;建立场地土壤POPs积累与健康风险的预测模型,量化场地土壤POPs积累的健康风险水平。 考核指标:阐明真实场地土壤高关注度的POPs(有机氯农药、多溴联苯醚等)的赋存形态与分布、土壤—地下水—气—生物分配规律及主控因子,建立积累效应与形态分布、介质性质及条件的内在关系;构建场地土壤POPs积累动力学和健康风险的预测模型各1个;选择不少于2个不同水文地质条件场地,开展土壤POPs —2—

“场地土壤污染成因与治理技术”重点专项2018年申报指南

“场地土壤污染成因与治理技术”重点专项 2018年度项目申报指南建议 (征求意见稿) 为贯彻落实《关于加快推进生态文明建设的意见》,按照《关于深化中央财政科技计划(专项、基金等)管理改革的方案》要求,科技部会同有关部门及地方,制定了国家重点研发计划“场地土壤污染成因与治理技术”重点专项实施方案。本专项结合《土壤污染防治行动计划》目标和任务,紧紧围绕国家场地土壤污染防治的重大科技需求,重点支持场地土壤污染形成机制、监测预警、风险管控、治理修复、安全利用等技术、材料和装备创新研发与典型示范,形成土壤污染防控与修复系统解决技术方案与产业化模式,在典型区开展规模化示范应用,实现环境、经济、社会等综合效益。 本专项要求以项目为单元组织申报,项目执行期4-5年。2018年拟安排不超过35个项目,约占专项总任务的30%左右。鼓励产学研用联合申报。对于企业牵头的应用示范类项目,以及场地土壤污染综合治理与集成示范类项目,充分发挥地方政府组织协调作用,形成产学研用研发团队。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。所有项目均应整体申报,须覆盖全部考核指标。每个项目下设任务(课题)数不超过6个,项目申报团队单位总数不超过10个。 应用示范类项目鼓励在国家可持续发展议程创新示范区、

国家可持续发展实验区、国家生态文明试验区等区域开展。 本专项2018年项目申报指南如下: 1.场地土壤污染成因与源解析理论与方法 1.1我国污染场地时空分布规律及其形成机制 研究内容:研究我国污染场地区域分布及其与产业行业的关系,明确有毒有害物质名录及污染场地时空分布规律;运用大数据及遥感等技术,探明我国不同区域重点行业污染场地空间分布特征、变化趋势及驱动因子;研发场地污染数据挖掘方法;阐明污染场地形成机制,发展污染场地时空分布预测模型,建立数据库和可视化管理平台。 考核指标:建立全国污染场地名录及动态数据库1套;明确我国污染场地区域分布与产业行业关系,提出污染场地时空演变驱动机制及主控因子;建立我国场地污染数据挖掘方法、时空分布图集与可视化管理平台,实现业务化应用;申请国家发明专利或软件著作权10项,发表高质量论文25篇,出版专著2部。 1.2基于大数据的场地土壤与地下水污染识别、预测和管控策略 研究内容:研究基于大数据的场地土壤与地下水污染识别方法、预测模型及管控策略;开发我国场地土壤及地下水污染物大数据互联网体系,完善数据开放及共享体系;研发基于大数据的场地污染智能识别模式,明确区域尺度场地土壤与地下水特征污染物的源-汇关系;创建我国场地土壤与地下水污染状

土壤中重金属污染源解析研究进展(老师推荐)

土壤中重金属污染源解析研究进展 于瑞莲1 , 胡恭任1, 2 ( 11 华侨大学环境科学与工程系,福建泉州362021; 21 东华理工大学核资源与环境教育部重点实验室,南昌330013) 摘要:根据近年来国内外对土壤重金属污染研究的相关报道, 概述国内外土壤重金属污染源解析的常用方法及其特点, 重 点阐述铅、锶同位素、放射性核素示踪技术在重金属污染溯源研究中的应用, 指出采用Pb、Sr、Zn 等同位素示踪, 空间分析与多元 统计相结合的方法, 追踪重金属污染源和评价污染程度是今后土壤中重金属污染源解析研究的重点。 关键词:环境工程;污染源解析;综述;重金属污染;铅锶同位素示踪;土壤 中图分类号: X53; X833 文献标识码: A 文章编号: 1001- 0211( 2008) 04- 0158- 08 收稿日期: 2006- 03- 17 基金项目:国家自然科学基金资助项目( 40673061 ) ;泉州市科技计 划资助项目( 2007Z43 ) ;东华理工大学核资源与环境教 育部重点实验室开放基金资助项目( 070714) 作者简介:于瑞莲( 1970- ) , 女, 山东高密县人, 副教授, 博士生, 主 要从事环境污染化学等方面的研究; 联系人: 胡恭任( 1966- ) , 男, 江西赣县人, 研究员, 博士后, 主要 从事环境地球化学等方面的研究与教学工作。 环境污染研究中特别关注的重金属主要是生物 毒性显著的Hg, Cd, Pb, Cr 以及类金属As, 还包括 具有毒性的重金属Cu 和Zn 等。含重金属的污染 物通过各种途径进入土壤, 造成土壤中相应重金属 元素的富集。食物链中重金属来源主要是植物通过 被动从土壤中吸收,对人类社会健康可持续发展严 重危害。因此, 查明土壤中重金属污染物质来源, 并 从源头上加以控制,对实施污染治理具有十分重要 的意义[1- 3] 。遗憾的是, 以往的工作大多局限于污 染程度方面的研究,对土壤中重金属污染的研究大 都局限于重金属的分布、赋存形态和生态环境危害 与修复等内容, 而对土壤重金属污染来源的解析方 面较少,概述了近几年来国内外土壤重金属污染源 解析的常用方法及其研究方法中的一些特点, 重点 阐述了铅、锶同位素、放射性核素示踪技术在重金属 污染溯源研究中的应用, 针对以往研究工作的不足 和存在的问题, 指出了今后土壤中重金属污染源解 析研究中的重点。 1 多元统计分析方法在土壤中重金属 污染源解析中的应用 环境科学中污染物来源的数学模型总体上分两 种,一种是以污染源为对象的扩散模型( diffusion model ) , 另一种是以污染区域为对象的受体模型 ( receptor model ) [4] 。20 世纪70 年代起, Lantzy [5] 等人开始由排放源转移到受体, 进行大气颗

相关文档
最新文档